Computed Tomography Scanning and Geophysical Measurements of the Marcellus Formation from the Armstrong #1 Well

21 September 2018
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Cover Illustration: Montage of computed tomography scans through Armstrong #1 well core from a depth of ~7,700 to 7,702 ft. Images show mineral filled fractures within the core and are 10.75 mm apart.

An electronic version of this report can be found at:
http://netl.doe.gov/research/on-site-research/publications/featured-technical-reports
https://edx.netl.doe.gov/ucr

The data in this report can be accessed from NETL's Energy Data eXchange (EDX) online system (https://edx.netl.doe.gov) using the following link:
https://edx.netl.doe.gov/dataset/armstrong-well
Computed Tomography Scanning and Geophysical Measurements of the Marcellus Formation from the Armstrong #1 Well

Thomas Paronish1,2, Paige Mackey1,2, Dustin Crandall1, Johnathan Moore1,3, Sarah Brown1,3, Tim Carr4, Phillip Dinterman5, Karl Jarvis1,3

1U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV 26507
2U.S. Department of Energy, National Energy Technology Laboratory, ORISE, 3610 Collins Ferry Road, Morgantown, WV 26507
3U.S. Department of Energy, National Energy Technology Laboratory, AECOM, 3610 Collins Ferry Road, Morgantown, WV 26507
4West Virginia University, Department of Geology and Geography, 98 Beechurst Avenue, Morgantown, WV 26506
5West Virginia Geological and Economic Survey, 1 Mont Chateau Road, Morgantown, WV 26508

NETL-TRS-17-2018

21 September 2018

NETL Contacts:
Dustin Crandall, Principal Investigator
Alexandra Hakala, Technical Portfolio Lead
Bryan Morreale, Executive Director, Research & Innovation Center
This page intentionally left blank.
Table of Contents

ABSTRACT ..1

1. INTRODUCTION ..2

2. CORE DESCRIPTION ...4
 2.1 CORE PHOTOGRAPHS ...6

3. DATA ACQUISITION AND METHODOLOGY ...21
 3.1 CORE LOGGING ..21
 3.2 MEDICAL CT SCANNING ..23
 3.3 DATA COMPILATION ..24

4. RESULTS ...25
 4.1 MEDICAL CT SCANS ...25
 4.2 ARMSTRONG #1 ...26
 4.3 ADDITIONAL CT DATA ..43
 4.4 COMPILED CORE LOG ..43

