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EXECUTIVE SUMMARY 
The Particle-in-cell (PIC) numerical approach for modeling granular solids in fluid flow has 
gained significant interest in recent years. Valued for its often shorter time-to-solution, the PIC 
formulation relies on modeling statistical groupings of particles called parcels in cooperation 
with a solids stress model to affect local solids velocity. This is in contrast to the discrete element 
model (DEM) where every particle in a system is modelled individually and directly coupled to 
local solids velocity through Newtonian mechanics. 
The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) 
develops and maintains Multiphase Flow with Interphase eXchanges (MFiX), a collection of 
open-source computational fluid dynamics (CFD) solvers. Included in the MFiX suite are 
traditional two-fluid model (TFM) and DEM solvers, and a recently added PIC solver (NETL, 
2021). In general, PIC methodologies offer an accuracy trade-off in lieu of computational speed; 
and therefore, it is important to assess the credibility of MFiX-PIC simulations. For this purpose, 
a systematic verification, validation and uncertainty quantification (VVUQ) effort was initiated 
at NETL to assess the new PIC solver. 
This manuscript follows two earlier reports related to (1) verification and validation (V&V) of 
MFiX-PIC (Vaidheeswaran et al., 2020) and (2) sensitivity analysis of MFiX-PIC 
(Vaidheeswaran et al., 2021). The first study aimed to capture and document any discrepancy 
noted in MFiX-PIC by comparing simulation results to available experimental data directly. The 
second study aimed to create a better understanding of keyword-accessible modeling parameters 
employed in MFiX-PIC, by examining several quantities of interest (QoI) as the modeling 
parameters varied to determine their sensitivities. The current study aims to systematically 
document how to assess appropriate settings for MFiX-PIC keyword-accessible modeling 
parameters so that the least discrepancy is observed between MFiX-PIC simulation predictions 
and experimental results for a targeted application. Specifically, this technical report documents 
the process of calibrating multiple MFiX-PIC modeling parameters based on matching either an 
experimental dataset or an analytic solution. For this purpose, three application problems were 
selected: (1) particle settling, (2) fluidized bed, and (3) circulating fluidized bed. These problems 
purposefully span a wide selection of flow regimes with the expectation that a user may utilize 
similar MFiX-PIC modeling parameters for other related applications. 
Calibration methodologies are usually grouped under two categories: (1) deterministic 
calibration, which provides a single value of each model parameter calibrated; and (2) statistical 
calibration, which provides a distribution for each model parameter calibrated based on insight 
provided by experimental data. As part of the deterministic calibration demonstration, two 
uncertainty quantification (UQ) software tools were employed to assess ease of use and to 
compare the performance of the proposed calibrated model parameter settings from each tool. 
UQ software tools included PSUADE and Nodeworks. 
This report documents deterministic calibration of five MFiX-PIC modeling parameters in the 
context of particle settling. Simulation results are compared to an analytical solution for the 
location of the filling shock in a settling bed to assess the effectiveness of the proposed calibrated 
model parameter settings, which were determined to be quite different than the default MFiX-
PIC settings and those proposed in the earlier V&V Manual. The observed difference was 
anywhere between 145% higher and 85% lower than the reference settings when compared. The 
proposed calibrated model parameter settings were demonstrated to yield substantially more 
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accurate MFiX-PIC results. The table below (also shown as Table 6 in the body of this report) 
gives the proposed calibrated settings for MFiX-PIC model parameters suggested for use in 
applications similar to the particle settling case. Although PSUADE-based settings have been 
demonstrated to give more accurate MFiX-PIC simulation results, Nodeworks-based settings 
were also quite good. Either group of settings may be appropriate for simulations similar to 
particle settling. 
 

Validated Calibrated Model Parameters based on PSUADE and Nodeworks Results      
(Table 6) 

MFiX-PIC Model 
Parameter 

PSUADE 
Calibrated 

Settings for All 
(θ1,θ2,θ3,θ4,θ5) 

Nodeworks 
Calibrated 

Settings for All 
(θ1,θ2,θ3,θ4,θ5) 

Theta1 (θ1): Pressure 
linear scale factor 14.309 18.300 

Theta2 (θ2): Vol. 
fraction exponential 
scale factor  

2.165 3.590 

Theta3 (θ3): Statistical 
weight 12.241 7.980 

Theta4 (θ4): Vol. 
fraction at maximum 
packing 

0.399 0.442 

Theta5 (θ5): Solid slip 
velocity factor 0.828 0.658 

 
A separate dedicated report will demonstrate statistical calibration for the settling case. Statistical 
calibration will yield distributions for the model parameter settings rather than single values. 
Additional standalone reports will describe the calibration efforts for the fluidized bed and 
circulating fluidized bed applications. The overall goal of these various calibration studies is to 
establish validated guidance for MFiX-PIC users who are planning to carry out simulations that 
fall within the hypothetical flow regimes explored, and to offer a unified set of proposed 
calibrated settings, if possible. 
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1. INTRODUCTION 

 MOTIVATION 
Particle laden flows are common in applications including chemical, pharmaceutical, energy, and 
food industries. Simulation-based engineering (SBE) has widely been used to optimize such 
systems as well as minimize their operational costs. Recently, there has been an increasing 
demand for modeling industrial-scale systems, where application of conventional simulation 
techniques like discrete element model (DEM) may be challenging. Tracking individual particles 
and their collisions with neighbors can become computationally intractable when particle count 
exceeds the order of tens of millions. Though there is rapid development in hardware resources 
for high performance computing, industrial scale models still may suffer from unreasonable 
computational turnaround times. Consequently, this issue has led to the development of particle 
averaging techniques such as coarse-grained DEM or particle-in-cell (PIC), which present a 
trade-off between solution accuracy and time to solution. 
The work presented here focuses on PIC methodology developed for the open-source software 
MFiX (Multiphase Flow with interphase eXchanges). Even though preliminary verification and 
validation (V&V) studies have been completed for MFiX-PIC (Vaidheeswaran et al., 2020), 
evaluating the results of additional benchmark simulations, already documented for MFiX-DEM 
and MFiX-TFM, assists users in assessing modeling trade-offs (Musser et al., 2018; Banerjee et 
al., 2018). 
Vaidheeswaran et al. (2021) analyzed the parametric sensitivities of different MFiX-PIC model 
parameters through global sensitivity analysis. Even though sensitivity analysis indicates the 
influence of selected parameters on quantities of interest (QoI) in a simulation, the method does 
not quantify ideal input parameter values. As such, the current effort explores deterministic 
calibration and Bayesian inference as a means to identify optimal single-value or ranged input 
parameters for particular MFiX-PIC simulations, respectively. 
Model parameters are expected to be dependent on local hydrodynamics. In this effort, 
deterministic calibration of PIC parameters is performed for the case of particles settling in a 
dense medium, where the magnitude of fluid velocities is lower than the minimum fluidization 
velocity i.e., U/Umf < 1. The input parameters and the ranges for each parameter were initially 
chosen based on prior sensitivity analyses. 

 OUTLINE 
This report is the first in a series of reports designed to document input parameter calibration 
studies for MFiX-PIC (NETL). The report layout is arranged to help the reader first understand 
the PIC model parameters by considering them from a theoretical viewpoint (Section 2). Then, a 
background on calibration and uncertainty quantification techniques particular to this study is 
introduced in the context of software set-up (e.g., PSUADE and Nodeworks) (Section 3). Finally, 
a demonstration case is offered including calibration results (Sections 4 and 5). 
The report also includes a separate data management and repository section (Appendix). There, 
the user is given information necessary to replicate the calibration analysis described. However, 
the results in this report rely on specific versions and libraries of Nodeworks, Python, and 
PSUADE, custom C-based code, and particular data sampling techniques (like Latin Hypercube). 
If the user trying to reproduce data in this work does not apply the same versions of the 
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employed software and pathway to solution, it should not be surprising if exact results are not 
replicated. However, the user should expect consistent results, provided their solution process is 
similarly sound. 
The data management and repository section resides within NETL’s Gitlab storage system, 
accessible at: 
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ 
ParticleSettling/DeterministicCalibration 
Note: All new users will need to register to gain access to the NETL Gitlab repository. 
The purpose of the repository is two-fold: to have the information necessary to fully replicate 
this study, and to provide the reader with a baseline to begin their own exploration of calibration 
analysis. Note, however, that there is a clear expectation that a person accessing this repository 
has pre-existing knowledge of how to operate the various software associated with this study. If 
not, reference to the websites and user manuals of the relevant uncertainty quantification (UQ) 
software is advised. 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ParticleSettling/DeterministicCalibration
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ParticleSettling/DeterministicCalibration
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ParticleSettling/DeterministicCalibration
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2. MFiX-PIC OVERVIEW 
PIC formulations are reliant on the representation of parcels, which are imagined as clumps of 
particles that share similar intrinsic physical properties. Specific to MFiX-PIC, each parcel is 
assumed to contain a group of mono-dispersed particles (so particles share both density and 
diameter for example). A statistical weight, Wp, indicates how many particles are in each discrete 
parcel. If polydisperse systems are imagined, separate solid phases are created for each particle 
diameter, and each phase carries a separate statistical weight. Figure 1 illustrates a polydisperse 
system of blue and green particles that are re-imagined as PIC parcels. Fifteen blue particles 
become 3 blue parcels, indicating a statistical weight of 5. Twelve green particles become 3 
green parcels, indicating a statistical weight of 4. 

 
Figure 1: Visual concept of poly-disperse particle consolidation to computational parcels 
(Clarke and Musser, 2020). (a) A single cell populated with particles. (b) The same single cell 
after a statistical weight has been applied to each solid phase. 

The statistical weight is used to linearly magnify expressions that are typically written at particle 
scale. By example, the conservation of translational momentum in the MFiX-PIC formulation is 
expressed as, 

 . (1) 

Ui is parcel velocity in the coordinate direction i, gi is gravitational acceleration in the coordinate 
direction i, ρs is solids density and mp is particle mass. s is solids volume fraction and τp is 
interparticle solids stress. 𝑆𝑆𝑚𝑚𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔

(𝑝𝑝)  is a source term incorporating drag. Note how Wp acts as a 
linear operator against what would otherwise look like a traditional particle representation of 
translational momentum. This is typical throughout the MFiX-PIC model, where statistical 
weight is used to incorporate the effect of a parcel, instead of just a single particle. 
Note that by default, MFiX accounts for gas-solid buoyancy through a shared gas-pressure 
formulation. As such, the fluid-parcel drag force acting on a parcel p is given by Equation 2 
(Clarke and Musser, 2020): 

𝑆𝑆𝑚𝑚𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔
(𝑝𝑝) = 𝑊𝑊𝑝𝑝(−𝑑𝑑𝑃𝑃𝑔𝑔

𝑑𝑑𝑥𝑥𝑖𝑖
𝑉𝑉(𝑝𝑝) + 𝛽𝛽𝑔𝑔

(𝑝𝑝)𝑉𝑉(𝑝𝑝)(𝑈𝑈𝑔𝑔𝑖𝑖 − 𝑈𝑈𝑖𝑖
(𝑝𝑝)))    (2) 

where V (p) is the pth parcel’s single particle volume, 𝛽𝛽𝑔𝑔(𝑝𝑝) is the pth parcel’s particle momentum 
transfer (aka drag) coefficient, and Pg and Ugi are the fluid phase pressure and velocity, 
respectively. The entire expression is then modified by the statistical weight, Wp, assigned to 
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parcel p. The drag force is added to the translational momentum equation through MFiX’s 
general source term. A full description of particle-level calculations that are modified by 
statistical weight in MFiX-PIC is included in the theory document (Clarke and Musser, 2020). 
As an aside, the numerical implementation of the interparticle solids stress is an independent 
calculation within MFiX. This implies that the velocity contribution from the interparticle solids 
stress is incremental to the total solids velocity. 
Using a statistical weight to modify grouped particle behavior is not unique to PIC methodology. 
By example, coarse-grain DEM follows a similar paradigm (Lu and Benyahia, 2018). Instead, 
the particular key to MFiX-PIC methodology is the management of an algebraic interparticle 
solids stress model for calculating τp. Newtonian mechanics is not used to derive this stress for 
every particle. Rather, an empirical ratio (Auzerais et al., 1988), coupled with logic (Snider, 
2001) related to the sign of ∇τp is employed. Specifically, the ratio used to calculate interparticle 
solids stress is given in Equation 3: 

 . (3) 

In this equation, the parameters P0 and β are constants that might be conditionally specific to 
flow regime, where P0 carries units of pressure. δ is any small value like (~ 10-7). 𝜖𝜖𝑠𝑠 is solids 
fraction in the cell where a parcel resides, and  is a pre-determined solids fraction that 
represents the greatest fraction of solids that can theoretically exist in a computational cell. Note 
that the δ term protects against both negative and non-existent values (division by 0) of τp when 
numerical over-packing or perfect close-packing of solids may occur during calculations. Also 
note that τp is of significant value only as  and of smaller magnitude elsewhere. 

