Chemical – Mechanical – Transport Model for Wellbore Permeability for CO₂ Storage

30 March 2017
Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report (LLNL-TR-644479) has been reviewed by Lawrence Livermore National Laboratory and approved for public release.

Cover Illustration: Model of fracture deformation: a) asperities maintain the fracture aperture between the cement and caprock; b) during reaction, the portlandited depleted and amorphorous alteration layers penetrate and eventually comprise the propping asperities; and c) the stress on the fracture compresses the now weakened asperities, collapsing the aperture space and reducing the permeability.

An electronic version of this report can be found at:
http://www.netl.doe.gov/research/on-site-research/publications/featured-technical-reports
https://edx.netl.doe.gov/nrap
This page intentionally left blank.
Table of Contents

1. INTRODUCTION ...1
2. RESULTS ..2
3. REFERENCES ..7
APPENDIX .. A-1
List of Figures

Figure 1: Model of fracture deformation: a) asperities maintain the fracture aperture between the cement and caprock; during reaction, the portlandite depleted and amorphous silica alteration layers penetrate and eventually comprise the propping asperities; and c) the stress on the fracture compresses the now weakened asperities, collapsing the aperture space and reducing the permeability. The diameter is 1.5 cm.1

Figure 2: Reaction fronts produced by flowing carbonated brine along the cement-caprock interface in a core-flood sample. ..2

Figure 3: a) The relationship between σ_{eff} and η is modeled as three sets of parallel springs and frictional sliders representing the contributions of the different reaction fronts to the fracture response weighted by the relative contact area (A) of each alteration zone: unreacted (u), portlandite depleted (depl), and the amorphous silica (am) with a given stiffness (K). The carbonated zone is not considered because it was very thin (Walsh et al., 2014b). ..3

Figure 4: Simulation of a 30 cm section of leaky wellbore: a) distribution of confining pressure on the wellbore fracture (18–27 MPa, blue-red); b) initial hydraulic aperture distribution (0–75 µm, blue-red); c) hydraulic aperture distribution after one year of reaction with a 1 MPa pCO$_2$ brine (0–75 µm, blue-red); d) magnitude of vertical flux per unit length (0.0–0.7 mm2/min, blue-red); and e) extent of amorphous layer (0.0–1.1 mm, blue-red) Additional details are in Walsh et al. (2014b). ...4
Acronyms, Abbreviations, and Symbols

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{eff}</td>
<td>Effective Stress</td>
</tr>
<tr>
<td>η</td>
<td>Hydraulic strain</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>NETL</td>
<td>National Energy Technology Laboratory</td>
</tr>
<tr>
<td>NRAP</td>
<td>National Risk Assessment Partnership</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
</tbody>
</table>
Acknowledgments

This work was completed as part of the National Risk Assessment Partnership (NRAP) project. Support for this project came from the U.S. Department of Energy’s (DOE) Office of Fossil Energy’s Crosscutting Research program. This work was funded as part of the American Recovery and Reinvestment Act of 2009. The authors wish to acknowledge Traci Rodosta (Carbon Storage Technology Manager), Kanwal Mahajan (Carbon Storage Division Director), M. Kylee Rice (Carbon Storage Division Project Manager), Mark Ackiewicz (Division of CCS Research Program Manager), Darin Damiani (Carbon Storage Program Manager), Robert Romanosky (NETL Crosscutting Research, Office of Strategic Planning), and Regis Conrad (DOE Office of Fossil Energy) for programmatic guidance, direction, and support.

The authors also wish to acknowledge L. Knauer and the California Well Sample Repository for the caprock samples used in our experiments. The Advanced Light Source is supported by the Director, Office of Basic Energy Sciences of the U.S. DOE. We thank Y. Scholokhova for collecting and processing the tomography data, and A. MacDowell and D. Parkinson for their assistance at the beamline. We are also grateful to M. Smith for her assistance with the experiments; R. Lindvall, and V. Genetti for solution chemistry analysis; S. Charnvanichborikarn for the nanoindentation measurements; as well as D. Ruddle and S. Torres for assistance in the preparation of sample cores.
1. **INTRODUCTION**

Wellbores are considered to be a primary pathway of concern for potential carbon dioxide (CO₂) and brine leakage from storage reservoirs to drinking water aquifers and the atmosphere. This study investigated how chemical alteration of wellbore cement affects the mechanical and hydraulic properties of wellbore fractures and interfaces to better assess the risk for CO₂ leakage from storage reservoirs.

