Novel Transformational Membranes and Process for CO₂ Capture from Flue Gas

primary project goals

The Ohio State University (OSU), along with its partners Gas Technology Institute, the National Carbon Capture Center (NCCC), and American Electric Power, is developing a cost-effective design and fabrication process for a novel transformational membrane and its membrane modules that capture carbon dioxide (CO₂) from flue gas. The project goal is to achieve 60 to 90% capture of CO₂ with greater than 95% CO₂ purity ready for compression to 152 bar (2,200 pounds per square inch [psi]) for storage or enhanced oil recovery and for less than 30/tonne CO₂ captured.

technical goals

- Optimize and characterize the transformational membrane (including morphology, transport properties, and stability).
- Synthesize an improved polymer support with a CO₂ permeance greater than 23,000 gas permeation units (GPU) for the membrane.
- Develop a polymeric composite membrane with CO₂ permeance greater than 3,300 GPU and CO₂/nitrogen (N₂) selectivity more than 140 at 77°C.
- Design and construct an integrated bench-scale testing system to be tested at OSU and NCCC.
- Complete a techno-economic analysis (TEA) of the project.

technical content

OSU and its partners are developing a cost-effective design and fabrication process for a novel transformational membrane and its membrane modules that capture CO_2 from flue gas. Based on density functional theory (DFT) calculations indicating a new carrier with high reactivity with CO_2 , OSU will synthesize novel transformational polymer membranes with the new carrier, showing a very high CO_2 permeance of about 3,300 GPU (1 GPU = 10^{-6} cm³(STP [Standard Temperature and Pressure])/(cm²/s/cm mercury [Hg]) and a very high CO_2/N_2 selectivity of greater than 140. Optimization of the novel transformational membrane, scale-up of the membrane to a prototype size of about 21 inches wide in continuous roll-to-roll fabrication, and construction and testing of a bench skid for the integrated membrane process will be performed.

For the design of this membrane, OSU is using a cost-effective polyethersulfone (PES) support and coating a thin top layer of the membrane (Figure 1). This membrane design offers a low cost for the membrane element in commercial spiral-wound configuration (less than 2.00/ft² or $21/m^2$). Operating parameters and various properties of the membrane are detailed in Table 1. The prototype membrane is used to fabricate at least six pilot-size membrane modules (each about 20-inch length and $35-m^2$ membrane area) for testing with simulated flue gas at OSU and subsequently with actual flue gas at NCCC (Wilsonville, Alabama), using the skid to capture the CO₂ (at 60 to 90%) with at least 95% CO₂ purity (Figure 2). The prototype membrane modules will be in commercial spiral-wound configuration with a minimal pressure drop (less than 0.103 bar/meter or 1.5 psi/meter).

program area:

Point Source Carbon Capture

ending scale: Bench Scale

application: Post-Combustion Power Generation PSC

key technology:

Membranes

project focus:

Polymeric Composite Membranes

participant: The Ohio State University

project number: FE00031731

predecessor project: FE0026919

NETL project manager:

Krista Hill krista.hill@netl.doe.gov

principal investigator:

W.S. Winston Ho The Ohio State University ho.192@osu.edu

partners:

Gas Technology Institute; National Carbon Capture Center; American Electric Power

start date:

07.01.2019

percent complete: 70% After the skid testing, OSU will determine the identity and concentration of any possible contaminates on the membrane via laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), Fourier transform infrared spectroscopy (FTIR), X-ray photoemission spectrometry (XPS), and nuclear magnetic resonance spectroscopy (NMR). Economic data is shown in Table 2.

TABLE 1: MEMBRANE PROCESS PARAMETERS

Materials Properties	Units	Current R&D Value	Target R&D Value			
Materials of Fabrication for Selective Layer	—	amine-contair	amine-containing polymer			
Materials of Fabrication for Support Layer	—	polyethersulfone on	polyethersulfone on non-woven fabric			
Nominal Thickness of Selective Layer	nm	170	150–250			
Membrane Geometry	—	flat sheet	flat sheet			
Max Trans-Membrane Pressure	bar	4	4			
Hours Tested without Significant Degradation	—	2,500 hours	500 hours			
Manufacturing Cost for Membrane Material	\$/m ²	20	20			
Membrane Performance						
Temperature	°C	57–77°C	57–77°C			
CO ₂ Pressure Normalized Flux	GPU	3,670 GPU	>3,300 GPU			
CO ₂ /H ₂ O Selectivity	—	1	1			
CO ₂ /N ₂ Selectivity	_	155	>140			
Proposed Module Design		(for equipme	(for equipment developers)			
Flow Arrangement	—	spiral-w	spiral-wound			
Packing Density	m²/m³	about 2	about 2,000			
Permeate-Side Fluid	_	vacuum or rete	vacuum or retentate recycle			
Flue Gas Flowrate	ft³/min	10.	10.3			
CO ₂ Recovery, Purity, and Pressure	%/%/bar	>60%-90%, >	>60%–90%, >95%, 1 bar			
Pressure Drops Feed/Permeate Side	psi/m	1.5/1.5				
Estimated Module Cost of Manufacturing and Installation	<u>\$</u> m²	32.3				

Figure 2: Process concept for two-stage membrane system. Initialisms: FGD = flue gas desulfurization; SCS = SO₂ caustic scrubber; BL = blower; MB = membrane; EX = turbo expander; HX = heat exchanger; KO = knockout; VAC = vacuum pump; MSC = multi-stage compressor.