It is the gradient of interparticle stress that determines whether or not τp will accelerate or arrest 
particle velocity when using the PIC method. Snider (2001) describes a simple logic to control an 
algebraic outcome, whereby the local PIC velocity contribution is compared to solids slip 
velocity. Note that solids slip velocity is the difference between individual parcel and bulk solids 
velocities. When the gradient of interparticle stress is less than or equal to zero, the PIC velocity 
contribution is positive or equal to zero. When the gradient of interparticle stress is greater than 
zero, the PIC velocity contribution is negative or zero. A pseudo-algorithm summarizing the 
above decision making has been provided as the following, but the reader is directed specifically 
to Equations 40 and 41 in Snider (2001). 

if ∇τp ≤0 

PIC velocity contribution = min(δup,α*Slip Velocity) 

PIC velocity contribution = max(PIC velocity contribution,0) else 

if ∇τp>0 

PIC velocity contribution = max(δup,α*Slip Velocity) 

PIC velocity contribution = min(PIC velocity contribution,0) 
endif 
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In this logic, δup represents an estimated discrete particle velocity contribution from the 
interparticle stress calculation. What is unique to MFiX-PIC with regard to the above logic 
sequence is that a user-controlled factor, α, can be applied to the solids slip velocity to dampen 
or enhance its effect in the described comparisons. 
As MFiX-PIC has gone through performance evaluation, effort has been made to evaluate how 
the various user-controlled parameters affect solutions. The most obvious PIC parameters are the 
values that populate the interparticle stress equation, specifically, P0, β, and 𝜖𝜖𝑔𝑔∗. Published works 
indicate that tuning the linear pressure factor (Andrews and Snider, 1995; Snider, 2001, 2007; 
Snider et al., 2011) and exponential scale factor (Auzerais et al., 1988; Snider, 2001) is necessary 
to capture specific flow regime types. In general terms, P0 is set to less than 10 Pa in simulations 
that do not experience dynamic flow (like settling) and greater than 100 Pa in simulations with 
considerable particle motion (like circulation). These rule of thumb observations are described 
through a tentative flow regime map in Figure 2, whose axes are pressure linear scale factor P0 

and normalized velocity of the continuous phase . However, the goal of this study is to 
provide better and more specific ranges, not only for P0, but for all keyword accessible MFiX-
PIC parameters considered including β, the solids volume fraction exponential scale factor and  

, close packed volume fraction. Before this study, advice was simply to set 2 < β < 5, and the 
encouragement to choose close packed volume fraction in a way consistent with physical 
expectations based on particle size distribution and polydispersity (Dexter and Tanner, 1972; 
Thies-Weesie and Philipse, 1994; Desmond and Weeks, 2014). 
 

 

Figure 2: Hypothetical flow regime map (Vaidheeswaran et al., 2020). 

 

Proper selection of Wp, statistical weight of particles, or more easily, number of particles per 
parcel is not well defined in literature. On one hand, users want to limit the number of parcels in 
a system to reduce the overhead of tracking individual entities. On the other hand, users want to 
maintain as many parcels as possible to best reflect a system that is really made up of many more 
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particles to best capture physical dynamics. These considerations must be balanced with the 
proper reflection of solids fraction per cell in a simulation (for as statistical weight increases, the 
ability to tune solids fraction deteriorates). Consequently, estimates have evolved within the 
MFiX-developers community where 20 parcels/computational cell at close-packed conditions is 
considered some kind of lower threshold for particle representation. 

Finally, there is the effect of α, a linear coefficient that modifies solid slip velocity. Again, there 
is no body of literature to help a user select this value. MFiX-developers realized that when α=1, 
numerical overpacking often occurred in settling simulations, but when α=0.5 that overpacking 
abated. Such numerical sensitivity was not observed in simulations that involved very active 
particle motion, but MFiX developers have yet to create a suggested range of values convenient 
to users. 
As MFiX-PIC development continues, creating PIC parameter ranges for the general user 
community has become more important. This study demonstrates the preliminary steps by 
purposefully defining ideal values for the above parameters in the context of diverse simulation 
cases: particle settling, a fluidized bed, and a circulating fluidized bed. In addition, this study 
assesses the sensitivity of the aforementioned parameters so that a user can knowledgeably 
employ the insight gained to tune their application simulations. 
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3. METHODOLOGY AND SOFTWARE FRAMEWORKS EMPLOYED 
Several advanced UQ methods and UQ software toolkits were used in the MFiX-PIC calibration 
analysis presented in this report. As such, this section provides a brief overview of these methods 
and toolkits. Note that the intent of this report does not include the theoretical underpinnings of 
statistical analysis as it relates to calibration, nor how to use associate software; therefore, in 
each subdivision of this section, additional references are provided to direct the user to more 
comprehensive guidance if required. 

 SIMULATION CAMPAIGNS AND SURROGATE MODEL CONSTRUCTION 
Calibrating input parameters for computational simulation first requires a user to define 
QoI/response variables. These are measurable values that can universally help in assessing the 
accuracy of a simulation. There may be many input parameters that affect these quantities of 
interest, and the effect of changing those parameters may be interrelated. For example, to 
calibrate 5 input parameters for a single response variable might require thousands of evaluations 
to find an optimal set of parameters that yield the smallest residual between a simulated and 
experimental QoI. To avoid running these thousands of simulations, it is common to construct a 
surrogate model (a.k.a. a response surface or meta-model) and use it to predict simulation 
outcomes instead. 
Surrogate models are numerous and vary in form and function. In this study, a data-fitted 
surrogate model, which characterizes the relationship between a response variable and input 
parameters through sampling simulations that span user prescribed ranges of input parameters 
was created. In this work, the language simulation campaign describes carefully designed 
samples of simulations, chosen to create a numerical relationship between input parameters and a 
response variable. In this approach, the simulation code (i.e., MFiX-PIC) is treated as a black 
box and executed for each sampling simulation as part of a larger predetermined simulation 
campaign. 
Intuitively it seems the number of sampling simulations in a simulation campaign must play a 
critical role in constructing a reliable data-fitted surrogate model. In fact, simulation campaigns 
are designed using a mathematically defined space-filling property to assure enough sampling 
points within the range of each input parameter are represented. One common sampling method 
for computational experiments is Latin Hypercube (LH) sampling (Viana, 2013). In this study, a 
particular Optimal Latin Hypercube (OLH) sampling method is employed whereby a distance 
metric effectively distributes input parameters to fully span user-defined ranges while ensuring 
samples are located far from each other. 
The workflow outlined below was followed to design the simulation campaign and to construct 
the data-fitted surrogate models: 

1. Identify the model input parameters to be varied systematically as part of the sampling 
simulations, and the QoI to be extracted from the results. To bring all stakeholders 
together and to minimize future disagreements, a survey (Gel et al., 2018) was employed 
to capture detailed information from the researchers, subject matter experts, and other 
stakeholders involved. After several iterations, the survey provided a clear picture of 
critical issues like how many input parameters would be explored and what the lower and 
upper bounds of these parameters would be within the simulation campaign. 
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2. Design the simulation campaign employing OLH sampling principles. In this case, 6 
model input parameters were identified within certain ranges. Although the simulation 
campaign was carried out for 3 quantities of interest, for deterministic calibration only the 
second QoI (i.e., location of filling shock) was considered. Using 20 samples per input 
parameter, an initial simulation campaign of 120 samples was designed. 

3. Launch and monitor the simulation campaign, preferably on a HPC system. 

4. Post-process the results from simulations to construct a tabular dataset where each row 
shows the 6 model parameter settings and simulation results for each of the QoI 
corresponding to that sampling simulation. 

5. Post-process the converged simulation campaign results and compile an ASCII file for the 
tabulated dataset. This file consisted of the design of experiments for the model 
parameters and the corresponding quantities of interests from the simulation campaign 
results. 

6. Import the tabulated dataset into UQ toolkit software employed, and test different 
surrogate model options to determine the best data-fitted surrogate model for the given 
dataset using various statistical metrics. For example, cross-validation error assessment 
was employed to assess the quality of the data-fitted surrogate model. 

Once a best data-fitted surrogate model was identified, this same surrogate model was used 
throughout the subsequent calibration process in lieu of further MFiX-PIC simulations. The 
construction of the data-fitted surrogate model was the most time-costly part of this calibration 
effort. For a detailed discussion related to surrogate model construction, including error 
minimization, the reader is referred to earlier studies (Gel et al., 2013a,b; Gel et al., 2016). 

 SENSITIVITY ANALYSIS 
Sensitivity analysis is one uncertainty quantification technique employed to address the 
important question: “Which input parameters have the most influence on a quantity of interest?” 
For calibration purposes, sensitivity analysis plays a key role, particularly when the number of 
input parameters exceeds 3. The technique quantitatively determines the most influential 
parameters for each quantity of interest, and can be used to focus the attention of 
experimentalists, particularly when resources are limited. In the current study, sensitivity 
analysis identified 2 key input parameters. Had experimental resources been slim, this would 
have immediately refocused the calibration effort and minimized physical testing. However, the 
problem of interest in this study (particle settling) has an analytic solution, so no physical 
experimentation was necessary, and the full sweep of input parameters identified by stakeholders 
was investigated. However, for follow-up cases (fluidized bed and circulating fluidized bed), the 
experimental dataset will be limited, and sensitivity analysis is expected to play an important role 
in guiding the calibration efforts. Hence, the methodology is introduced here. 
The sensitivity analysis results shown later in this report (Figure 11) were obtained using the 
Sobol’ indices based global sensitivity method, which is the preferred methodology for cases 
with non-linear response behavior. The data-fitted surrogate model was used to perform function 
evaluations for computing the QoI when calculating the Sobol’ indices. The reader is referred to 
Sobol (2001) and Iooss and Lemaître (2015) for additional information on the methodology, and 
Gel et al. (2013a,b) for a demonstration with multiphase flow simulations. Additionally, a 
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detailed sensitivity analysis study performed for the problem of interest with Nodeworks 
software can be found in (Vaidheeswaran et al., 2021). 

 CALIBRATION 
Computational models often incorporate empirical input parameters as well as physically 
observable input parameters. By example, in MFiX-PIC, only close packed volume fraction 
would be considered physically observable; all other input parameters are empirical. The intent 
of calibration is to tune input parameters with the aid of observable data (e.g., experiments) so 
that a computational model reproduces expected physics in simulations. 
Figure 3 shows a simple sketch to illustrate the objective of calibration (Adams et al., 2015). For 
this example, assume the transient temperature behavior in a fluidized bed reactor is being 
analyzed. Let the temperature profile in time be represented as the blue line. This is the target of 
simulation, most likely observations from sensors or measurements from experiments. Then 
consider a computational model, s(t;θ), that aims to capture the temperature behavior in time 
(red line) through simulation. The model requires various input parameters, θ, to execute (e.g., 
heat transfer coefficient). Recall that most computational models represent a simplification of 
actual governing physics by employing assumptions, so they will not capture exact physical 
behavior, hence there is discrepancy between the targeted and simulation results, as illustrated. 
Although some model input parameters might have theoretical foundation, the settings employed 
for these parameters during simulations are usually considered uncertain. The calibration process 
aims to minimize the difference between the target and simulation output by adjusting the 
settings for the θ parameters. This is accomplished with the guidance of observations or 
experimental data representing the target. By reducing the disparity between targeted and 
simulation results, calibration plays an important role in increasing the credibility of a simulation 
for a particular application. 
At this point it is important to note the difference between validation and calibration. Validation 
is direct comparison of simulation results to experimental results without tuning. One might use 
validation to establish a baseline discrepancy between an experiment and a simulation, and use 
that information to justify the need for model calibration. Both validation and calibration are 
always performed against a specific set of observable data, which makes the credibility of the 
experimental data quite critical. Careful consideration must be given when generalizing the 
insights gained as a result of calibration studies, particularly when applying previously calibrated 
input parameters to new simulations. The reader is referred to Trucano et al. (2006) for further 
information on the difference between validation and calibration. 
 

 

Figure 3: Illustration of computational model calibration from DAKOTA training on 
calibration (Adams et al., 2015). 
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Typically, there are multiple input parameters (i.e., θi,i = 1,n) that need to be calibrated 
concurrently. This situation poses unique challenges especially if experimental data is limited. 
Consequently, many different calibration approaches are found in literature (Adams et al., 2015). 
In general, calibration methods are categorized under two groups: (i) deterministic calibration 
methods, and (ii) statistical calibration methods. The latter provides a distribution for the 
calibrated model parameters instead of single values, which is the outcome of deterministic 
calibration. Another major difference is the ability of statistical calibration to take into account 
model bias (a.k.a. model form uncertainty) while performing calibration of model input 
parameters. However, statistical calibration methods usually require the knowledge of complex 
methods and algorithms such as Markov Chain Monte Carlo (MCMC). Deterministic calibration 
is easier to understand and widely implemented in various software tools that have optimization 
capability. 

 DETERMINISTIC CALIBRATION 

The goal of deterministic calibration is to find values of 𝛉𝛉 = {𝜃𝜃1 …𝜃𝜃𝑚𝑚} that will minimize 
residual error between a group of simulations and their equivalent experimental counterparts. 
Equation 4 acts as the objective function for the optimization problem (Adams et al., 2015). It 
represents the sum of squares of the residual errors introduced by employing this set of 𝛉𝛉 in n 
simulations. 

minimize
𝛉𝛉∈𝑅𝑅

𝑓𝑓(𝛉𝛉) = ∑ [𝑆𝑆𝑖𝑖(𝛉𝛉) − 𝑦𝑦𝑖𝑖]2𝑛𝑛
𝑖𝑖=1 = ∑ [𝑅𝑅𝑖𝑖(𝛉𝛉)]2𝑛𝑛

𝑖𝑖=1   (4) 

where 𝛉𝛉 = {𝜃𝜃1 …𝜃𝜃𝑚𝑚} are the modeling parameters being calibrated 
𝑦𝑦𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ experiment data observed out of 𝑛𝑛 experiments 
𝑆𝑆𝑖𝑖(𝛉𝛉) is the simulation result for 𝑖𝑖𝑡𝑡ℎ experiment data as function of 𝜃𝜃1 …𝜃𝜃𝑚𝑚 
𝑅𝑅𝑖𝑖(𝛉𝛉) is the 𝑖𝑖𝑡𝑡ℎ residual (simulation - experiment) 

Depending on the nature of the problem there are various local and global optimization 
techniques that could be employed to solve the residual minimization problem shown in 
Equation 4. In this light, an important distinction between statistical calibration and deterministic 
calibration is that the outcome from statistical calibration is an estimated distribution of the 𝛉𝛉 
parameters individually, whereas deterministic calibration provides a single scalar value for each 
of the model parameters being calibrated. 
Workflow for Deterministic Calibration 

The workflow outlined below was followed to perform deterministic calibration in this study. 
For a visual perspective, the same workflow is illustrated in Figure 4: 

1. Identify the model parameters to be calibrated, and determine the lower and upper bounds 
for each of these parameters to be used during calibration. 