The observed trends are explained in hydraulic aperture in these experiments by proposing that chemical alteration weakens the asperities that hold open pathways at cement-caprock interfaces, thereby causing the fracture to close in response to pressure placed on the sample. Figure 1 illustrates this hypothesis by separating the concurrent chemical and mechanical processes into three schematic drawings showing the initial fracture aperture (a), chemical alteration (b), and the smaller fracture (c) aperture as a result of mechanical deformation of the altered layers.

![Figure 1: Model of fracture deformation](image)

- **a)** asperities maintain the fracture aperture between the cement and caprock; during reaction, the portlandite depleted and amorphous silica alteration layers penetrate and eventually comprise the propping asperities; and **c)** the stress on the fracture compresses the now weakened asperities, collapsing the aperture space and reducing the permeability. The diameter is 1.5 cm.
2. **RESULTS**

This study created the first-ever empirically-based model that accounts for the mechanical deformation of chemically-altered wellbore cement in carbon storage environments. This summary provides a brief description of the chemical and mechanical components of this model, some of the experimental evidence to support the model, and an example application of the model to a wellbore leakage scenario. The reader is referred to the publications (see Appendix for some examples) for more information on the chemical and mechanical components of the model and experimental analysis of the core-flood experiments on which the model was based (Walsh et al., 2012; Walsh et al., 2013a,b,c; 2014a,b; Mason et al., 2013).

There is concern that chemical alteration of the cements used to seal deep saline or depleted oil reservoirs employed for geologic CO₂ storage can create gas and brine leakage pathways to shallow water resources and back to the atmosphere. This concern exists (despite the utilization of CO₂ for enhanced oil recovery) because the Portland cements commonly used in primary cementing operations in wellbores undergo a series of reactions that can weaken the cement and alter its permeability (Carey et al., 2007, 2009; Duguid et al., 2005; Huerta et al., 2012; Kutchko et al., 2007, 2008, 2009; Mason et al., 2013; Scherer et al., 2011; Walsh et al., 2013a). Contact between carbonated brine and Portland cement produces a series of reaction fronts that divide the cement into distinctive zones. From the interior of the cement outward to the cement/brine interface (Figure 2), these zones consist of the unreacted cement, a portlandite depleted (CH-depleted) zone, a zone of calcium-carbonate precipitation, and an outer amorphous zeolite layer in direct contact with the carbonated brine (Carey et al., 2007; Kutchko et al., 2007, 2008; Rimmele et al., 2008 Mason et al., 2013).

![Reaction fronts produced by flowing carbonated brine along the cement-caprock interface in a core-flood sample.](image)

The chemical component of this model simulates the propagation of the reaction fronts using a method similar to that proposed by Ulm and co-workers (Ulm et al., 2003; Heukamp, 2003) for simulating calcium leaching from cements. Rather than use an explicit discretization of the reaction regions, the model instead represents the fronts as a series of coupled moving boundary problems. Front movement is controlled by jump conditions that enforce conservation of mass between the dissolving and precipitating minerals and the pore-fluid concentrations. Ulm’s model was extended to account for diffusive transport of multiple chemical species, changes to
chemical equilibrium at the fronts, and the effect of tortuosity on the effective diffusivity within each alteration layer. Equilibrium controls are portlandite solubility at unreacted/depleted interface, calcite solubility at both the depleted/carbonate interface and the carbonate/amorphous interface, and analcime solubility at amorphous silicate/brine interface. In addition to the solid phases, the reduced chemistry model also considers equilibrium between relevant aqueous species at each of the reaction fronts (Walsh et al., 2014a).

An empirical mechanical model is employed to describe the relationship between deformation and chemical alteration that is shown in Figure 3. In this model, the fracture is represented by a set of three spring slider sub-models, such that the overall stiffness for the fracture equals the stiffness of each alteration layer weighted by their relative contact areas. The unreacted cement is represented by a simple linear spring, because it is assumed its stiffness is independent of the loading history. However, simple strain-hardening was applied to the amorphous and depleted layers, represented by a spring arranged in series with a parallel spring/frictional slider system, because both of these regions have significantly lower yield strengths than the unreacted cement. The effect of the parallel spring/slider system is to change the slope of the hydraulic strain—effective stress relationship during loading when a given stress is exceeded—and recover the original slope as the system is unloaded. The mechanical response is coupled to the extent of the reaction by virtue of the contact areas (Walsh et al., 2014b).

