Critical Component/ Technology Gap in 21st Century Power Plant Gasification-Based Polygeneration: Advanced Ceramic Membranes/Modules for Ultra-Efficient H₂ Production/CO₂ Capture for Coal-Based Polygeneration Plants

primary project goal

Media and Process Technology Inc. (MPT), in collaboration with the University of Southern California, is advancing inorganic membrane technology for precombustion carbon dioxide (CO₂) capture from syngas in a gasification-based polygeneration plant. The primary project goal is two-fold: (1) to transition the current single-ended "candle filter" configuration of the ceramic membrane support to a dual-end (open both ends), full ceramic multiple-tube bundle configuration that will enable permeate sweep/purge capability; and (2) to develop the housing design for the dual-end bundles with emphasis on minimization of stresses associated with the membrane to housing seals and incorporation of multiple bundles into a pre-commercial-scale unit.

technical goals

- Demonstrate durability/robustness of the full ceramic multiple-tube membrane bundle and multi-bundle module at operating conditions of up to 400°C and at up to 800 pounds per square inch gauge (psig). Testing syngas flowrate is to be 10 standard cubic feet per minute (SCFM).
- Achieve the greater than 30% cost of electricity (COE) cost savings target for CO₂ capture relative to baseline capture costs.
- Develop, fabricate, and demonstrate a membrane module incorporating multiple membrane bundles in a series-parallel configuration with permeate purge capability.
- Conduct long term performance stability testing of multiple membrane bundles in the dual-end configuration.

technical content

Gasification-based polygeneration takes advantage of the primary gasification product, hydrogen (H_2), not only as fuel for power generation, but also a feedstock for chemicals production (specifically ammonia [NH_3] in this case) in conjunction with co-produced nitrogen (N_2). Polygeneration confers the ability to rapidly adjust

program area:

Point Source Carbon Capture

ending scale:

Small Pilot

application:

Pre-Combustion Power Generation PSC

key technology:

Membranes

project focus:

Ceramic Membranes with Coal Syngas

participant:

Media and Process Technology Inc.

project number:

FE0031930

predecessor projects:

N/A

NETL project manager:

Elliot Roth

elliot.roth@netl.doe.gov

principal investigator:

Richard Ciora Media and Process Technology Inc. rciora@mediaandprocess.com

partners:

University of Southern California

start date:

10.01.2020

percent complete:

40%

the plant output to market need, and enhances suitability of gasification-based processes in smaller-scale, distributed coproduction facilities. Carbon capture from syngas is essential to yield H₂ for NH₃ synthesis or for decarbonized power generation in these cycles.

Conventionally, carbon capture is based on amine solvent-based capture (e.g., Selexol) requiring cooling of the syngas to low temperatures. However, plant efficiency can be greatly improved by H₂-CO₂ separations from warm syngas using alternative technology. MPT has developed an inorganic/ceramic membrane-based Dual-Stage Membrane Process (DSMP, DE-FE0013064), which eliminates the need for a high-cost conventional two-stage, Selexol-based CO₂ capture process. The membranes themselves consist of carbon molecular sieve, palladium, zeolites, or zeolitic imidazolate framework (ZIF) applied via thin active layer deposition on ceramic substrate. Membrane-based unit operation is recognized for its simplicity, modular configuration, and quick turn-up/turn-down, making it well suited for small-scale distributed production facilities. Figure 1 depicts the overall polygeneration cycle, in this case showing where the inorganic membrane-based warm/hot gas processing unit fits into the cycle for polygeneration of power and NH₃.

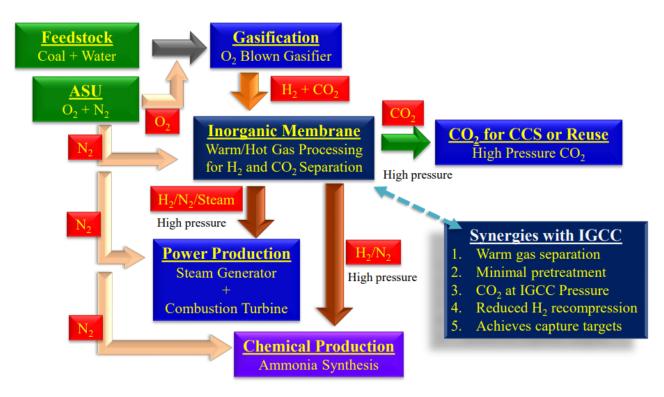


Figure 1: Inorganic membrane technology role in polygeneration cycle.