2. Prepare an experimental dataset or observations to be used to guide the calibration 
process as an ASCII input file. 

3. Plan a simulation campaign with the aid of statistical design of experiments principles 
that will enable the construction of a data-fitted surrogate model. The surrogate model 
should adequately characterize the relationship between model parameters considered as 
input and the response variables (a.k.a. QoI or output). This step is crucial when the 
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simulations are expensive or time consuming to perform as the optimization process 
requires thousands of function evaluations to be performed cheaply. 

4. Post-process the simulation campaign results and compile an ASCII file as a tabulated 
dataset consisting of the design of experiments for the model parameters and the 
corresponding QoI from the simulation campaign results. For calibration, a separate 
dataset containing the experimental observations is necessary. This should be prepared in 
ASCII format for importing into UQ software. For the current application, an analytical 
solution was available and used in lieu of experimental observation data. Twenty-one 
samples were created by varying the control parameter (x1: Initial solid concentration). 

5. Utilize UQ toolkit (PSUADE, Nodeworks) to import the datasets and perform the 
optimization required to minimize the residuals in Equation 4. The minimization 
procedure may necessitate multiple attempts, which will generate several sets of values 
for θi, i = 1,n. Each attempt will yield a minimum residual for all experimental samples. A 
parallel coordinates plot that incorporates all of the proposed settings of θi, i = 1,n is 
utilized to identify the most frequently encountered values. Note that the surrogate model 
constructed is used to perform the evaluations required for Si(𝛉𝛉 ) in Equation 4 in lieu of 
actual MFiX-PIC simulations for each instance. Hence, the credibility of the surrogate 
model needs to be carefully assessed prior to the optimization step with measures such as 
adjusted R2 or cross-validation error assessment. Doing so ensures the error introduced by 
the surrogate is minimized. 

6. Verify the proposed calibrated model parameter settings by re-running a select group of 
simulations within the existing simulation campaign or by constructing a new simulation 
campaign for unseen samples. In both cases, any error needs to be assessed against an 
experimental solution to determine whether the calibrated settings truly improve the 
credibility of the simulation model for the targeted application. 
 

 
Figure 4: Illustration of the deterministic calibration workflow performed in this study. 

For the scope of the current study only deterministic calibration analysis was performed. A 
follow-up study and technical report will demonstrate the results of the statistical calibration for 
the same problem and compare the outcomes from both approaches. 

https://computing.llnl.gov/projects/psuade/software
https://computing.llnl.gov/projects/psuade/software
https://mfix.netl.doe.gov/nodeworks
https://mfix.netl.doe.gov/nodeworks
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 SOFTWARE TOOLBOXES EMPLOYED 
Two open-source UQ software were employed in this study: PSUADE (Tong, 2010, 2020) and 
Nodeworks (NETL, 2020; Weber et al., 2020). The primary differences between the two 
software are available surrogate model options and optimization algorithms. Because this is a 
first-of-kind calibration study for MFiX-PIC, a secondary objective whereby the proposed 
calibrated model settings from each software tool were compared to each other was incorporated 
into the overall research effort. Below, a brief overview of each software is offered. 
PSUADE 

PSUADE is an open-source UQ software toolkit developed at the Lawrence Livermore National 
Laboratory by Dr. Charles Tong (Tong, 2010) and released under Lesser General Public License 
(LGPL) license since 2007. The name of the software, PSUADE, comes from the acronym for 
Problem Solving Environment for Uncertainty Analysis and Design Exploration. The program 
supports a variety of non-intrusive uncertainty quantification analysis methods where the 
simulation application can be treated as “black-box” code. Subsequently, many UQ analysis 
tasks can be performed by sampling the black-box directly or through a data-fitted surrogate 
model constructed from the computational model. The software offers a diverse range of 
sampling methods to enable users to perform simulation campaigns with the objective of 
constructing an adequate data-fitted surrogate model (a.k.a. response surface model, meta-
model). The user can perform both basic uncertainty analysis such as forward propagation of 
uncertainties and more complex analysis like mixed aleatory-epistemic uncertainty analysis. 
PSUADE has a built-in statistical calibration capability (i.e., Bayesian calibration with MCMC). 
However, deterministic calibration required user-defined supporting code to incorporate residual 
evaluations. PSUADE is written in C++ and operates primarily as a command line-based 
software, which may require some learning curve. Additional details on the capabilities of 
PSUADE can be found at the website of the software (Tong, 2020). 
Nodeworks 
Nodeworks, developed at the NETL, is an open-source graphical programming interface library 
and workflow framework where users can add, delete, and connect nodes to create customized 
visual workflows (NETL, 2020; Weber et al., 2020). Nodes perform prescribed operations on 
data whose results are then passed to other nodes using connections. The library was specifically 
developed in the Python programming language to remain flexible and portable. It can support a 
wide variety of applications and contains several collections of default nodes to assist 
deployment of commonly used workflows quickly, even for novice users. Users can also create 
and add custom nodes for specific applications. This work leverages a collection of nodes known 
as the Surrogate Modeling and Analysis Toolset, which was developed to implement workflows 
that construct and use data-fitted surrogate models/response surfaces. The Surrogate Modeling 
and Analysis Toolset provides access to specialized nodes including optimization, sensitivity 
analysis, forward propagation of uncertainty, and Bayesian calibration. 
Additionally, Nodeworks is directly embedded into MFiX’s graphical user interface (GUI), thus 
allowing Nodeworks to create input decks with parametrically varying inputs directly. This 
allows for simple set-up and management of simulation campaigns. Similarly, Nodeworks can be 
employed by other modeling software to create workflows with ease. 

https://computing.llnl.gov/projects/psuade/software
https://mfix.netl.doe.gov/nodeworks


Deterministic Calibration of MFiX-PIC, Part 1: Settling Bed 

15 

4. CALIBRATION DEMONSTRATION CASES 

 OVERVIEW OF DEMONSTRATION CASES CONSIDERED 
MFiX-PIC is an attractive software for examining industrially relevant applications. This report 
documents the beginning of a course of calibration studies that will examine 3 industrial 
applications that span a wide range of flow regimes. In particular, the studies/cases are particle 
settling, a fluidized bed, and a circulating fluidized bed. Note that this first report concentrates on 
the particle settling problem, in the context of deterministic calibration. 
The objective of a deterministic calibration study is to obtain a set of optimal model parameters 
for a given application problem. Ultimately, the authors of this report hope to provide the MFiX-
PIC user community with a set of default settings for input parameters that will serve as good 
starting points in their own examination of similar industrial problems. 

 GRAVITATIONAL PARTICLE SETTLING 
The problem of visualizing particles settling under gravity in a dense medium has an analytical 
solution. This means that a well-controlled experiment would give exactly the same result as a 
hand-calculation. From a calibration standpoint, this implies that there is no worry of added 
experimental error when evaluating any hypothetical physical set-up. Any hand-calculation for 
the solution is the truth. This indicates that the question of error moves entirely to the surrogate 
model that is created by the simulations in the simulation campaign. 
The setup, borrowed from Vaidheeswaran et al. (2020), is described in Figure 5. The 
computational domain considered is 0.02 m (x-direction) × 0.02 m (z-direction) × 1 m (y-
direction). Uniform grid sizes of 4 mm are used in the x- and z- directions, while a grid size of 2 
mm is used in the y-direction. Each simulation uses a constant time-step size of 5e-4 s and is run 
for a total duration of 1 s. 
Once the simulation begins, two concentration (kinematic) shocks evolve. The first originates 
from the top of the particle bed and corresponds to settling, while the other originates from the 
bottom of the imagined vessel and corresponds to a filling shock. The location of the filling 
shock (y2) is the QoI considered in this study. Its analytical solution is given by: 

  (5) 

where 𝜖𝜖𝑠𝑠∗ and 𝜖𝜖𝑔𝑔∗  are volume fraction of solids phase and gas phase at close-packing conditions. 

𝜖𝜖𝑠𝑠0 and 𝜖𝜖𝑔𝑔0 are initial volume fractions. 𝑢𝑢𝑑𝑑∗ and ur0 represent relative velocities calculated using 
close-packing and initial conditions, respectively. The filling shock propagates upward when a 
lower region is fully packed by solids. Properly predicting the filling shock may correspond well 
to other simulations where solids concentration is high and particle motion is relatively slow. 

The location of the settling shock (y1) is another QoI post-processed from the simulations. This 
shock propagates in the direction of gravity, and corresponds to the transition between 
homogeneously distributed solids with concentration 𝜖𝜖𝑠𝑠0 and a dilute region where 𝜖𝜖𝑠𝑠 = 0. The 
analytical solution for y1 is given by Equation 6, 
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  (6) 
 

Average void fraction at the first cell location (y3) is the final QoI post-processed from 
simulations. However, both y1 and y3 are not considered in the current deterministic calibration 
study. In the remainder of the report, the only QoI considered is the location of the filling shock 
(y2). Using Equation 5, a standalone dataset was generated at 21 different x1 settings where x1 is 
equivalent to 𝜖𝜖𝑠𝑠0, the initial solids concentration. Note that it is this dataset, consisting of 21 
samples, that is used in lieu of experimental data required for deterministic calibration. 
Previously, Vaidheeswaran et al. (2020) used this settling case to compare default setting results 
from MFiX-PIC, MFiX-TFM and MFiX-DEM simulations as shown in Figure 6. Plots show 
time evolution of concentration fronts from the 3 models with the analytical solution when 𝜖𝜖𝑠𝑠0 = 
0.15. 

 

 

Figure 5: Schematic of particles settling in a dense medium. 
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Figure 6: Comparison of time evolution of shock fronts obtained using uncalibrated MFiX-
DEM, MFiX-PIC, and MFiX-TFM simulations with the analytical solution. 

 
Simulation Campaigns 
Prior to any calibration work, a simulation campaign was carefully designed and executed to 
create an adequate surrogate model. This surrogate model was then used in lieu of actual MFiX-
PIC simulations to provide cheaper evaluations of the QoI needed during the calibration study. 
Design of Sampling Simulations: An OLH sampling method was used to generate a sampling 
campaign for 6 MFiX input parameters. The first 5 were modeling parameters specific to MFiX-
PIC, accessible to the user through keywords. These included: θ1 : Pressure linear scale factor 
(P0); θ2 : Volume fraction exponential scale factor (β); θ3 :Statistical Weight (Wp); θ4 : Void 
fraction at maximal close packing (𝜖𝜖𝑔𝑔∗); and θ5 : Solids slip velocity scale factor (α). The sixth 
parameter was initial solids concentration, a general input parameter used to specify an initial 
condition in MFiX, regardless of model. In the remainder of this report, abbreviated versions of 
the input parameter names might have been used due to font issues in plotting software. Table 1 
offers these abbreviations along with lower and upper bound values used for each model 
parameter in the simulation campaign. For example, anywhere t1:P_0 or t1 or Theta1 appears in 
this report, it is equivalent to θ1:Pressure linear scale factor (P0). 
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Table 1: List of Input Parameter Abbreviations, Descriptions, Lower and Upper Bounds 
Values Considered in Simulation Campaign 

Symbol Description Min. Max. 

θ1 or t1:P_0 Pressure linear scale factor, (P0) 1.0 20.0 

Θ2 or t2:beta Volume fraction exponential scale factor, (β) 2.0 5.0 

θ3 or t3:StatWeight Statistical Weight, (Wp) 3.0 20.0 

θ4 or t4:ep_g* Void fraction at maximal close packing, (𝜖𝜖𝑠𝑠∗) 0.35 0.5 

θ5 or t5:VelfacCoeff Solids slip velocity scale factor, (α) 0.5 1.0 

x1 Initial solids concentration, (𝜖𝜖𝑠𝑠0) 0.05 0.25 

 
The initial QoI (a.k.a. response variables) extracted from the simulation campaign were, 
y1:Location of Settling Shock; y2:Location of Filling Shock; and y3:Void fraction in the first cell 
nearest to the bottom of the experimental vessel. The scope of the work presented herein is to 
analyze the performance of MFiX-PIC in regions having dense concentration of particles. 
Because of this, only y2 is used in this analysis. This analysis is assessing PIC parameters in 
regions having intermediate to dense solids concentration, and hence does not consider y1 , which 
marks the transition between initial solids concentration 𝜖𝜖𝑠𝑠0 and 𝜖𝜖𝑠𝑠 = 0. y3 is discounted because 
it would be compared against single values, and hence not compatible with the calibration 
framework. Although all three QoI were party to analysis in the simulation campaign, only 
y2:Location of Filling Shock was considered the key QoI for calibration purposes. Note that in 
the remainder of this report, abbreviated versions of this QoI name might have been used due to 
font issues in plotting software such as y2:LocFilling corresponding to y2 :Location of Filling 
Front or Shock. 
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Figure 7: Scatter matrix plot of all input parameters and QoI employed in the simulation 
campaign using OLH design base (120 samples) with potential outlier samples for 
y2:LocSettling highlighted in red and purple colors. 