5. DISCUSSION ...49

6. REFERENCES ...51
This page intentionally left blank.
List of Figures

Figure 1: Armstrong location map including depths to the Marcellus Formation boundary (ft below sea level) from the U.S. Energy Information Administration (EIA, 2018).......................... 3
Figure 2: Armstrong location map including isopach contours of the Marcellus Shale (ft) from the U.S. Energy Information Administration (EIA, 2018). .. 3
Figure 3: Detailed core description for Armstrong #1 from 7,545 to 7,783.4 ft. 5
Figure 4: Armstrong #1 core photographs, from 7,545 to 7,562.75 ft. ... 6
Figure 5: Armstrong #1 core photographs, from 7,562.75 to 7,580 ft. .. 7
Figure 6: Armstrong #1 core photographs, from 7,580 to 7,598 ft. ... 8
Figure 7: Armstrong #1 core photographs, from 7,598 to 7,612 ft. .. 9
Figure 8: Armstrong #1 core photographs, from 7,612 to 7,630 ft. .. 10
Figure 9: Armstrong #1 core photographs, from 7,630 to 7,648 ft. ... 11
Figure 10: Armstrong #1 core photographs, from 7,648 to 7,666 ft. .. 12
Figure 11: Armstrong #1 core photographs, from 7,666.3 to 7,684 ft. 13
Figure 12: Armstrong #1 core photographs, from 7,684 to 7,702 ft. ... 14
Figure 13: Armstrong #1 core photographs, from 7,702 to 7,720 ft. .. 15
Figure 14: Armstrong #1 core photographs, from 7,720 to 7,732.9 ft. 16
Figure 15: Armstrong #1 core photographs, from 7,732.9 to 7,751 ft. 17
Figure 16: Armstrong #1 core photographs, from 7,751 to 7,769 ft. .. 18
Figure 17: Armstrong #1 core photographs, from 7,769 to 7,783.4 ft. 19
Figure 18: Detailed images of en echelon fractures at depths from 7,670 to 7,672 ft. 20
Figure 19: Representation of generalized MSCL with all attached instruments. From Geotek Ltd., Geotek Multi-Sensor Core Logger Flyer, Daventry, UK (2009). .. 21
Figure 20: Periodic table showing elements measurable by the Innov-X® X-Ray Fluorescence Spectrometer. ... 23
Figure 21: Medical CT at the NETL used for core analysis.. 24
Figure 22: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,545 to 7,553.8 ft. ... 26
Figure 23: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,553.85 to 7,562.75 ft. ... 27
Figure 24: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,562.75 to 7,577 ft. ... 28
Figure 25: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,577 to 7,592 ft. ... 29
Figure 26: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,592 to 7,606 ft. ... 30
Figure 27: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,606 to 7,621 ft. ... 31
Figure 28: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,621 to 7,636 ft. ... 32
Figure 29: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,636 to 7,651 ft. ... 33
Figure 30: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,651 to 7,666 ft. ... 34
List of Figures (cont.)

Figure 31: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,666.3 to 7,681 ft. ... 35
Figure 32: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,681 to 7,696 ft. .. 36
Figure 33: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,696 to 7,711 ft. ... 37
Figure 34: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,711 to 7,724.6 ft. .. 38
Figure 35: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,724.6 to 7,739 ft. ... 39
Figure 36: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,739 to 7,754 ft. ... 40
Figure 37: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,754 to 7,769 ft. ... 41
Figure 38: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,769 to 7,783.4 ft. ... 42
Figure 39: Single image from a video file available on EDX showing variation in the Armstrong #1 core from 7,636 to 7,639 ft. Image above shows the variation in composition within the matrix perpendicular to the core length. Note the bright (high density) nodules in the matrix and the cross-cutting fractured zone. ... 43
Figure 40: Compiled core log for Armstrong #1, from 7,545 to 7,662.5 ft. ... 45
Figure 41: Compiled core log for Armstrong #1, from 7,662.5 to 7,783.4 ft. ... 46
Figure 42: Compiled core log with elemental ratios, and detailed core description for Armstrong #1, from 7,545 to 7,662.5 ft. ... 47
Figure 43: Compiled core log with elemental ratios, and detailed core description for Armstrong #1, from 7,662.5 to 7,783.4 ft. ... 48

List of Tables

Table 1: Core box distribution Armstrong #1 well as received ... 2
Table 2: Abbreviations used in the detailed lithology log in Figure 3 ... 4
Table 3: Magnetic susceptibility values for common minerals (Modified from Geotek Ltd. Multi-Sensor Core Logger Manual, Version 05-10, 2010) ... 22
Table 4: Core sections with different medical CT image resolution ... 25
Acronyms, Abbreviations, and Symbols

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>EDX</td>
<td>NETL's Energy Data eXchange</td>
</tr>
<tr>
<td>EIA</td>
<td>U.S. Energy Information Administration</td>
</tr>
<tr>
<td>MSCL</td>
<td>Multi-Sensor Core Logger</td>
</tr>
<tr>
<td>NETL</td>
<td>National Energy Technology Laboratory</td>
</tr>
<tr>
<td>WVGES</td>
<td>West Virginia Geological and Economic Survey</td>
</tr>
<tr>
<td>WVU</td>
<td>West Virginia University</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
</tr>
</tbody>
</table>
Acknowledgments

This work was completed at the National Energy Technology Laboratory (NETL) with support from U.S. Department of Energy’s (DOE) Office of Fossil Energy Oil & Gas Program. The authors wish to acknowledge Bryan Morreale and Alexandra Hakala (NETL Research & Innovation Center), Jared Ciferno, (NETL Technology Development and Integration Center), and Elena Melchert (DOE Office of Fossil Energy) for programmatic guidance, direction, and support.