TABLE 2: POWER PLANT CARBON CAPTURE ECONOMICS

Economic Values	Units	Current R&D Value	Target R&D Value	
Cost of Carbon Captured	\$/tonne CO2	39.3	40.0	
Cost of Carbon Avoided	\$/tonne CO2	53.9	55.2	
Capital Expenditures	\$/MWhr	21.4	22.0	
Operating Expenditures	\$/MWhr	11.4	12.0	
Levelized Cost of Electricity	\$/MWhr	100.5	101.0	

Definitions:

Membrane Geometry - Flat discs or sheets, hollow fibers, tubes, etc.

Pressure Normalized Flux – For materials that display a linear dependence of flux on partial pressure differential, this is equivalent to the membrane's permeance.

GPU – Gas permeation unit, which is equivalent to 10⁻⁶ cm³ (1 atmosphere [atm], 0°C)/cm²/s/cm Hg). For non-linear materials, the dimensional units reported should be based on flux measured in cm³ (1 atm, 0°C)/cm²/s with pressures measured in cm Hg. Note: 1 GPU = 3.3464 × 10⁻¹⁰ kg mol/m²-s-kPa (SI units).

Type of Measurement – Either mixed or pure gas measurements; target permeance and selectivities should be for mixture of gases found in desulfurized flue gas.

Flow Arrangement – Typical gas-separation module designs include spiral-wound sheets, hollow-fiber bundles, shelland-tube, and plate-and-frame, which result in either cocurrent, countercurrent, crossflow arrangements, or some complex combination of these.

Packing Density – Ratio of the active surface area of the membrane to the volume of the module.

Permeate-Side Fluid – Either vacuum or a sweep gas.

Estimated Cost – Basis is m² membrane area.

Flue Gas Assumptions – Unless noted, flue gas pressure, temperature, and composition leaving the flue gas desulfurization (FGD) unit (wet basis) should be assumed as:

		Composition							
Pressure	Temperature	vol%				ppmv			
psia	°F	CO_2	H ₂ O	N ₂	O ₂	Ar	SOx	NOx	
14.7	135	13.17	17.25	66.44	2.34	0.80	42	74	

Other Parameter Descriptions:

Membrane Permeation Mechanism – Facilitated transport for amine-containing selective layer.

Contaminant Resistance – Resist up to 3 parts per million volume (ppmv) sulfur dioxide (SO₂).

Flue Gas Pretreatment Requirements – Removal of particulates and SO₂ polishing to 3 ppmv.

Membrane Replacement Requirements – Estimated approximately four years.

Waste Streams Generated – Nitrogen with water (H₂O), about 1% CO₂, and minor impurities.

Process Design Concept – See Figure 2.

technology advantages

This membrane consists of a thin selective polymer layer on a polymer support so that it can be made efficiently in continuous roll-to-roll manufacturing. The membrane offers high CO_2/N_2 selectivity at greater than 57°C, which does not require flue gas cooling or cryogenic distillation. The simplicity of this membrane design offers a low cost for the membrane element in commercial spiral-wound configurations. If successful, the process can achieve less than \$30/tonne CO_2 for 70% recovery.

R&D challenges

- Membrane stability in the presence of high-level contaminants, such as SO₂ and nitrogen oxide (NO_X).
- Design and fabrication of prototype spiral-wound membrane module with 8-inch diameter.
- Requires two membrane stages.

status

A highly permeable PES support with bicontinuous morphology was developed. The polymer support exhibited a CO_2 permeance of 310,000 GPU, 13 times more permeable than the project target. A thin-film composite membrane containing a novel CO_2 carrier was synthesized and scaled up to 21-inch width. The prototype membrane demonstrated a CO_2 permeance of 3,670 GPU and a CO_2/N_2 selectivity of 155 with simulated flue gas. The scaled-up membrane was successfully rolled into a prototype spiral-wound (SW) membrane module with 8-inch diameter and 35-m² membrane area. The SW module demonstrated a CO_2/N_2 separation performance on par with the flat-sheet membrane.

available reports/technical papers/presentations

Ho, W.; Han, Y.; Lin, L-C., "Novel Transformational Membranes and Process for CO₂ Capture from Flue Gas." National Energy Technology Laboratory. Carbon Management and Natural Gas & Oil Research Project Review Meeting. Pittsburgh, PA. August 2021. *https://netl.doe.gov/sites/default/files/netl-file/21CMOG_PSC_Ho_0.pdf*.

R. Pang, K. K. Chen, Y. Han, and W. S. W. Ho, "Highly Permeable Polyethersulfone Substrates with Bicontinuous Structure for Composite Membranes in CO₂/N₂ Separation", Journal of Membrane Science, 612, 118443 (2020).

Ho, W., Han, Y., "Novel Transformational Membranes and Process for CO₂ Capture from Flue Gas," poster presented at the 2019 NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 2019.

Ho, W., Han, Y., "Novel Transformational Membranes and Process for CO₂ Capture from Flue Gas," presented at the 2019 NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 2019. *https://netl.doe.gov/sites/default/files/netl-file/Y-Han-OSU-Transformational-Membrane.pdf*.