 
Figure 7 shows a scatter matrix plot of all input parameters and QoI. This type of image can be 
used to make a quick visual assessment of obvious correlations. For example, Figure 7 indicates 
that there is a strong linear correlation between Initial Concentration (x1, on horizontal-axis) and 
Location of Settling Shock (y1, on vertical-axis); this evaluation is based on examining the block 
representing (x1 v. y1) as an independent graph and noting a generally linear correspondence 
between the variables. Likewise, similar somewhat linear correspondences can be seen in the 
blocks (t4 v. y3) and (x1 v. y2). 
This type of qualitative visualization is also useful in identifying any apparent outliers among the 
QoI such as samples # 42 and # 51, which are highlighted in red and purple colored circles, 
respectively. The identification of outliers can be done visually, as these data points will appear 
apart from the majority of other data points. By example, focusing on the row of plots associated 
with y2, samples #42 and #51 consistently appear separate from other data points. Another way 
to identify outliers is by using the kernel density estimation, a quantitative non-parametric 
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method to estimate probabilities for new points. Although not shown in Figure 7, when kernel 
density estimates are computed and plotted, samples # 42 and # 51 appear where a kernel density 
estimate is relatively low. Hence, these two samples are most likely outliers. 
Outliers can be caused by non-converged simulations or unique input settings that create an 
extreme result for the QoI. Assessment of simulation outcomes is uniquely important at this 
stage as only physically sound results should be used to construct the data-fitted surrogate model. 
Note that among the 120 samples shown in Figure 7 there were not any other apparent outliers 
for the QoI, y2. 
Figure 8 shows a parallel coordinates plot, a means of visually translating a tabular dataset into a 
coordinate map. Each input parameter is presented along the horizontal axis, then ranged upward 
along a single line regardless of unit. For example, Figure 8 represents a dataset that has been 
constructed from a table with header labels [t1|t2|t3|t4|t5|x1|y2]; t1 varies between 0 and 22.5; 
t2 varies between 2 and 5, and so on. If unfamiliar with the technique, the reader is referred to 
(Heinrich and Weiskopf, 2013) for additional information about parallel coordinates plot-based 
visualization. 

In the context of this work, the parallel coordinates plot shows when the QoI, y2, clusters 
unexpectedly or seems to become an outlier. For example, red and purple lines identify outliers 
of y2 in Figure 8, which were also identified as samples #42 and #51 in Figure 7. By following 
these lines back through the input parameters, one can ask, Is there something unusual about 
these parameter settings? and use this information to guide decision-making as it relates to the 
construction of the surrogate model such as deciding to perform additional simulations to 
improve the likelihood of constructing an adequate surrogate model. 

A preliminary investigation was carried out by filtering the t3 and t4 settings based on the 
information obtained from the two outliers. Figure 9 shows the revised version of the parallel 
coordinates plot where an investigation was performed to see if the samples identified as outliers 
have anything to do with particular ranges of values for t3 or t4. Specifically, all samples with t3 
≤ 5.8904 and t4 ≥ 0.4621 are shown. The values were determined based on the corresponding t3 
and t4 settings for samples #42 and #51. 

Insight gained from Figure 9 may not be adequate to conclude that a combination of lower end 
values of t3 or higher end values of t4 are correlated with the observed outlier behavior. For 
example, adding higher end values of t5:VelfacCoeff to the previous settings might yield a 
different conclusion. Parallel coordinates plots simply provide different ways to visualize and 
derive insights from the simulation campaign dataset. 
 



Deterministic Calibration of MFiX-PIC, Part 1: Settling Bed 

21 

 

Figure 8: Parallel coordinates plot of all input parameters and second QoI (y2: Location of 
Filling Shock) in simulation campaign using OLH design base (120 samples). 

 
 

 

Figure 9: Revised parallel coordinates plot of all input parameters and second QoI (y2: 
Location of Filling Shock) by showing only samples with t3 ≤ 5.8904 and t4 ≥ 0.4621. 
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Surrogate Model Construction: 
After post-processing, results of the sampling simulations were used to construct a data-fitted 
surrogate model. Recall that the surrogate model is intended to replace MFiX-PIC simulations 
during UQ analysis. Construction is critical particularly when simulation is expensive and/or 
time consuming. 
Several surrogate model types were explored during the construction process. These included 
MARS, linear regression, and the Gaussian process model. In the end, a Gaussian process model 
(Tong implementation in PSUADE under option 10) appeared to provide one of the best fits 
based on the root mean square error (RMSE), which was calculated by PSUADE to be 6.61e-03 
for the data-fitted surrogate model. The input file for the PSUADE data fitted surrogate model is 
provided in Appendix A. 
 

 

Figure 10: Assessment of the quality of the surrogate model through cross-validation errors. 

 
Figure 10 shows cross-validation error assessment results created with PSUADE. The parity plot 
on the right compares actual MFiX-PIC simulation results (horizontal axis with “Sample Output” 
label) with the surrogate model’s predictions (vertical axis with “Predicted Output” label). 
Ideally, sample points should fall along a 45° line through the parity plot shown in red color. Any 
deviation from the 45° red line reveals discrepancy between the simulation and data-fitted 
surrogate model, which implies an additional level of uncertainty being introduced when the 
surrogate model is used in lieu of the corresponding MFiX-PIC simulations. To better illustrate 
the error between simulation and data-fitted surrogate model, the histogram on the left reveals 
how the deviation from the diagonal is distributed. Ideal distribution of errors is expected to be 
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centered around zero and have tails without any skew. The histogram shows some skew most 
likely due to the outliers observed. 
Global Sensitivity Analysis: 

Prior to the deterministic calibration study, a global sensitivity analysis was performed using 
Sobol’ indices in the PSUADE UQ Toolkit. Although a previous sensitivity study was carried 
out in Nodeworks (Vaidheeswaran et al., 2021), this separate global sensitivity study was 
performed to incorporate an additional input parameter (x1:Initial concentration). The additional 
parameter reflects the analytical solution’s natural dependency on x1. 

Figure 11 shows the Sobol’ total sensitivity analysis results, which assess the most influential 
parameters on the QoI, y2:Location of Filling Shock. It is important to note that Total Indices 
take into account both main effects and their interaction effects on the QoI. For the 120 sample 
simulation campaign results, x1:Initial Concentration appears to have the most pronounced effect 
on y2. The green symbols show the confidence interval associated with 100 sample bootstrapping 
for each parameter. Confidence intervals do not show significant variability for any Sobol’ index 
estimated. 
 

 

Figure 11: Global sensitivity analysis results based on the 120 sample simulation campaign 
dataset. 

 
Deterministic Calibration with PSUADE UQ Toolkit: 

Table 2 shows one of the proposed settings for the five modeling parameters obtained at the end 
of the deterministic calibration procedure. Recall that this process involved deterministic 
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optimization, which finds the values of 𝛉𝛉 : {θ1 ...θ5} that minimize the residuals shown in 
Equation 7. 

minimize
𝛉𝛉,𝐱𝐱∈𝑅𝑅

𝑓𝑓(𝛉𝛉, 𝐱𝐱) = ∑ [𝑆𝑆𝑖𝑖(𝛉𝛉, 𝐱𝐱) − 𝑦𝑦𝑖𝑖(𝐱𝐱)]2𝑛𝑛
𝑖𝑖=1 = ∑ [𝑟𝑟𝑖𝑖(𝛉𝛉, 𝐱𝐱)]2𝑛𝑛

𝑖𝑖=1   (7) 

n 

where 𝛉𝛉 = {𝜃𝜃1,𝜃𝜃2,𝜃𝜃3, 𝜃𝜃4,𝜃𝜃5} are the modeling parameters being calibrated 
𝐱𝐱 = {𝑥𝑥1} is the physical control parameter (initial solids concentration) 
𝑦𝑦𝑖𝑖(𝐱𝐱) is the 𝑖𝑖𝑡𝑡ℎ experiment data observed out of 𝑛𝑛 experiments 
𝑛𝑛 is total number of experimental data, which is 21 for the current case 
𝑆𝑆𝑖𝑖(𝛉𝛉, 𝐱𝐱) is the simulation result for 𝑖𝑖𝑡𝑡ℎ experiment data 
as function of 𝜃𝜃1 …𝜃𝜃5 and 𝑥𝑥1 
𝑟𝑟𝑖𝑖(𝛉𝛉, 𝐱𝐱) is the 𝑖𝑖𝑡𝑡ℎ residual (simulation - experiment) 

There are various optimization techniques that may be employed to solve the residual 
minimization problem. In this case, the constructed data-fitted surrogate model is used to 
evaluate the 𝑆𝑆𝑖𝑖(𝛉𝛉, 𝐱𝐱)term instead of running MFiX-PIC simulations. 

The deterministic calibration results presented in Table 2 were obtained with PSUADE UQ 
software (Tong, 2010) through the following steps: 

1. Post-process and import the simulation campaign results into a format that PSUADE can 
read, i.e., standard ASCII text file with tabulated data where each column represents the 
input parameters considered and the quantity of interest. For this case, 6 columns of input 
(θ1 ...θ5, and x1) and 1 column of QoI (y2 : Location of Filling Shock) were employed. 
For formatting purposes, the first row of the file indicates total number of samples, total 
number of input parameters, and total number of quantities of interest. 

2. Construct a data-fitted surrogate model in PSUADE to characterize the relationship 
between input parameters and QoI, which in turn will be used for quick and cheap 
function evaluations needed during the optimization process. To minimize the effect of 
surrogate model related uncertainties, test the adequacy of the constructed surrogate 
model by employing cross-validation error assessment and other statistical measures such 
as R2 if employing a polynomial regression based surrogate model. The goal is to find the 
best suited data-fitted surrogate model for the given dataset. 

3. Export and compile the constructed surrogate model as a standalone executable code 
(where PSUADE offers C and Python choices). The executable code will then be used to 
perform function evaluations; passing in settings of θ1 ...θ5 will return the QoI as a scalar 
value. 

4. Modify the C code for the exported surrogate model. The reason for this modification is 
that exported C code is structured to perform function evaluations, i.e., accept input and 
compute the QoI (i.e., filling shock location) as output. However, the optimization 
procedure used in deterministic calibration aims to find the set of model parameters that 
minimize the residual. That means the exported surrogate model code is modified to not 
only evaluate the QoI, but also to calculate the residual (Equation 7) by taking the 
difference of computed value (𝑆𝑆𝑖𝑖(𝛉𝛉, 𝐱𝐱)) and the corresponding experiment’s QoI (yi). If 
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this modification is not performed, the optimization will be attempted for the wrong 
objective. 

5. Utilize Bound Optimization By Quadratic Approximation (BOBYQA) optimizer in 
PSUADE to perform an optimization to find the best set of θ1 ...θ5 values that give the 
least residual. See Appendix A for input files used for running the PSUADE optimizer. 
To explore all possible solutions, perform the optimization 10 or 15 times then assess 
which set of proposed settings are most common among the trials. 

 
Table 2: Proposed Settings for the Modeling Parameters Obtained through Deterministic 
Calibration 

θ1 : Pressure 
Linear Scale 

Factor 

θ2 : Vol. Fraction 
Exponential Scale 

Factor 
θ3 : Statistical 

Weight 

θ4 : Vol. Fraction 
at Maximum 

Packing 
θ5 : Solid Slip Velocity 

Factor 

14.309 2.165 12.241 0.399 0.828 

Validation of the Proposed Calibrated Settings: The proposed calibrated model parameters 
potentially involve many sources of uncertainty. These doubts originate from model errors 
propagated through the surrogate model (modeling assumptions, simplifications, and 
approximations included with the introduction of a surrogate model instead of actual MFiX-PIC 
simulations) and data provided as input. For this case, no experimental error exists since an 
analytical solution provided the comparative dataset, but this is not the general case; care should 
always be taken in the validation process. 
In order to assess the effectiveness of the proposed calibrated settings, a two-step process was 
employed for validation: 

1. All 120 samples from the initial design of experiments were rerun with the proposed 
calibrated settings for θ1 ...θ5 and compared against the analytical solution obtained for the 
corresponding 120 samples, which enabled precise assessment of % Relative Error. 

2. For a more rigorous assessment, 119 new samples were generated based on new x1:Initial 
Concentration settings in the range of 0.05 to 0.25. The new samples were checked to 
ensure these were totally unseen samples, i.e., the same x1 setting was not used in the 
previous 120 sample campaign. A new simulation campaign was carried out based on the 
119 samples of x1 using the proposed calibrated model settings for each scenario outlined 
below as input to MFiX-PIC. The QoI derived from the simulation results were then 
compared against the analytical solution obtained for the corresponding 119 samples. 

For each of the above validation campaigns, 6 scenarios were considered to better understand the 
effect of the proposed calibrated settings compared to default MFiX-PIC settings or those 
proposed in the V&V Manual (Vaidheeswaran et al., 2020): 
(V.1) Employ MFiX-PIC default settings for all 5 model parameters. 

(V.2) Employ proposed calibrated setting only for θ5 and set the remaining 4 to default. 

(V.3) Employ proposed calibrated settings for θ5 and θ4, then set the rest to default settings. 
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(V.4) Employ proposed calibrated settings for all 5 model parameters. 