The authors would like to thank Bryan Tennant, Scott Workman, and Roger Lapeer for data collection and technical support. Thank you to Petroleum Development Corporation for allowing us to work with this core. Thank you to Kelly Rose, Dustin McIntyre, and Mark McKoy for laboratory support. This research was supported in part by appointments from the NETL Research Participation Program, sponsored by the U.S. DOE and administered by the Oak Ridge Institute for Science and Education (ORISE).
ABSTRACT
The computed tomography (CT) facilities and the Multi-Sensor Core Logger (MSCL) at the National Energy Technology Laboratory (NETL) in Morgantown, West Virginia were used to characterize core from the Marcellus Formation. The core is from a vertical well (Armstrong #1) drilled in Taylor County, West Virginia by the Petroleum Development Corporation (7,545 to 7,783.4 ft). Core was provided by Phillip Dinterman, West Virginia Geologic and Economical Survey (WVGES) and Tim Carr and Keithan Martin, West Virginia University (WVU).

The primary impetus of this work is a collaboration between NETL, WVGES, and WVU to characterize core from multiple wells to better understand the structure and variation of the Marcellus and Utica Shale formations. As part of this effort, bulk scans of core were obtained from the Armstrong #1 well. This report, and the associated scans, provide detailed datasets not typically available from unconventional shales for analysis. The resultant datasets are presented in this report, and can be accessed from NETL's Energy Data eXchange (EDX) online system using the following link: https://edx.netl.doe.gov/dataset/armstrong-well.

All equipment and techniques used were non-destructive, enabling future examinations and analyses to be performed on these cores. None of the equipment used was suitable for direct visualization of the shale pore space, although fractures and discontinuities were detectable with the methods tested. Low resolution CT imagery with the NETL medical CT scanner was performed on the entire core. Qualitative analysis of the medical CT images, coupled with X-ray fluorescence (XRF), P-wave, and magnetic susceptibility measurements from the MSCL were useful in identifying zones of interest for more detailed analysis as well as fractured zones. The ability to quickly identify key areas for more detailed study with higher resolution will save time and resources in future studies. The combination of methods used provides a multi-scale analysis of the core; the resulting macro and micro descriptions are relevant to many subsurface energy related examinations traditionally performed at NETL.
1. INTRODUCTION

Evaluation of reservoir samples can support resource estimation and determination of effective extraction methodologies. While it is common for commercial entities to perform these characterizations, the resources necessary to conduct these analyses are not always available to the broader interest base, such as state agencies and research-based consortiums. To meet the growing need for comprehensive and high-quality lithologic data for collaborative research initiatives, the National Energy Technology Laboratory (NETL) has used available resources in conjunction with previous techniques and new, innovative methodologies to develop a systematic approach for the evaluation of cores. In this report, data collected from a Marcellus Shale production wildcat well in Taylor County, West Virginia are presented as one part of a broader collaborative effort by West Virginia Geologic and Economical Survey (WVGES), West Virginia University (WVU), and NETL to better characterize this important, spatially heterogeneous, formation.

In this study, the primary objective was to characterize core from depth with methods not available to most researchers. The data is presented in several formats here and online that are potentially useful for various analyses, however, little detailed analysis is presented in this report as the research objective was not to do a site characterization, but rather to develop the data for others to utilize and to create a digital representation of the core that could be preserved.

The core described here is from the wildcat Armstrong #1 well that was completed in 2009 (API No: 47-091-01116); the geographic coordinates for the well are: latitude 39.291926 N, longitude -80.08322 W (Figures 1 and 2). The well pad elevation was 1,331 ft. As shown in Figures 1 and 2, the Marcellus in this area is expected to be approximately 100 to 150 ft thick and appear at a depth of 6,000 and 7,000 ft below sea level.