For the DSMP (and any membrane process in pre-combustion capture) to operate commercially, permeate sweep/purge with high-pressure N_2 (from the air separation unit [ASU]) and/or steam (from steam cycle of the power generating unit) is required. Unfortunately, this "permeate purge" capability is not currently available in large-format inorganic membranes rated for use at temperatures above approximately 200°C. MPT has prepared multiple-tube membrane bundles for high-temperature gas separation service (up to approximately 450°C; greater than 1,200 psig) that have been performance-demonstrated at the National Carbon Capture Center (NCCC). However, these bundles were fabricated in a "candle filter" configuration and are not permeate purgeable. Thus, the critical technology gap for the proposed process to be implemented commercially in polygeneration operation mode is the development of a purgeable inorganic membrane module. Such a module includes multiple dual-end open bundles in a series/parallel configuration, introducing additional technical challenges to be overcome such as inter-bundle sealing and shell-side feed flow distribution. Figure 2 depicts the concept for the permeate purgeable multiple bundle housing, bundles, and seals in question.

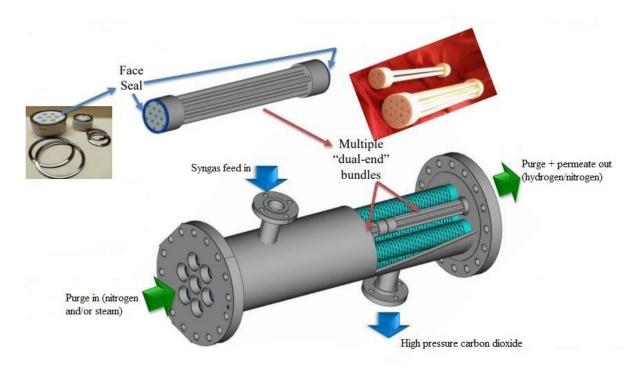


Figure 2: Permeate purgeable multiple bundle housing and seals.

Current technology development work consists of developing and fabricating a permeate purgeable multiple-tube bundle, with attention to the bundle housing with appropriate seals. Bundles sized up to 4-inch diameter and up to 38-inch length are ultimately targeted; a 1.5-, 2-, and 3-inch diameter, 38-inch dual-end bundle has been successfully fabricated.

A range of challenge tests to demonstrate bundle/housing stability are to be conducted, leading to long-term mechanical/performance stability testing (six to 12 months) at the target operating conditions. Computational fluid dynamics (CFD) modeling to simulate feed flow distribution is in process, with the idea of incorporating the CFD model into gas separation models, to use modeling to inform bundle/module configuration, and to verify mixed gas separation with model predictions. Figure 3 depicts some single-tube modeling results showing gas species concentrations.

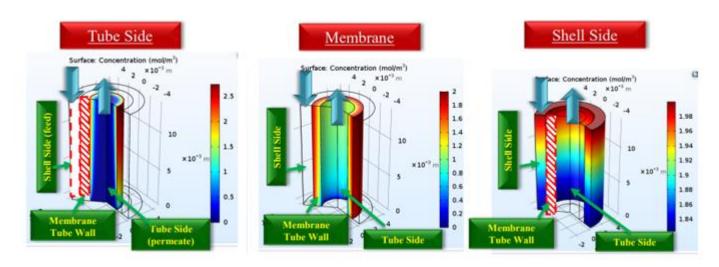


Figure 3: Single-tube membrane CFD gas concentration analysis.

Findings on performance of a commercially viable, purgeable module will inform a DSMP techno-economic analysis (TEA) for the polygeneration plant case. Both Carbon Molecular Sieve (CMS) and palladium alloy (Pd-Ag and Pd-Cu) have been previously performance-tested including multiple-tube membrane bundles at the NCCC. Membrane process parameters for these membranes (CMS Membrane #1 and Pd alloy Membrane #2) are summarized in Table 1A and 1B, respectively.

TABLE 1A: MEMBRANE PROCESS PARAMETERS

Materials Properties (Membrane #1)	Units	Current R&D Value	Target R&D Value			
Materials of Fabrication for Selective Layer	_	Carbon Molecular Sieve (CMS)				
Materials of Fabrication for Support Layer	_	Alumii	na			
Nominal Thickness of Selective Layer	μm	2 to 3	2 to 3			
Membrane Geometry	_	Tubular	Tubular			
Maximum Trans-Membrane Pressure	bar	>80	>80			
Hours Tested without Significant Degradation	hour	>1,500 in coal gasifier syngas (NCCC)	>20,000			
Manufacturing Cost for Membrane Material	\$/m ²	2,400	<1,200			
Membrane Performance (Membrane #1)						
Temperature	°C	250 to 300	250 to 300			
H ₂ Pressure Normalized Flux	GPU	350 to 750	350 to 750			
H ₂ /H ₂ O Selectivity	_	2 to 4	2 to 4			
H ₂ /CO ₂ Selectivity	_	>50	>80			
H ₂ /H ₂ S Selectivity	_	>100	>100			
Sulfur Tolerance	ppm	>5,000	>5,000			
Type of Measurement	_	Mixed gas and gasifier offgas (NCCC)	Same			