(V.5) Employ proposed calibrated settings for θ5 and remaining settings from V&V manual 
proposed settings. 

(V.6) Employ V&V manual proposed settings for all 5 model parameters. 
In the cases above, default settings were determined by developers based on user experience. In 
fact, one of the major motivations of the current study is to verify if these values are sufficient to 
model the wide range of flow dynamics seen in industrial applications. In similar consideration, 
settings from the V&V manual (Vaidheeswaran et al., 2020) were also used. 
These 6 scenarios were considered for the first validation campaign where the original 120 
sample based simulation campaign was rerun. For the second validation step, all scenarios except 
V.3 were considered. 
The proposed Scenarios V.1 through V.6, emerged as areas of interest based on both user and 
developer experiences to determine if hybrid combination of settings might provide any 
additional benefit. 
Validation Step (1): Rerun of the original simulation campaign with 120 samples. 

The intent of Validation Step (1) was to implement the calibrated model settings into the original 
120 samples and compare the resulting QoI to equivalent analytical solutions. Then, Scenarios 
V.1–V.6 were further run to examine subsequent effects. While testing these scenarios, the same 
x1 settings obtained from the 120 sample campaign were used, but the 5 model parameter 
settings were based on the combinations for each scenario described above. For example, when 
running Scenario V.4, the proposed calibrated model settings from Table 2 were entered for each 
of the 120 samples while the x1 setting was changing based on the original campaign’s settings. 

Table 3 shows the settings used for scenarios V.1–V.6 in a tabulated format. Text coloring was 
used to facilitate easier review of how the blended scenarios were employed. For example, for 
scenario V.3 in the fourth column from left, blue colored numbers indicate settings originating 
from scenario V.1, and red colored numbers indicate settings originating from Scenario V.4. 
Also, preliminary descriptive statistics for the QoI, including average, minimum, and maximum 
of the % relative errors are provided at the bottom of each column. The % relative error figures 
reported indicate difference between analytical and simulation results for the QoI (y2: Location 
of filling shock) when settings for the model parameters are used under each scenario. Negative 
% relative error indicates under-prediction by MFiX-PIC whereas positive % relative error 
indicates over-prediction. 
Scenario V.4 indicates that when the maximum % relative error from 120 samples is considered, 
the proposed calibrated settings are superior to default settings (13.24% versus 54.52%), and 
slightly inferior to the V&V manual suggested settings (13.24 % versus 10.87%). When 
minimum % relative error is considered, proposed calibrated settings performed better than the 
V&V manual suggested settings (-15.02 % versus -24.25 %), but worse than the default settings 
in an absolute sense (i.e., -15.02 % versus 8.83 %). 
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Table 3: Model Parameter Settings Employed for Each of the 6 Scenarios used in the First 
Validation Simulation Campaign 

Scenarios: (V.1) (V.2) (V.3) (V.4) (V.5) (V.6) 

MFIX-PIC 
Model 

Parameter [1] Default 

[2] 
Calibrated 

Setting only 
for θ5 & Rest 

Default 
Settings 

[3] 
Calibrated 

Setting only 
for θ5 & θ4, 

Rest Default 

[4] 
Calibrated 

Settings for 
All (θ1, θ2, 
θ3, θ4, θ5) 

[5] 
Calibrated 

Setting only 
for θ5 & Rest 
V&V Manual 

[6] V&V 
Manual 
Settings 

Theta1 
(θ1): 
Pressure 
linear scale 
factor 

100 100 100 14.309 10 10 

Theta2 (θ2): 
Vol. 
fraction 
exponential 
scale factor  

3.0 3.0 3.0 2.165 3.0 3.0 

Theta3 (θ3): 
Statistical 
weight 

5.0 5.0 5.0 12.241 5.0 5.0 

Theta4 (θ4): 
Vol. 
fraction at 
maximum 
packing 

0.42 0.42 0.399 0.399 0.4 0.4 

Theta5 (θ5): 
Solid slip 
velocity 
factor 

1.0 0.828 0.828 0.828 0.828 0.5 

avg 23.67% 10.43% 7.21% -0.19% 2.09% -4.63% 

min 8.83% -2.65% -8.61% -15.02% -12.74% -24.25% 

max 54.52% 42.87% 32.12% 13.24% 19.62% 10.87% 

 
When the average of all 120 samples is considered, Scenario V.4 further illustrates that the 
proposed calibrated settings appear to be the best performer with an average % relative error of  
-0.19% compared to 23.67% and -4.63%. However, the average-based comparison might be 
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misleading as over-prediction and under-prediction may cancel error effects. To better 
understand the characteristics of these relative errors, Figure 12 and Figure 13 are offered for 
further visualization. 
Figure 12 compares errors at the sample level. Each bar, from left to right, represents an 
individual run and the resulting % relative error between the analytical value of the QoI, 
y2:Location of filling shock and the predicted value of y2. Blue represents the relative error 
results from Scenario V.1; red represents the relative error results from scenario V.4; and, green 
represents the relative error results from Scenario V.6. The remaining hybrid combination 
scenarios shown in Table 3 (V.2, V.3, and V.5) are not shown for the sake of brevity. 
 

 

Figure 12: Comparison of % relative error for QoI (y2:Location of Filling Shock) between 
Analytical Solution and V.1 (blue), V.4 (red), and V.6 (green). 

 
Figure 12 indicates that Scenario V.1, which employed MFiX-PIC default settings, consistently 
over-predicted the location of the filling shock. It further indicates that Scenario V.4, which 
employed the calibrated settings, and Scenario V.6, which employed the V&V manual settings, 
resulted in a mix of over and under-prediction for the location of the filling shock. 
Figure 13 offers a view of relative error between the 120 sample solutions and their associate 
analytical solutions in the form of histograms. In particular, the relative error of the QoI y2: 
location of filling shock, is examined for scenarios V.1–V.6. Ideally, the histogram should 
appear normal in a probabilistic sense with a mean of zero. 
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Scenarios: (V.1) (V.2) (V.3) (V.4) (V.5) (V.6) 

 

Figure 13: Comparison of % Relative Error for QoI (Location of Filling Shock) with respect 
to Analytical Solution for each sample from the original design of experiments runs. 

 
Following the color scheme of Figure 12, Scenario V.1 (blue), Scenario V.4 (red), and Scenario 
V.6 (green), Figure 13 clearly illustrates the over-prediction noted in Scenario V.1. Where 
Scenarios V.4 and V.6 were described as having both over and under predictions, it is now more 
clear that Scenario V.4 has more normal relative error than Scenario V.6. 
In particular, the % Relative Error histogram for Scenario V.1 clearly shows over-prediction 
since all of the samples show a positive sign on % Relative Error with a median of 20.3% error 
and a minimum of 8.83%. The distribution of relative errors also appears to be skewed with a 
maximum computed relative error of 54.52%. (Note that the numbers reported under the 
Summary Statistics section of Figure 13 are {% Relative Error / 100}. This is true for all similar 
subsequent figures.) 

Relative error improves slightly for Scenario V.2 where the proposed calibrated setting for θ5 

(i.e., θ5 = 0.828) is implemented in cooperation with default settings for the remaining modeling 
parameters (i.e., θ1 = 100, θ2 = 3.0, θ3 = 5, θ4 = 0.42). The figure indicates that the median error 
percentage shifted from 20.3% to 9.20% and few samples show negative relative error 
percentages indicating under-prediction. Note that the overall data skew still trends towards 
maximum relative error, and there are outliers, shown as full black circles in the box plot section 
on the right side of each column. 

In Scenario V.3, where θ4 and θ5 were set based on the proposed calibrated settings and θ1, θ2 

and θ3 were default settings, the median relative error percentage slightly improves to 6.66 %. 
Also, relative errors are more evenly distributed, particularly when outliers are disregarded. 
Scenario V.4 employed all of the proposed calibrated model settings and displays an almost 
normal distribution centered around 0.0%, which is also the median relative error. Three outlier 
samples have been identified and indicated in the figure. Among these, Run #2 was determined 
to have one of the settings (x1 = 0.2457) close to the maximum in the parameter range 
considered (i.e. x1 ≤ 0.25). This could be associated with the outlier behavior observed, as x1 was 
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identified as the most influential parameter on the QoI. However, the remaining outliers require 
further investigation (i.e., Run #36, and #31, shown in red in Figure 13 under V.4 Scenario). A 
preliminary investigation has been launched to expose some of the critical MFiX-PIC variables. 
This will enable further analysis and may determine whether the issue originates from the 
switching algorithm discussed in the last paragraph on page 6. 

Scenario V.5 used the proposed calibrated setting for θ5 and the remaining model parameters 
were set as suggested in the V&V manual (Vaidheeswaran et al., 2020). The relative errors 
display a bi-modal distribution with maximum relative error around 20% (over-prediction) and 
12.74% (under-prediction). 
Finally, Scenario V.6 employed settings recommended after initial validation studies 
(Vaidheeswaran et al., 2020) for all 5 model parameters. The relative errors appear to be spread 
evenly between 10.0% and -20.0%, which is quantitatively worse than Scenario V.4. 
After comparing all of the scenarios, it is clear that Scenario V.4, which employed the proposed 
calibrated model settings for all 5 parameters, gave the most desirable relative error distribution. 
If the 3 outliers identified can be disregarded, the maximum relative error is capped around 10% 
with a mean and median at 0.0%. 
Figure 14 further investigates the relative error seen in Scenarios V.1 through V.6, . The figure is 
identical to Figure 13 except an additional highlighting is offered for consideration. Shown as a 
dark hatched pattern, these areas represent samples that produced error between 2.5% and +2.5% 
in Scenario V.4. 
This visual approach allows the user to consider the relative error of similar samples across 
different scenarios, as well as the total number of samples within the error band. For example, 
using the 5% relative error range that was achieved with the proposed calibrated model 
parameters of Scenario V.4 as a basis, note the wider relative error range of other scenarios, such 
as +10% to -25% in Scenario V.6. Also note that by examining only the Scenario V.4 histogram, 
the error band represented incorporates almost half of all samples. 
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Scenarios: (V.1) (V.2) (V.3) (V.4) (V.5) (V.6) 

 

Figure 14: Comparison of % Relative Error for QoI (Location of Filling Shock) with respect 
to Analytical Solution for each sample from the original design of experiments runs with 
median and 50% range values highlighted. 

 
Validation Step (2): A new simulation campaign for a set of 119 unseen samples. 
In the second phase of validation for the proposed calibrated settings, a more rigorous approach 
was employed. For 5 of the scenarios presented in Table 3 (V.1, V.2, V.4, V.5, V.6), MFiX-PIC 
simulations were conducted where x1 : Velocity at Inlet was set to 119 new and unique settings 
on the interval [0.05,0.25]. These new values for x1 represent velocities associated with the 
midpoints of successive initial solids concentration settings from the 120 samples originally 
generated using OLH sampling (Figure 7). Analytical solutions for the new 119 samples were 
then computed and used in the assessment of % Relative Error, which is the measure applied to 
determine the effectiveness of the calibration. 
Table 4 shows the 5 scenarios employed for Validation Step (2). Similar to Table 3, blue and red 
text indicate similar values, and blue, red, and green outlines correspond to Scenarios V.1, V.4, 
and V.6. Note that Scenario V.3 was dropped in this new analysis when Validation Step (1) 
discounted its value. 
Figure 15 compares % relative error at the sample level. Each bar, from left to right, represents 
an individual run and the resulting relative error between the analytical value of the QoI, 
y2:Location of filling shock and the predicted value of y2. Blue represents the relative error 
results from Scenario V.1; red represents the relative error results from Scenario V.4; and, green 
represents the relative error results from Scenario V.6. The remaining hybrid combination 
scenarios shown in Table 3 (V.2 and V.5) are not shown for the sake of brevity. 
As in Validation Step (1), Scenario V.1 (the default MFiX-PIC settings) reveals over-prediction. 
And, Scenarios V.4 (calibrated settings) and V.6 (V&V Manual settings) reveal a mixture of 
over and under-prediction. 
 



Deterministic Calibration of MFiX-PIC, Part 1: Settling Bed 

32 

Table 4: Settings Employed for Each of the 5 Scenarios used in the Second Validation 
Simulation Campaign with Unseen Samples 

Scenarios: (V.1) (V.2) (V.4) (V.5) (V.6) 

MFiX-PIC 
Model 

Parameter [1] Default 

[2] 
Calibrated 

Setting only 
for θ5  & 

Rest Default 
Settings 

[4] 
Calibrated 

Settings for 
All (θ1, θ2, 
θ3, θ4, θ5) 

[5] 
Calibrated 

Setting only 
for θ5  & 

Rest V&V 
Manual 

[6] V&V 
Manual 
Settings 

Theta1 
(θ1): 
Pressure 
linear scale 
factor 

100 100 14.309 10 10 

Theta2 (θ2):    
Vol. 
fraction 
exponential 
scale factor  

3.0 3.0 2.165 3.0 3.0 

Theta3 (θ3):  
Statistical 
weight 

5.0 5.0 12.241 5.0 5.0 

Theta4 (θ4): 
Vol. 
fraction at 
maximum 
packing 

0.42 0.42 0.399 0.4 0.4 

Theta5 (θ5): 
Solid slip 
velocity 
factor 

1.0 0.828 0.828 0.828 0.5 

avg 22.99% -3.80% -0.96% 2.09% -5.51% 

min 5.62% -27.44% -15.69% -17.15% -27.44% 

max 45.45% 17.23% 17.73% 15.84% 10.06% 
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Figure 15: Comparison of % Relative Error for QoI (Location of Filling Shock) with respect 
to analytical solution for each sample from the unseen test runs. 