As part of this collaboration to characterize core from multiple wells and better understand the structure and variation of the Marcellus and Utica shale formations, bulk scans of core were performed using fast scanning techniques to obtain base-line information on sample condition and characteristics. For similar measurements from nearby wells through the Marcellus Shale formation in Pennsylvania and Ohio, please see Crandall et al. (2018a,b).

<table>
<thead>
<tr>
<th>Table 1: Core box distribution Armstrong #1 well as received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Box</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Core 1</td>
</tr>
<tr>
<td>Core 2</td>
</tr>
<tr>
<td>Core 3</td>
</tr>
<tr>
<td>Core 4</td>
</tr>
</tbody>
</table>
Figure 1: Armstrong location map including depths to the Marcellus Formation boundary (ft below sea level) from the U.S. Energy Information Administration (EIA, 2018).

Figure 2: Armstrong location map including isopach contours of the Marcellus Shale (ft) from the U.S. Energy Information Administration (EIA, 2018).
2. **CORE DESCRIPTION**

The core lithology consists of medium dark-gray to dark-gray, clay-rich shale, which transitions into dark-gray to black, siliceous, organic-rich shale, becoming calcareous and fossil-rich at the base of the cored interval. Fine to medium silt-sized quartz and mica are present with minor calcite cement and some pyrite replacement. Concretions are present including: barite and siderite concretions within the Mahantango (7,545 to 7,675 ft) and calcite with minor pyrite replacement within the Marcellus (7,675 to 7,800.5 ft). The missing sections were sub-sampled at earlier times or consist of rubble zones. Table 2 lists the abbreviations used in the descriptions in the detailed lithology log presented in Figure 3.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bl</td>
<td>black</td>
</tr>
<tr>
<td>cal</td>
<td>calcareous</td>
</tr>
<tr>
<td>dbr-bl</td>
<td>dark brown to black</td>
</tr>
<tr>
<td>dg</td>
<td>dark gray</td>
</tr>
<tr>
<td>dg-bl</td>
<td>dark gray to black</td>
</tr>
<tr>
<td>fg</td>
<td>fine-grained</td>
</tr>
<tr>
<td>fz</td>
<td>fracture zone</td>
</tr>
<tr>
<td>fz dg-bl</td>
<td>fracture zone dark gray to black</td>
</tr>
<tr>
<td>fz mdg-dg</td>
<td>fracture zone medium dark gray to dark gray</td>
</tr>
<tr>
<td>ls</td>
<td>limestone</td>
</tr>
<tr>
<td>lg</td>
<td>light gray</td>
</tr>
<tr>
<td>mdg</td>
<td>medium dark gray</td>
</tr>
<tr>
<td>mdg-dg</td>
<td>medium dark gray to dark gray</td>
</tr>
<tr>
<td>pyr</td>
<td>pyrite</td>
</tr>
<tr>
<td>rz</td>
<td>rubble zone</td>
</tr>
<tr>
<td>rz mdg-dg</td>
<td>rubble zone medium dark gray to dark gray</td>
</tr>
<tr>
<td>sh</td>
<td>shale</td>
</tr>
<tr>
<td>vert</td>
<td>vertical</td>
</tr>
</tbody>
</table>
Computed Tomography Scanning and Geophysical Measurements of the Marcellus Formation from the Armstrong #1 Well

Figure 3: Detailed core description for Armstrong #1 from 7,545 to 7,783.4 ft.