TABLE 1B: MEMBRANE PROCESS PARAMETERS

Materials Properties (Membrane #2)	Units	Current R&D Value	Target R&D Value		
Materials of Fabrication for Selective Layer	_	Palladium Alloy			
Materials of Fabrication for Support Layer	_	Alumina			
Nominal Thickness of Selective Layer	μm	2 to 5	1 to 3		
Membrane Geometry	_	Tubular	Tubular		
Maximum Trans-Membrane Pressure	bar	>80	>80		
Hours Tested without Significant Degradation	_	>35,000 hours in lab testing >150 in pre-treated coal gasifier syngas (NCCC)	>2,000 hours in laboratory simulated syngas		
Manufacturing Cost for Membrane Material	\$/m²	9,500	<4,500		
Membrane Performance (Membrane #2)					
Temperature	°C	350 to 450	350 to 450		
H ₂ Pressure Normalized Flux	GPU (at 20psig)	2,000 to >5,500	2,000 to >5,500		
H ₂ /H ₂ O Selectivity	_	>3,000	>5,000		
H ₂ /CO ₂ Selectivity	_	>3,000	>5,000		
H ₂ /H ₂ S Selectivity	_	NA (high)	NA (high)		
Sulfur Tolerance	ppm	<50	<50		
Type of Measurement	_	Mixed gas and pretreated gasifier offgas (NCCC)	Same		
Proposed Module Design					
Flow Arrangement	_	Co-, counter-, or cross flow			
Packing Density	m²/m³	>4	50		
Shell-Side Fluid	_	Feed/retentate			

Syngas Gas Flowrate	kg/hr		_	
CO ₂ Recovery, Purity, and Pressure	%/%/bar	>90	~95	>50
H ₂ Recovery, Purity, and Pressure	%/%/bar	>98.8	>97	5 to 15
Pressure Drops Shell/Tube Side	bar		Unknown	
Estimated Module Cost of Manufacturing and Installation	\$ kg/hr	Housing cost is estimated at ca. \$350 to \$700/m².		

Definitions:

Membrane Geometry – Flat discs or sheets, hollow fibers, tubes, etc.

Pressure Normalized Flux – For materials that display a linear dependence of flux on partial pressure differential, this is equivalent to the membrane's permeance.

GPU – Gas Permeation Unit, which is equivalent to 10^{-6} cm³ (1 atm, 0 °C)/cm²/s/cm Hg. For non-linear materials, the dimensional units reported should be based on flux measured in cm³ (1 atm, 0 °C)/cm²/s with pressures measured in cm Hg. Note: 1 GPU = 3.3464×10^{-6} kg mol/m²-s-kPa [SI units].

Type of Measurement – Either mixed or pure gas measurements; target permeance and selectivities should be for mixture of gases found in desulfurized syngas.

Flow Arrangement – Typical gas-separation module designs include spiral-wound sheets, hollow-fiber bundles, shell-and-tube, and plate-and-frame, which result in either co-current, countercurrent, crossflow arrangements, or some complex combination of these.

Packing Density – Ratio of the active surface area of the membrane to the volume of the module.

Shell-Side Fluid – Either the permeate or retentate (syngas) stream.

Estimated Cost - Basis is kg/hr of CO2 in CO2-rich product gas; assuming targets are met.

Membrane Permeation Mechanism - CMS Membrane: Molecular Sieving; Pd Alloy Membrane: Solution-Diffusion.

Contaminant Resistance – CMS Membrane: Resistant to all coal/biomass gasifier off-gas contaminants; Pd Alloy Membrane: Sulfur species are a significant problem. Unknown for other gas phase contaminants.

Syngas Pretreatment Requirements - CMS Membrane: None except upstream particulate removal at >50µm.

Pd Alloy Membrane: Desulfurization required.

Membrane Replacement Requirements – Unknown; assume 10 years.

Waste Streams Generated - None.

Process Design Concept - See Figure 1.