 
Figure 16 offers a view of relative error between the 119 sample solutions and their associate 
analytical solutions in the form of histograms. In particular, the relative error of the quantity of 
interest, y2: location of filling shock, is examined for the same scenarios presented in Table 4. 
Two potential outliers (Run #119 and #18) are highlighted in red for Scenario V.4 in Figure 16. 
If these outliers are excluded, the % Relative Error histogram shows an almost normal 
distribution between 10.0% and -12.5%, with a median around -1.0% error. When compared 
with the other scenarios, the proposed calibrated settings (Scenario V.4) offer a significantly 
narrower relative error distribution. The preliminary investigation launched for the potential 
outliers identified in Figure 13 is expected to provide additional insight whether the same root 
cause is applicable for the observed outlier behavior. 
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Scenarios: (V.1) (V.2) (V.4) (V.5) (V.6) 

 

Figure 16: Comparison of % Relative Error for QoI (Location of Filling Shock) with respect 
to analytical solution for each sample for the unseen 119 samples. 

 
Figure 17 further investigates the relative errors seen in the current scenarios. The figure is 
identical to Figure 16 except an additional highlighting is offered for consideration. Shown as a 
dark hatched pattern, these areas represent samples that produced error between -2.5% and 
+2.5% in Scenario V.4. 
This visual approach allows the user to consider the error of similar samples across different 
scenarios, as well as the quantity of samples within the error band. For example, using the 5% 
error range that was achieved with the proposed calibrated model parameters of Scenario V.4 as 
a basis, note the wider relative error range of other scenarios, such as +10% to - 25% in Scenario 
V.6. Also note that by examining only the Scenario V.4 histogram, the relative error band 
represented incorporates almost half of all samples. In particular, 50% of 119 samples reside 
within 1.85% to -4.53% relative error range for Scenario V.4, whereas the same 50% reside 
between 3.26% and -12.86% in Scenario V.6. 
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Scenarios: (V.1) (V.2) (V.4) (V.5) (V.6) 

 

Figure 17: Comparison of % Relative Error for QoI (Location of Filling Shock) with respect 
to analytical solution for each sample for the unseen 119 samples with median and 50% range 
values highlighted. 

 
Assessment of the Effect of Experimental Sample Size: As discussed earlier, 120 samples of 
MFiX-PIC simulations were performed to construct a surrogate model to characterize the 
relationship among 6 input parameters (θ1,θ2,θ3,θ4,θ5,x1) and 1 QoI (y2). Following, another 
dataset with 21 samples was generated for the same QoI by computing the analytical solution at 
21 different x1 settings using Equation 5. This dataset with 21 samples was used in lieu of 
experimental data required for deterministic calibration. Then, the calibration process required 
minimization of the residual shown in Equation 7, which necessitates the use of the surrogate 
model to evaluate Si(𝛉𝛉,x) at each i for i = 1,21. 

A separate study was carried out to better understand the effect of experimental data sample size, 
i.e., instead of a 21 sample based analytical solution dataset, the question, “how would an 11 
sample or 5 sample based dataset affect the deterministic calibration results?” was investigated. 
A visual illustration of the original 21 sample dataset can be seen in Figure 18. The 21 sample 
group is shown with blue cross symbols. Note that the same figure contains the illustration of 
two additional datasets generated for this assessment, one with 11 evenly spaced samples (shown 
with red circle symbols) and one with 5 evenly spaced samples (shown with green diamond 
symbols). The spacing may cause some of the sample markers to overlap. The new analytical 
solution datasets were generated by keeping the same lower and upper bounds of x1 while 
reducing the intermediate sample locations uniformly. 
Note that the analytical solution is being used as if the results were coming from experiments 
without any noise, and the same surrogate model constructed from the 120 sample simulation 
campaign was used in this sensitivity assessment. 
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Figure 18: Three different analytical solution samples (5, 11, and 21 samples) used to assess 
the sensitivity of deterministic calibration results. 

 

To perform validation of the new proposed calibrated settings based on 5 and 11 samples of the 
analytical solution, the following five cases were considered: 

(C.1) Default settings of MFiX-PIC (first histogram from the left). 
(C.2) Obtained by employing 21 samples of the analytical solution during the minimization of 

residuals (second histogram from the left with a column label of ”All Calibrated w 
Exp_n21”). 

(C.3) Obtained by employing 11 samples of the analytical solution during the minimization of 
residuals (third histogram from the left with a column label of ”All Calibrated 
wExp_n11”). 

(C.4) Obtained by employing 5 samples of the analytical solution during the minimization of 
residuals (fourth histogram from the left with a column label of ”All Calibrated 
wExp_n5”). 

(C.5) V&V manual based (last histogram from the right). 



Deterministic Calibration of MFiX-PIC, Part 1: Settling Bed 

37 

Validation simulations were then performed for the unseen 119 samples with the new calibrated 
model parameter settings for cases C.3 and C.4. Figure 19 shows the comparison of the % 
Relative Error histograms for the five cases considered to assess the sensitivity of the analytical 
solution sample size. 
 
Cases: (C.1) (C.2) (C.3) (C.4) (C.5) 

 

Figure 19: Comparison of % Relative Error for QoI (Location of Filling Shock) for the 
proposed settings of model parameters calibrated with varying size of analytical solution 
based data sample size (i.e., 21, 11, and 5). 

 
Among the C.1 through C.5 cases, case C.3, based on calibrated settings from 11 samples, 
appeared to give the best results with the least amount of relative error as compared to other 
cases. Maximum relative error was 11.1% and minimum relative error was -17.03%. The mean 
relative error over the 119 sample campaign was -0.88%. The next best was case C.4, based on 
calibrated settings from 5 samples. 
To further understand the effect of sample location, an additional assessment where a non-
uniform selection of x1 over the range [0.05, 0.25] was made. Figure 20 shows a comparison of 
the original 11 uniformly distributed samples (red colored circle symbols) and the 11 non-
uniformly distributed (purple colored plus symbols) dataset employed for calibration sensitivity 
assessment. As seen from the figure, the non-uniform sample set does not have samples residing 
at the boundaries of the [0.05, 0.25] interval for x1 but have two nearly adjoint samples very 
close around x1 around 0.06 and similar two samples in the upper end. Both datasets only overlap 
at x1 = {0.09, 0.15, 0.19}. The motivation for this investigation was to assess the effect of sparse 
data, which is typically encountered with physical experiments. 
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Figure 20: Uniform versus non-uniform distribution of the 11 sample analytical solution 
dataset to assess the sensitivity of deterministic calibration results. 

 
Figure 21 offers a histogram view of % relative error for cases C.1 through C.5 with uniform 
spacing, and case C.3 with non-uniform spacing. In particular, the % relative error of the 
quantity of interest, y2: location of filling shock, is examined to assess the sensitivity of the 
deterministic calibration procedure employed to the experimental data sample size and the 
uniformity of the experimental sample distribution. Recall that an analytical solution was used in 
lieu of experimental data. 
A direct comparison of cases C.3 with uniform and non-uniform sample spacing reveals similar 
lower error bounds but disparate upper error bounds, with non-uniform spacing showing a 
roughly 1.25% lower relative error. Figure 20 shows that case C.3 with non-uniform spacing has 
two samples very close to the upper bound of x1, which might be a plausible explanation for why 
the upper bound of % Relative Error is less. In particular, the two samples are closer to each 
other and are within the proximity of the x1 upper bound value as opposed to a single sample at 
the upper bound limit. Additionally, when inspected closely, the relative errors exceeding 10% 
were attributed to samples # 111 and # 116, which had x1 values of 0.23527 and 0.24348, 
respectively. Overall, there is a pronounced shift in the median but not mean % Relative Error, 
which suggests the deterministic calibration results appear to be robust for non-uniform 
sampling. 
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Cases: (C.1) (C.2) (C.3) (C.3) Non-uniform (C.4) (C.5) 

 

Figure 21: Comparison of % Relative Error for QoI for the proposed settings of model 
parameters calibrated with varying size of analytical solution based data sample size (i.e., 21, 
11, and 5) and non-uniform 11 sample case. 

 

Deterministic Calibration Results with Nodeworks: 

In this section, the calibration results obtained with Nodeworks are presented and compared to 
the analytical solution. 

Figures 22 and 23 illustrate workflows developed for deterministic calibration within 
Nodeworks. The Residual Function node (shown as the center step in Figures 22 and 23) was 
created particularly for this study and follows the logic of Equation 7. Other nodes shown were 
already available within the standard Nodeworks framework. 

Each node performs a specific task. In Figure 22, the leftmost node, Response Surface (RS), uses 
the surrogate model to perform functional evaluations for the QoI, in lieu of running MFiX 
simulations. This is accomplished by importing a tabular dataset that includes (θ1, θ2, θ3, θ4, θ5, 
and x1) as input. The rightmost node, General Optimizer (GO), solves the minimization problem 
and works cooperatively with the user-defined Residual Function. Within the RS node, the Error 
tab (highlighted in blue) reveals a cross-validation results graph of the Gaussian Process Model 
based data-fitted surrogate model. When analytical results align with model results well (along 
the line), this is one indicator of good fit. Additional evaluations of RMSE and error histogram 
visualization (available under Plots) further assist in the determination of model quality. 
Figure 23 reveals a comparison plot of different surrogate models fitted based upon the RMSE 
metric. This bar-chart is available under the Compare tab of the RS node. For consistency with 
earlier PSUADE results, the Gaussian Process Model was chosen for this study. The parallel 
coordinates plot shown under the Parallel Plot tab of the GO node gives proposed values for (θ1, 
θ2, θ3, θ4, θ5) after optimization. The user controls the number of attempts to optimize, and 
similar values for the proposed values are highlighted by Nodeworks. 
 



Deterministic Calibration of MFiX-PIC, Part 1: Settling Bed 

40 

 

Figure 22: Nodeworks workflow for deterministic calibration view #1 showing the cross 
validation errors for the data-fitted surrogate model (the node shown on the most left) and the 
tabulated results of the deterministic calibration as a result of 15 attempts (the node shown on 
the most right). 

 

Table 5 compares the proposed settings for the input parameters (θ1, θ2, θ3, θ4, θ5) from 
PSUADE and Nodeworks studies. The differences observed between the two UQ software’s 
model parameter calibration results may originate from the differences in how surrogate model 
methodology has been implemented (e.g., both UQ toolkits offer Gaussian Process Model based 
surrogate model methodology but as two different implementations, and the global optimization 
algorithms employed were different). Nodeworks calibration results were evaluated using the 
same approach as PSUADE calibration results. 

Table 5: Comparison of the Proposed Calibrated Model Parameters Based on PSUADE and 
Nodeworks Studies 

MFiX-PIC Model Parameter 

PSUADE 
Calibrated 

Settings for All 
(θ1), Θ2, θ3, θ4, θ5) 

Nodeworks* 
Calibrated 

Settings for all 
(θ1), Θ2, θ3, θ4, θ5) 

% Difference 
w.r.t. PSUADE 

Results 

Theta1 (θ1): Pressure linear scale factor 14.309 18.300 27.9 % 

Theta2 (Θ2): Vol. fraction exponential 
scale factor  2.165 3.590 65.8 % 

Theta3 (θ3): Statistical weight 12.241 7.980 -34.8 % 

Theta4 (θ4): Vol. fraction at maximum 
packing 0.399 0.442 10.8 % 

Theta5 (θ5): Solid slip velocity factor 0.828 0.658 -20.5 % 
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Figure 24 shows a histogram plot of % Relative Error similar to Figure 16 except the validation 
test results are now based on Nodeworks calibrated model parameters. The same 5 scenarios are 
considered for comparison. Scenario V.4, which is based on the use of all 5 calibrated model 
parameters proposed by Nodeworks calibration study, appears to exhibit the best error 
distribution compared to other scenarios including V.6, which is based on V&V manual settings. 

 

Figure 23: Nodeworks workflow for deterministic calibration view #2 showing the parallel 
coordinates plot of the result. 
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Scenarios: (V.1) (V.2) (V.4) (V.5) (V.6) 

 
Nodeworks proposed settings 

Figure 24: Comparison of % Relative Error histogram for QoI (Location of Filling Shock) 
with respect to Analytical Solution for the unseen 119 samples based on the proposed 
calibrated settings from Nodeworks. 

 
Figure 25 shows a comparison of the % relative error histograms for the unseen 119 samples 
between scenario V.4 PSUADE-based and scenario V.4 Nodeworks-based calibrated model 
parameters. The histograms generated from scenarios V.1 and V.6 are also included for 
comparison as illustrated in earlier similar plots. The % relative error histogram obtained from 
PSUADE appears to have a narrower distribution compared to Nodeworks based results. Mean 
% relative errors were -1.03 % and 2.39 % for PSUADE-based and Nodeworks-based settings, 
respectively. In general, PSUADE-based results appear relatively better than Nodeworks-based 
results. However, both sets of results exhibited substantially better distribution of errors 
compared to Scenarios V.1 and V.6, which suggests that deterministic calibration performed 
with PSUADE and Nodeworks improved the results for this application.  
To further investigate the error seen in the current scenarios, Figures 26 and 27 are offered. Both 
are identical to Figure 25 except an additional highlighting is given for consideration. Shown as a 
dark hatched pattern, these areas represent samples that produced relative error between -2.5% 
and +2.5% in Scenario V.4. In Figure 26, the hatching corresponds to PSUADE results, and in 
Figure 27, the hatching corresponds to Nodeworks results. 
Comparing the two figures reveals differences in what samples produce particular error 
quantities. PSUADE captures 47 samples in this error band. Nodeworks captures only 32. 