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>7545</td>
<td>mdg to dg sh., fine-grained, planar laminae, clay-rich, very little to no pyr present</td>
</tr>
<tr>
<td>7560</td>
<td>mdg sh., fine-grained, planar laminae present, pyr present (cm- to sub-mm)</td>
</tr>
<tr>
<td>7565</td>
<td>dg sh., fine-grained, clay-rich with interbedded dg/bl 'organic-rich' sh</td>
</tr>
<tr>
<td>7570</td>
<td>ls., argillaceous, fossiliferous, heavily bioturbated, siderite present</td>
</tr>
<tr>
<td>7575</td>
<td>mdg sh., fine-grain, planar laminae present, pyr present (cm- to sub-mm)</td>
</tr>
<tr>
<td>7580</td>
<td>mdg to dg sh., laminated (pyr replaced), concretions throughout (barite and siderite present)</td>
</tr>
<tr>
<td>7590</td>
<td>ls., argillaceous, fossiliferous, heavily bioturbated, siderite present</td>
</tr>
<tr>
<td>7600</td>
<td>mdg to dg sh., laminated (pyr replaced), concretions throughout (barite and siderite present)</td>
</tr>
<tr>
<td>7610</td>
<td>mdg to dg sh., heavily bioturbated, siderite replaced graptolites present</td>
</tr>
<tr>
<td>7620</td>
<td>dg to bl sh., fractured (mineral filled)</td>
</tr>
<tr>
<td>7630</td>
<td>mdg to dg sh., minor laminations (pyr filled), vertical to sub-vertical mineralized fractures from 7669.0 to 7675.0</td>
</tr>
<tr>
<td>7640</td>
<td>rubble zone, increase in gas filled fractures</td>
</tr>
<tr>
<td>7650</td>
<td>mdg to dg ls., massive, mineral filled fractures present</td>
</tr>
<tr>
<td>7660</td>
<td>dg to black sh., massive with some minor laminations, siliceous, minor pyr present</td>
</tr>
<tr>
<td>7690</td>
<td>dg to black cal. sh., heavily bioturbated, fossiliferous</td>
</tr>
<tr>
<td>7710</td>
<td>dg to bl. sh., siliceous, minor bioturbation at top of interval (7709.25 to 7713), minor lamination (pyr banding), pyr present</td>
</tr>
<tr>
<td>7725</td>
<td>mdg to dg ls., massive</td>
</tr>
<tr>
<td>7740</td>
<td>dg to bl. sh., siliceous, generally massive with minor laminations, increase in bioturbation at base of interval (2-3 in beds of calcareous sh)</td>
</tr>
<tr>
<td>7750</td>
<td>mdg to dg calcareous sh., bioturbation and some cross-bedding</td>
</tr>
<tr>
<td>7760</td>
<td>mdg to dg sh., planar laminated with interbedded lg cal. intervals, pyr nodules present, fractures throughout zone</td>
</tr>
<tr>
<td>7770</td>
<td>mdg to dg ls., massive</td>
</tr>
<tr>
<td>7785</td>
<td>dg to bl. sh., planar laminations of cal. sh. present, m. pyr. vert. fractures (mineralized at top of zone ~7766)</td>
</tr>
<tr>
<td></td>
<td>transition to Onondaga Fm., ls. to cal. sh. with interbedded dg to bl siliceous sh., ash layers present (7768.45,7768.9, 7771, 7774.78, 7776.25, 7780.5)</td>
</tr>
</tbody>
</table>

Armstrong #1
API: 47-001-01116
PDC Energy
Lat: 38.291926 N
Long: -80.08322 W
Taylor County, WV

Measurements performed at the US Department of Energy
National Energy Technology Laboratory
Morgantown, WV
2018

Analysis By: Dustin Crandall, Johnathan Moore, Sarah Brown, Thomas Paronish, and Paige Mackey
Data Collection: Scott Workman
Project Oversight: Dustin McIntyre and Tim Carr
2.1 CORE PHOTOGRAPHS

Photographs of the 2/3 slabbed core.