Proposed Module Design - See Figure 2. Composition of gas entering the membrane subsystem is assumed to be:

		Composition						
Pressure	Temperature			VO	1%			ppmv
psig	°F	CO_2	CO	CH ₄	N_2	H_2	H_2O	H ₂ S
800	550	27	6	<1	<1	41	25	500

TABLE 2: INDUSTRIAL PLANT CARBON CAPTURE / DIRECT AIR CAPTURE ECONOMICS

Economic Values	Units	Current R&D Value	Target R&D Value
Cost of Carbon Captured	\$/tonne CO ₂	33.2	21.5
Capital Expenditures	\$/tonne CO ₂	644	644
Operating Expenditures	\$/tonne CO ₂	26.3	26.3

Definitions:

Cost of Carbon Captured - Projected cost of capture per mass of CO₂ captured under expected operating conditions.

Capital Expenditures - Projected capital expenditures in dollars per tonne of CO₂ captured.

Operating Expenditures – Projected operating expenditures in dollars per tonne of CO₂ captured.

Calculations Basis – This work has been developed using Case B5B of DOE/NETL Report 2015/1727 – "Cost and Performance Baseline for Fossil Energy Plants," Volume 1b Rev 2b, July 31, 2015, GEE IGCC with CO₂ Capture as the base case.

Scale of Validation of Technology Used in TEA – Testing was conducted at the NCCC with pilot scale multiple tube membrane bundles at gasifier syngas feed rates up to 5 scfm.

technology advantages

- Inorganic membranes have been demonstrated to be highly effective for and ideally suited to pre-combustion capture.
- Warm gas removal of CO₂, sulfur, and contaminants minimizes gas recompression demand and improves process efficiency.
- Potential for greater than 40% reduction in COE versus baseline amine solvent-based capture.
- DSMP modified polygeneration cycle is well suited to co-production of NH₃.

R&D challenges

- Permeate purge capability with nitrogen or steam is assumed in various technoeconomic analyses, but not yet available in practice.
- Multiple bundle housing design concerns and restrictions: minimizing stress between the ceramic membrane bundles and steel housing, and maintaining bundle interconnects that maintain axial compression.
- Multiple bundle feed flow maldistribution (shell side) resulting in poor mixed gas performance. CFD modeling is being developed for the configuration shown in Figure 2.

status

Dual-ended multiple-tube membrane bundle fabrication scale-up is in process with increasing diameters (1.5-inch and 2-inch diameter scales to 3 inches) being worked on, along with thermal cycling challenge testing. There has been a successful test of a prototype high-temperature testing rig to 400°C and 800 psig. CFD model development and testing continues.

available reports/technical papers/presentations

"Critical Component/Technology Gap in 21st Century Power Plant Gasification Based Poly-Generation: Advanced Ceramic Membranes/Modules for Ultra Efficient H₂ Production/CO₂ Capture for Coal-Based Poly-generation Plants," Project Budget Period 1 Review Meeting, March 11, 2022. <a href="https://www.netl.doe.gov/projects/plp-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Power+Plant+Gasific ation+Based+Poly-download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Download.aspx?id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Download.aspx.id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Download.aspx.id=13015&filename=Critical+Component%2fTechnology+Gap+in+21st+Century+Download.aspx.id=13015&filename=Critical+Component%2fTechnology+Cap+in+21st+Century+Download.aspx.id=13015&filename=Critical+C

generation%3a+++Advanced+Ceramic+Membranes%2fModules+for+Ultra+Efficient++H2+Production%2fCO2+Capture+for+Coal-Based+Poly-generation+Plants.pdf.

"Critical Component/Technology Gap in 21st Century Power Plant Gasification Based Poly-Generation: Advanced Ceramic Membranes/Modules for Ultra Efficient H₂ Production/CO₂ Capture for Coal-Based Poly-generation Plants," Presented by Richard Ciora, Media and Process Technology, Inc., 2021 NETL Carbon Management Research Project Review Meeting, August 13, 2021. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_PSC_Ciora.pdf.

"Critical Component/Technology Gap in Coal FIRST Gasification Based Poly-generation: Advanced Ceramic Membranes/ Modules for Ultra Efficient H₂ Production/CO₂ Capture for Coal-Based Poly-generation Plants," Project Kickoff Meeting, November 5, 2020. https://www.netl.doe.gov/projects/plp-

download.aspx?id=11008&filename=Critical+Component%2fTechnology+Gap+in+Coal+FIRST++Gasification+Based+Poly-

generation%3a+++Advanced+Ceramic+Membranes%2fModules+for+Ultra+Efficient++H2+Production%2fCO2+Captur e+for+Coal-Based+Poly-generation+Plants.pdf.