As PSUADE-based results capture more samples within ±2.5 % relative error interval, it can be 
concluded that for the given dataset and application, PSUADE-based deterministic calibration 
performed relatively better when compared to Nodeworks-based deterministic calibration. 
However, it is important to note that both UQ toolkits employ different surrogate model method 
implementation even if the same surrogate model method has been used. Also, two different 
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optimization algorithms were employed during this study, which might have contributed to the 
difference observed. A separate study with identical comparisons using the same surrogate 
model implementation and optimization algorithm would determine which method is truly 
superior. 
 
Scenarios:          (V.1)                      (V.4) PSUADE                  (V.4) Nodeworks          (V.6) 

 

Figure 25: Comparison of % error histogram for QoI (Location of Filling Shock) with respect 
to Analytical Solution for the unseen 119 samples based on the proposed calibrated settings 
from PSUADE and Nodeworks 
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Scenarios:          (V.1)                              (V.4) PSUADE                   (V.4) Nodeworks                            (V.6) 

Figure 26: Comparison of % Relative Error histogram for QoI (Location of Filling Shock) for 
the unseen 119 samples where samples within ±2.5% error interval for PSUADE based 
calibrated settings are highlighted. 

 

 

 
 
 
 
 
 
  

47  samples 
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Scenarios:          (V.1)                              (V.4) PSUADE                   (V.4) Nodeworks                            (V.6) 

Figure 27: Comparison of % Relative Error histogram for QoI (Location of Filling Shock) for 
the unseen 119 samples where samples within ±2:5% error interval for Nodeworks-based 
calibrated settings are highlighted. 

 

 
 
 
 

32 samples 
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5. CONCLUSIONS 
The study presented in this report evolved from systematic Verification, Validation and 
Uncertainty Quantification efforts initiated at the U.S. DOE’s NETL to assess the credibility of 
the MFiX suite of solvers. This report follows two earlier reports related to (1) Verification and 
Validation of MFiX-PIC (Vaidheeswaran et al., 2020) and (2) Sensitivity Analysis of MFiX-PIC 
(Vaidheeswaran et al., 2021). The first study aimed to capture and document any discrepancy 
noted in MFiX-PIC by comparing simulation results to available experimental data directly. The 
second study aimed to evaluate the sensitivity of keyword-accessible modeling input parameters 
employed in MFiX-PIC, by examining several QoI as modeling input parameters varied. 
The primary focus of this study was to develop and demonstrate a procedural methodology for 
improving the credibility of MFiX-PIC simulations by applying deterministic calibration 
methods to the modeling parameters considered. Three targeted applications were selected to 
encompass widely encountered flow configurations: particle settling, fluidized bed and 
circulating fluidized bed. This report documents the deterministic calibration of 5 MFiX-PIC 
modeling parameters in the context of the first targeted application, particle settling. A unique 
advantage for this problem is an analytical solution for the QoI, location of the filling shock. This 
enabled the calibration study to proceed without any physical experiments. 
A dataset with 21 samples based on the analytical solution for the location of the filling shock 
was generated by varying the initial solids concentration parameter (x1) within the interval 
[0.05,0.25]. Then this dataset was used like observations from an experiment. However, no 
experimental uncertainty was considered for this calibration study. 
The deterministic calibration procedure can be framed as the minimization of residuals 
(simulation - experiment) problem. In order to perform the thousands of evaluations required 
while testing different model parameter settings during optimization, a data-fitted surrogate 
model was constructed. This model, after assessing its quality for characterizing the relationship 
between input and output datasets, was then used instead of actual MFiX-PIC simulations to save 
time. Note that running thousands of MFiX-PIC simulations as part of an optimization loop 
would be prohibitively time-consuming. 
A simulation campaign with 120 samples of actual MFiX-PIC simulations was designed using 
the Optimal Latin Hypercube sampling method for the 6 input parameters considered in Table 1. 
The settings used for the 6 input parameters and the QoI from the simulation campaign results 
were compiled in a tabular formatted ASCII file to be used as input to UQ toolkit software for 
constructing a surrogate model and for performing the remainder of the analysis. 
Two separate UQ software, PSUADE from Lawrence Livermore National Laboratory (Tong, 
2020) and Nodeworks developed at the NETL (NETL, 2020), were employed for data-fitted 
surrogate model construction. In addition, these software were used to conduct quality checks of 
the formed surrogate models and for performing the minimization of residuals to obtain the best 
set of model parameter settings. Although the same input dataset was imported to both software, 
some differences were observed in the resulting calibrated model settings. These differences are 
most likely related to the optimization algorithms unique to each software. 
The effectiveness of the proposed calibrated model parameter settings obtained as a result of the 
deterministic calibration process was evaluated by running additional MFiX-PIC simulations 
using the new settings for model parameters (θ1, θ2, θ3, θ4, θ5) and then calculating % relative 
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error with respect to the analytical solution for the location of the filling shock at the 
corresponding x1 settings. In addition, a new set of simulations was performed at the same x1 

settings using both the default MFiX-PIC settings and those proposed in the V&V Manual for 
the 5 model parameters (θ1,θ2,θ3,θ4,θ5). An overall comparison of % relative error from each 
simulation was presented as well as a histogram view of % relative errors. Note that the 
availability of an analytical solution enabled performing an error assessment for each sampling 
simulation. This action is typically not feasible when physical experiments are utilized for the 
calibration process. 
The proposed calibrated model parameter settings obtained with PSUADE UQ software were 
superior to the default MFiX-PIC settings and the settings proposed in the V&V Manual. The % 
relative error histogram plots for the proposed calibrated model parameter settings were 
demonstrated to yield substantially more accurate MFiX-PIC results for the particle settling 
application. This was shown in two steps. First, the original simulation campaign with 120 
samples, which was used to construct the surrogate model were rerun and % relative error was 
calculated for each sampling simulation (Figure 13). Then, a more rigorous approach utilized 
119 unseen samples of x1 settings. Again, PSUADE-based proposed calibrated settings 
outperformed the other settings for the 5 model parameters in both validation steps as clearly 
seen in Figures 13 and 16. 
Additionally, the proposed calibrated model parameter settings obtained with Nodeworks UQ 
software were superior to the default MFiX-PIC settings and the settings proposed in the V&V 
Manual (Figure 24). 
There were notable differences between the results obtained by PSUADE and Nodeworks (see 
Table 5). A comparison between PSUADE and Nodeworks-based calibrated model settings was 
then performed using the % relative error histogram method. As shown in Figure 25, PSUADE-
based calibrated settings appear to give slightly more accurate results than Nodeworks-based 
calibrated settings for the location of filling shock (y2). 

Finally, Table 6 shows the proposed calibrated settings for MFiX-PIC model parameters 
suggested for use in applications similar to the particle settling case. Although PSUADE-based 
results have been demonstrated to give more accurate MFiX-PIC simulation results, both settings 
could be used for applications that fall within the particle settling region of the hypothetical flow 
regime map shown in Figure 2. 

A separate dedicated report will demonstrate statistical calibration for the settling case, which 
will yield distributions for the model parameter settings rather than single values. Then, 
additional standalone reports will describe the calibration efforts for the fluidized bed and 
circulating fluidized bed applications. The overall goal of these reports is to establish validated 
guidance for MFiX-PIC users who are planning to carry out simulations that fall within the 
hypothetical flow regimes explored while also offering a unified set of proposed calibrated 
settings. 
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Table 6: Validated Calibrated Model Parameters based on PSUADE and Nodeworks Results 

MFiX-PIC Model 
Parameter 

PSUADE 
Calibrated 

Settings for All 
(θ1,θ2,θ3,θ4,θ5) 

Nodeworks 
Calibrated 

Settings for All 
(θ1,θ2,θ3,θ4,θ5) 

Theta1 (θ1): Pressure 
linear scale factor 14.309 18.300 

Theta2 (θ2): Vol. 
fraction exponential 
scale factor  

2.165 3.590 

Theta3 (θ3): Statistical 
weight 12.241 7.980 

Theta4 (θ4): Vol. 
fraction at maximum 
packing 

0.399 0.442 

Theta5 (θ5): Solid slip 
velocity factor 0.828 0.658 
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APPENDIX 
The purpose of this Appendix is to provide information necessary for the reader to reproduce the 
results of this report. There is expectation that the reader already has software access, as well as 
the necessary skill to work within and analyze results from associate software. 
The files discussed in this section are available through NETL’s Gitlab repository under the 
following URL: 
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ 
ParticleSettling/DeterministicCalibration 
All new users will need to register to gain access to the NETL Gitlab repository. 
Registered users can clone the repository for all PIC Calibration related studies with the 
following git clone command from a Linux console terminal, then navigate to the folder where 
Deterministic Calibration related files reside: 

 

 

 

For those who use a GUI based Git client, users can point to https://mfix.netl.doe.gov/gitlab/ 
quality-assurance/PIC_calibration.git and clone the repository to their local system. 

A directory tree is shown in the file README.md which provides an overview of the 
organization of the directories and stored files within this repository. For the remainder of the 
Appendix, the operating system level command examples displayed assume the bash shell 
environment. The reader should check their shell environment with ”echo $SHELL” and make any 
necessary adjustments. 
All files were tested in a MacOS based environment and are expected to be compatible with 
other operating system environments. If problems are experienced, the reader is encouraged to 
report them to the lead author via e-mail at aike@alpemi.com. Any other suggestions to improve 
the quality of the presented files and instructions in the appendix will be appreciated. 
 

  

1> git clone https://mfix.netl.doe.gov/gitlab/quality−assurance/PIC_calibration.git 

2> cd PIC_calibration/Case1_ParticleSettling/DeterministicCalibration 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ParticleSettling/DeterministicCalibration
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ParticleSettling/DeterministicCalibration
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/tree/main/Case1_ParticleSettling/DeterministicCalibration
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration.git
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration.git
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration.git
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/README.md
mailto:aike@alpemi.com
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APPENDIX A: INPUT FILES USED FOR PSUADE 
All PSUADE analyses were performed with version 2.0. It is assumed that the user has setup 
their environment and path to the PSUADE 2.0 binary properly. 
A.1. Importing External Dataset to PSUADE 
List of the files used with hyperlinks to the repository: 

SIM_Results_OLH_n120_i6_o3.xlsx : Microsoft® Excel file with the simulation dataset 

OLH_n120_i6_o1_y2.dat : ASCII file with 120 samples with 6 input and 1 QoI 

psData_OLH_n120_i6_o1_y2 : PSUADE native datafile generated after importing above file 

Brief description of the files used: 
PSUADE requires an input file with PSUADE command syntax, in addition to an actual dataset, 
to perform any type of analysis. The default filename for this file is psuadeData. The reader is 
strongly advised to use another name, like psData, as PSUADE will overwrite psuadeData 
without warning. 
Typically, simulation campaign results are compiled in tabular format. The first several columns 
represent input parameters from the design of experiments, and the remaining columns report the 
associated quantities of interest. Each row represents a single sample from a simulation 
campaign. Figure A1 shows a screenshot of the first 40 rows of data from one of the simulation 
campaigns in this report. These were tabulated in Microsoft® Excel in preparation for analysis in 
PSUADE. This Microsoft® Excel file is saved in the repository under 
”SIM_Results_OLH_n120_i6_o3.xlsx”, which is accessible at: 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-
/blob/main/Case1_ParticleSettling/DeterministicCalibration/SIM_Results_OLH_n120_i6_o
3.xlsx. 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/SIM_Results_OLH_n120_i6_o3.xlsx
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/OLH_n120_i6_o1_y2.dat
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/psData_OLH_n120_i6_o1_y2
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/SIM_Results_OLH_n120_i6_o3.xlsx
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/SIM_Results_OLH_n120_i6_o3.xlsx
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/SIM_Results_OLH_n120_i6_o3.xlsx
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/SIM_Results_OLH_n120_i6_o3.xlsx
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MFiX-PIC 
Simulation