Figure 4: Armstrong #1 core photographs, from 7,545 to 7,562.75 ft.
Figure 5: Armstrong #1 core photographs, from 7,562.75 to 7,580 ft.
Figure 6: Armstrong #1 core photographs, from 7,580 to 7,598 ft.
Figure 7: Armstrong #1 core photographs, from 7,598 to 7,612 ft.
Figure 8: Armstrong #1 core photographs, from 7,612 to 7,630 ft.
Figure 9: Armstrong #1 core photographs, from 7,630 to 7,648 ft.
Figure 10: Armstrong #1 core photographs, from 7,648 to 7,666 ft.
Figure 11: Armstrong #1 core photographs, from 7,666.3 to 7,684 ft.
Figure 12: Armstrong #1 core photographs, from 7,684 to 7,702 ft.
Figure 13: Armstrong #1 core photographs, from 7,702 to 7,720 ft.
Figure 14: Armstrong #1 core photographs, from 7,720 to 7,732.9 ft.
Figure 15: Armstrong #1 core photographs, from 7,732.9 to 7,751 ft.
Figure 16: Armstrong #1 core photographs, from 7,751 to 7,769 ft.
Figure 17: Armstrong #1 core photographs, from 7,769 to 7,783.4 ft.
Mineralized en echelon fractures (Figure 18) indicate the presence of shear stress and can be used to gain insight into local variations on the regional stress field or deformation history. Changes in fracture structure could be caused by changes in mineral composition of the surrounding matrix, that has been shown to contribute to the brittleness of shales (Jarvie et al., 2007; Wang and Gale, 2009). The effectiveness of hydraulic stimulations are controlled, in part, by the brittleness of shale.
3. **DATA ACQUISITION AND METHODOLOGY**

The 2/3 slabbed core was evaluated using computed tomography (CT) scanning and traditional core logging.

3.1 **CORE LOGGING**

Geophysical measurements of core thickness deviation, P-wave travel time, magnetic susceptibility, and attenuated gamma counts can be obtained with a Geotek® Multi-Sensor Core Logging (MSCL, Figure 19) system on a competent section of core. For the 2/3 slabbed core that was scanned as part of this analysis the P-wave velocity were measured and reported. Additionally, the system was used to measure bulk elemental chemistry with a built-in, portable X-ray fluorescence (XRF) spectrometer. For a full description of the MSCL capabilities at NETL, please see Crandall et al. (2017).

![Figure 19: Representation of generalized MSCL with all attached instruments. From Geotek Ltd., Geotek Multi-Sensor Core Logger Flyer, Daventry, UK (2009).](image)

3.1.1 **Magnetic Susceptibility**

Magnetic susceptibility is a measure of the degree of magnetization in a sample. The sample is passed through a ring apparatus with an oscillating magnetic field, where the interference to this field is proportional to the magnetism of the sample, and thus a relative measurement can be taken. The measurement unit used is dimensionless (abbreviated simply as SI units) and is based on the original calibration, which is done via stable iron oxides, and reference minerals which have known ranges of susceptibility (Table 3) (Geotek Ltd. Multi-Sensor Core Logger Manual, Version 05-10).
3.1.2 P-wave Velocity

P-wave velocity measurements are performed to measure the acoustic impedance of a geologic sample with compressional waves. Acoustic impedance is a measure of how well a material transmits vibrations, which is directly proportional to density and/or material consolidation. An example of a material that has a high acoustic impedance would be air, with a wave speed of 330 m/s, whereas granite would have low acoustic impedance, with a wave speed of >5,000 m/s. These measurements can be proxies for seismic reflection coefficients and can be translated to field use when during seismic surveys.

The software associated with the MSCL measures the travel time of the pulse with a resolution of 50 ns. The absolute accuracy of the instrument measurements is ± 3 m/s with a resolution of 1.5 m/s (Geotek Ltd. Multi-Sensor Core Logger Manual, Version 05-10; Geotek Ltd., 2010).

3.1.3 X-ray Fluorescence Spectrometry

In addition to the geophysical measurements a portable handheld Delta Standard Innov-X® X-Ray Fluorescence Spectrometer was used to measure relative elemental abundances of aggregated “light elements” up to and including sodium, and also various heavy elements which were measured individually (Figure 20). Elemental abundances are reported relative to the total elemental composition, i.e. out of 100% weight.