Figure 3: a) The relationship between σ_{eff} and η is modeled as three sets of parallel springs and frictional sliders representing the contributions of the different reaction fronts to the fracture response weighted by the relative contact area (A) of each alteration zone: unreacted (u), portlandite depleted ($depl$), and the amorphous silica (am) with a given stiffness (K). The carbonated zone is not considered because it was very thin (Walsh et al., 2014b).
Although empirical, the model provides a mechanism for extending the experimental observations to other fracture geometries and stress conditions. In particular, the model can be used to investigate the effects of asperity size and reaction front extent on the fracture transmissivity when coupled with fluid flow and transport. In the example simulation shown in Figure 4, the reaction front model is first used to determine the front extents, which are then provided as input to the spring/frictional slider model. The spring/slider model then updates the fracture aperture distribution based on the local effective stress—which in turn alters the flow and transport of the chemical species, thereby changing the conditions at the brine boundary in the reaction front model.

![Figure 4: Simulation of a 30 cm section of leaky wellbore: a) distribution of confining pressure on the wellbore fracture (18–27 MPa, blue-red); b) initial hydraulic aperture distribution (0–75 μm, blue-red); c) hydraulic aperture distribution after one year of reaction with a 1 MPa pCO2 brine (0–75 μm, blue-red); d) magnitude of vertical flux per unit length (0.0–0.7 mm²/min, blue-red); and e) extent of amorphous layer (0.0–1.1 mm, blue-red) Additional details are in Walsh et al. (2014b).](image-url)
This simulation is only one realization—ideally a broader range of parameters would be investigated to glean a better sense of the model response. Nevertheless, the example simulation shows that under reasonable stress a CO₂ storage environment reacts as follows:

- The hydraulic aperture decreases with alteration and is dependent upon the effective stress on the fracture
- The extent of alteration decreases up the flow path, and is consistent with field observations (Crow et al., 2009, 2010)
This page intentionally left blank.
3. REFERENCES

APPENDIX

The following publications provide additional information on the chemical and mechanical components of the model and experimental analysis of the core-flood experiments on which the model was based.

This page intentionally left blank.
NRAP is an initiative within DOE’s Office of Fossil Energy and is led by the National Energy Technology Laboratory (NETL). It is a multi-national-lab effort that leverages broad technical capabilities across the DOE complex to develop an integrated science base that can be applied to risk assessment for long-term storage of carbon dioxide (CO2). NRAP involves five DOE national laboratories: NETL, Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Pacific Northwest National Laboratory (PNNL).

Technical Leadership Team

Diana Bacon
Lead, Groundwater Protection Working Group
Pacific Northwest National Laboratory
Richmond, WA

Jens Birkholzer
LBNL Lab Lead
Lawrence Berkeley National Laboratory
Berkeley, CA

Grant Bromhal
Technical Director, NRAP
Research and Innovation Center
National Energy Technology Laboratory
Morgantown, WV

Chris Brown
PNNL Lab Lead
Pacific Northwest National Laboratory
Richmond, WA

Susan Carroll
LLNL Lab Lead
Lawrence Livermore National Laboratory
Livermore, CA

Abdullah Cihan
Lead, Reservoir Performance Working Group
Lawrence Berkeley National Laboratory
Berkeley, CA

Tom Daley
Lead, Strategic Monitoring Working Group
Lawrence Berkeley National Laboratory
Berkeley, CA

Robert Dilmore
NETL Lab Lead
Research and Innovation Center
National Energy Technology Laboratory
Pittsburgh, PA

Nik Huerta
Lead, Migration Pathways Working Group
Research and Innovation Center
National Energy Technology Laboratory
Albany, OR

Rajesh Pawar
LANL Lab Lead
Lead, Systems/Risk Modeling Working Group
Los Alamos National Laboratory
Los Alamos, NM

Tom Richard
Deputy Technical Director, NRAP
The Pennsylvania State University
State College, PA

Josh White
Lead, Induced Seismicity Working Group
Lawrence Livermore National Laboratory
Livermore, CA