Number 

q1 q2 q3 q4 q5 X1 Y1 Y2 Y3 

Emp.Pres.
Constant 

l. Fraction 
E Scale 
Facto 

Stat.r 
Weight 

Void 
Fraction 
at max 
packing 

Velfac_Co
eff 

Initial 
Concentrat

ion 

Location 
of settling 

shock 

Location 
of filling 

shock 

Void 
fraction at 

the first 
cell 

1 4.375 2.965 4.388 0.478 0.707 0.243 0.676 0.103 0.479 

2 17.049 2.182 6.917 0.441 0.614 0.246 0.691 0.084 0.449 

3 3.860 2.817 8.729 0.368 0.761 0.128 0.575 0.067 0.408 

4 19.782 3.462 16.329 0.418 0.917 0.079 0.519 0.047 0.452 

5 1.572 2.662 18.853 0.495 0.830 0.098 0.571 0.057 0.513 

6 9.356 4.811 3.246 0.472 0.625 0.106 0.525 0.064 0.473 

7 4.613 3.656 19.361 0.363 0.990 0.173 0.595 0.079 0.403 

8 8.892 2.695 14.690 0.372 0.856 0.136 0.578 0.067 0.422 

9 15.462 4.566 19.936 0.407 0.818 0.075 0.532 0.041 0.451 

10 9.795 4.642 6.737 0.424 1.000 0.130 0.543 0.074 0.426 

11 14.360 3.700 18.536 0.489 0.636 0.089 0.588 0.047 0.494 

12 3.531 3.157 15.467 0.480 0.611 0.074 0.535 0.045 0.481 

13 18.016 3.374 5.465 0.373 0.541 0.157 0.616 0.067 0.406 

14 3.201 3.244 12.546 0.406 0.956 0.107 0.540 0.059 0.430 

15 11.773 2.120 16.688 0.470 0.732 0.132 0.603 0.070 0.473 

16 17.773 4.197 10.865 0.497 0.575 0.061 0.478 0.045 0.502 

17 12.139 3.181 17.799 0.350 0.803 0.154 0.597 0.073 0.412 

18 10.386 2.243 18.177 0.397 0.527 0.179 0.686 0.056 0.419 

19 6.361 4.267 8.992 0.395 0.640 0.137 0.593 0.068 0.416 

20 1.927 4.594 4.961 0.486 0.586 0.167 0.624 0.079 0.487 

21 7.923 3.308 17.454 0.433 0.579 0.095 0.579 0.051 0.449 

22 13.928 4.625 15.328 0.359 0.882 0.244 0.659 0.089 0.369 

23 2.432 4.554 13.349 0.429 0.728 0.239 0.686 0.083 0.431 

24 10.716 3.062 6.490 0.360 0.655 0.084 0.502 0.047 0.405 

25 15.648 2.557 6.035 0.490 0.771 0.110 0.542 0.076 0.493 

26 1.282 3.708 10.969 0.458 0.780 0.198 0.645 0.085 0.458 

27 3.034 4.347 18.420 0.474 0.691 0.183 0.685 0.065 0.478 

28 14.002 4.521 5.618 0.457 0.798 0.053 0.459 0.038 0.466 
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29 6.734 2.274 3.743 0.435 0.878 0.102 0.526 0.063 0.439 

30 6.781 4.125 18.047 0.377 0.891 0.111 0.570 0.062 0.428 

31 14.277 2.025 7.665 0.376 0.850 0.190 0.620 0.089 0.392 

32 15.903 3.078 16.156 0.493 0.519 0.219 0.725 0.066 0.500 

33 17.346 2.876 19.556 0.459 0.921 0.126 0.565 0.068 0.438 

34 19.639 4.896 12.084 0.378 0.711 0.170 0.625 0.074 0.403 

35 18.600 4.322 4.181 0.444 0.751 0.152 0.587 0.080 0.446 

36 10.571 4.975 14.150 0.495 0.943 0.157 0.583 0.082 0.446 

37 12.609 2.867 3.183 0.431 0.576 0.174 0.613 0.084 0.437 

38 0.488 3.294 7.583 0.382 0.737 0.212 0.640 0.079 0.385 

39 5.184 3.023 14.355 0.390 0.717 0.058 0.493 0.039 0.438 

40 0.563 4.171 15.091 0.450 0.967 0.144 0.571 0.073 0.429 

Figure A1: First 40 samples of the tabulated dataset obtained from simulation campaign with 
120 samples for 6 input parameters and 3 quantities of interest. 

 
Figure A2 shows the first 34 lines of an ASCII formatted file, which is generated from the 
tabulated results shown in Figure A3. Note that the ASCII file contains an additional header line 
which indicates that 120 samples of the simulation campaign are included for 6 input parameters 
and 1 output (i.e., only second quantity of interest, y2: Location of filling shock). This file is then 
imported into PSUADE. This particular ASCII file is saved in the repository under 
”OLH_n120_i6_o1_y2.dat,” which is accessible at: 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-
/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/OLH_n120_i6_o1_y
2.dat 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/OLH_n120_i6_o1_y2.dat
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/OLH_n120_i6_o1_y2.dat
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/OLH_n120_i6_o1_y2.dat
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/OLH_n120_i6_o1_y2.dat
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Figure A2: First 34 lines of the tabulated dataset obtained from simulation campaign with 120 
samples for 6 input parameters and 3 quantities of interest. Grey colored numbers show the 
line number. 

 

The contents of the simulation campaign dataset (OLH_n120_i6_o1_y2.dat) can be imported into 
PSUADE with the read_std command while running PSUADE interactively in command line 
mode. Details on how to import an ASCII file can be found in the PSUADE 1.7 Reference 
Manual (page 3). 
Figure A3 shows the header segment of the imported file. Note that the ASCII header line used 
to indicate the number of samples in the simulation campaign, 6 input parameters and 1 output, 
has now been reformatted into a PSUADE native file format. This PSUADE native data file is 
saved in the repository under ”psData_OLH_n120_i6_o1_y2” , which is accessible at: 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-
/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/psData_OLH_n120_
i6_o1_y2. 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/psData_OLH_n120_i6_o1_y2
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/psData_OLH_n120_i6_o1_y2
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/psData_OLH_n120_i6_o1_y2
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/psData_OLH_n120_i6_o1_y2
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Figure A3: First 34 lines of PSUADE’s native input file psData_OLH_n120_i6_o1_y2 obtained 
after importing the dataset in OLH_n120_i6_o1_y2.dat. 

 

It is important to note that by default PSUADE will generate the psData_OLH_n120_i6_o1_y2 
file with an INPUT section showing x1,x2,x3,... as the name of the input parameters, and y1,y2, 
y3,... as the names of the quantities of interest. It is recommended that the user edit 
psData_OLH_n120_i6_o1_y2 and rename the input and QoI parameters to indicate their values 
more appropriately. For example, in Figure A4, on line 967, x1 has been renamed t1:P_0, and on 
line 990, y1 has been renamed y2:LocFilling). 
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Figure A4: The INPUT block of PSUADE native datafile (psData_OLH_n120_i6_o1_y2 lines: 
961-994 shown) which shows the revised labels for input and output parameters. 

 
A.2 SURROGATE MODEL CONSTRUCTION 
List of the files used with hyperlinks to the repository: 

PSbuildRS_2.in : PSUADE script file for batch mode surrogate model generation 
R2_GPM10_120F_RSFA_CV_err.m : Cross-validation error assessment generated by PSUADE 
(the plot shown in Fig. 10) 
Brief description of the files used: 

Usually, PSUADE is run as an interactive session to facilitate the iterative analysis necessary to 
find the best data-fitted surrogate model. However, PSUADE can be invoked in batch mode by 
providing a script. Batch mode is best to automate tasks like construction of a response surface 
or cross-validation error assessment. Scripting requires that the user know exact syntax for each 
PSUADE command in order to construct a file that will work without user intervention. 
Details on how to prepare such a script or how to interactively run PSUADE to test different 
surrogate models to find the best fit is beyond the scope of this Appendix. An example for such a 
script is saved in the repository under (PSbuildRS_2.in) which is accessible at:  

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/GPM/PSbuildRS_2.in
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/GPM/R2_GPM10_120F_RSFA_CV_err.m
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https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-
/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/
GPM/PSbuildRS_2.in. 
 
The script can be executed with the following command, where the output from PSUADE is 
redirected to a file named “run.log” for inspection: 

 

 

Alternatively, the user can run PSUADE interactively and invoke the “rscheck“ command. This 
method will require the user to provide responses to PSUADE queries related to different 
response surface model options, including set-up of a cross-validation error assessment. 
A.3 SENSITIVITY ANALYSIS 
List of the files used with hyperlinks to the repository: 

matlabrssoboltsib.m : PSUADE output in Matlab format showing Total Sensitivity Indices 
(shown in Fig. 11) 
Brief description of the files used: 
Sensitivity analysis in PSUADE is performed after an adequate data-fitted surrogate model is 
constructed and its quality is established with an acceptable cross-validation error assessment 
outcome (see Figure 10). PSUADE offers multiple sensitivity analysis options. For a global 
sensitivity analysis, Sobol’ indices method was chosen. Total indices were computed by issuing 
the command “rssoboltsib” during an interactive PSUADE session after the data file 
psData_OLH_n120_i6_o1_y2 was loaded. The user needs to respond to several questions to 
proceed, and depending on the bootstrapped sample size selected, it may take some time for 
PSUADE to finish the computations and generate a Matlab output file, matlabrssoboltsib.m. 

Note that the output file will generate the plot shown in Figure 11. 
A.4 DETERMINISTIC CALIBRATION 
List of the files used with hyperlinks to the repository: 

evalRSM_GPM10.c : Exported surrogate model from PSUADE in C language and revised for 
residual calculation during the evaluations required for optimization. 

psuade.in : PSUADE script to perform the optimization loop to find the parameters that 
minimizes residual. 

Exp_n21.dat : Experimental dataset used for guiding calibration process; the contents of this file 
are embedded in evalRSM_GPM10.c. 

 
 

1 > psuade PSbuildRS_2.in | tee run.log 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/GPM/PSbuildRS_2.in
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/GPM/PSbuildRS_2.in
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/GPM/PSbuildRS_2.in
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/GPM/PSbuildRS_2.in
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/1_ResponseSurface/GPM/PSbuildRS_2.in
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/2_SensitivityAnalysis/matlabrssoboltsib.m
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/3_Calibration/Deterministic/evalRSM_GPM10.c
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/3_Calibration/Deterministic/psuade.in
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/PSUADE/3_Calibration/Deterministic/Exp_n21.dat
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Brief description of the files used: 

Deterministic calibration can be framed as an optimization problem which seeks to find the best 
settings for the 5 parameters under consideration that will result in a minimum residual (i.e., 
Simulation - Experiment). For the settling case presented in this report, experiments were 
replaced with an analytical solution for the quantity of interest. 21 samples were created by 
varying x1: Initial solids concentration within the [0.05,0.25] interval. The file Exp_n21.dat 
shows the 21 samples generated in three columns: column 1 is x1; column 2 is ; and column 
3, which is used to represent experimental uncertainty is empty (an analytical solution has no 
uncertainty). Instead of running full MFiX-PIC simulations, evaluations are performed with the 
surrogate model for given settings of θ1,θ2,θ3,θ4,θ5 and x1. This evaluation is carried out by 
calling the evalRSM_GPM10 binary executable, which is built by compiling evalRSM_GPM10.c 
with the following command: 
 

 
 

Note that the above command assumes that the user has a working version of the GNU gcc 
compiler. evalRSM_GPM10.c is originally obtained from PSUADE by enabling the 
“rs_codegen” feature and constructing the surrogate model. The reader is referred to the 
PSUADE Manuals to learn how the command “rs_codegen” is used. 

Once PSUADE exports the constructed surrogate model as a C-file, it should be renamed 
evalRSM_GPM10.c. Then, small modifications must be made. First, experimental data is 
incorporated directly into the code (lines 24–46). Then, the formulation for y should be modified 
from a calculation for the QoI to the calculation of residual between the experimental data and 
the analytical solution (lines 76–78). The user can identify and better understand the changes 
implemented by comparing the evalRSM_GPM10.c file in the repository to the original exported 
surrogate model for the same dataset and same type of surrogate model. 
To run the optimization procedure and save the output coming to the screen, the following 
command is issued: 

 

 

After successful execution, PSUADE will report the best solution under the PSUADE 
OPTIMIZATION : CURRENT GLOBAL MINIMUM heading. For best results, extract the output of 
each trial, then visualize with a parallel coordinates plot to observe convergence trends over 
multiple attempts. 

 

1 > gcc −o evalRSM_GPM10 evalRSM_GPM10.c −lm 

1 > psuade psuade.in | tee run.log 
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APPENDIX B: INPUT FILES USED FOR NODEWORKS 
All of the analyses performed with Nodeworks were carried out with version 20.1.1. For success, 
the conda environment and all dependent Python libraries must be installed properly. It is 
strongly recommended to check the node libraries installed at the beginning of a Nodeworks 
session by selecting the leftmost icon on the top row of Show Main Menu, and then clicking on 
the Node Library menu item as shown in Figure B1. 

 

 

Figure B1: Screenshot of libraries loaded at the beginning of Nodeworks session under Show 
Main Menu. 

 
List of the files used with hyperlinks to the repository: 

OLH_n120_i6_o1.csv : CSV formatted input file which contains the simulation campaign results 
and is imported into Nodeworks through Response Surface node. exp_n21.csv : CSV formatted 
experimental dataset used for guiding calibration process; the contents of this file imported into 
Residual Function node. 

SIM_n120_Calibration.nc : Nodeworks worksheet containing the group of nodes compiled to 
perform deterministic calibration workflow. 
Brief description of the files used: 

SIM_n120_Calibration.nc contains the workflow constructed in Nodeworks to perform the 
deterministic calibration. First, a surrogate model for the imported dataset (OLH_n120_i6_o1.csv) 
is constructed. Then, optimization is performed in the General Optimizer node by finding the 
combination of θ1,θ2,θ3,θ4,θ5 settings that yield the lowest residual (computed in the Residual 
Function node). The experimental dataset (in this case, the 21 samples of analytical solution) is 

https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/NODEWORKS/OLH_n120_i6_o1.csv
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/NODEWORKS/exp_n21.csv
https://mfix.netl.doe.gov/gitlab/quality-assurance/PIC_calibration/-/blob/main/Case1_ParticleSettling/DeterministicCalibration/NODEWORKS/SIM_n120_Calibration.nc
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introduced to the workflow by importing exp_n21.csv into the Residual Function node. The user 
may need to change some settings in the General Optimizer, such as the number of attempts to 
perform the optimization. It may also be necessary to change convergence tolerances. Once the 
workflow is executed (by hitting the Play button), the results of the optimization can be 
visualized in the Parallel Coordinates plot tab. 
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