Table 3: Magnetic susceptibility values for common minerals (Modified from Geotek Ltd. Multi-Sensor Core Logger Manual, Version 05-10, 2010)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>X (×10⁻⁶) SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>9</td>
</tr>
<tr>
<td>Calcite</td>
<td>-7.5 to -39</td>
</tr>
<tr>
<td>Halite, Gypsum</td>
<td>-10 to -60</td>
</tr>
<tr>
<td>Illite, Montmorillonite</td>
<td>330 to 410</td>
</tr>
<tr>
<td>Pyrite</td>
<td>5 to 3,500</td>
</tr>
<tr>
<td>Haematite</td>
<td>500 to 40,000</td>
</tr>
<tr>
<td>Magnetite</td>
<td>1,000,000 to 5,700,000</td>
</tr>
</tbody>
</table>
The XRF spectrometer measures elemental abundances by subjecting the sample to X-ray photons. The high energy of the photons displaces inner orbital electrons in the respective elements. The vacancies in the lower orbitals cause outer orbital electrons to “fall” into lower orbits to satisfy the disturbed electron configuration. The substitution into lower orbitals causes a release of a secondary X-ray photon, which has an energy associated with a specific element. These relative and element specific energy emissions can then be used to determine bulk elemental composition.

3.2 MEDICAL CT SCANNING

Core scale CT scanning was done with a Toshiba® Aquilion TSX-101A/R medical scanner (medical CT) as shown in Figure 21. The medical CT scanner generates images with a resolution in the millimeter range, with scans having voxel resolutions of 0.43 x 0.43 mm in the XY plane and 0.50 mm along the core axis. The scans were conducted at a voltage of 135 kV and at 200 mA. Subsequent processing and combining of stacks was performed to create three-dimensional (3D) volumetric representations of the cores and a two-dimensional (2D) cross-section through the middle of the core samples using ImageJ (Rasband, 2018). The variation in grayscale values observed in the images indicates changes in the CT number obtained from the scans, which is directly proportional to changes in the attenuation and density of the scanned rock; i.e. darker regions are less dense. As can be seen in Figures 22–38, filled fractures, open fractures, and changes in bedding structure can be resolved via careful examination of the CT images. While the medical CT scanner was not used for detailed characterization in this study, it allowed for non-destructive bulk characterization of the core, and thus complimented the MSCL data on the resultant logs.
3.3 DATA COMPILATION

Strater® by Golden Software® was used to compile the MSCL and medical CT data into a series of geophysical logs. The data used to generate these logs can be accessed from NETL's EDX online system using the following link: https://edx.netl.doe.gov/dataset/armstrong-well.
4. RESULTS

Processed 2D slices of the medical CT scans through the cores are shown first, followed by the XRF and magnetic susceptibility measurements of the core from the MSCL.

4.1 MEDICAL CT SCANS

The majority of the core from the Armstrong #1 well was scanned with a Toshiba Aquilion TSX-101A/R medical CT scanner at a sub-millimeter core-scale resolution (430 µm by 430 µm by 500 µm). Five sub-sections were scanned at different resolutions in the X-Y plane ranging from 311 µm to 463 µm listed in Table 4 and a slice depth of 500 µm; these have been scaled in the following images to be the same resolution as the other scans.

<table>
<thead>
<tr>
<th>Core Depth</th>
<th>X-Y Plane Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,545 to 7,548 ft</td>
<td>445 µm by 445 µm</td>
</tr>
<tr>
<td>7,548 to 7,551 ft</td>
<td>311 µm by 311 µm</td>
</tr>
<tr>
<td>7,556.8 to 7,559.75 ft</td>
<td>353 µm by 353 µm</td>
</tr>
<tr>
<td>7,565.75 to 7,568 ft</td>
<td>463 µm by 463 µm</td>
</tr>
<tr>
<td>7,605.5 to 7,606 ft</td>
<td>316 µm by 316 µm</td>
</tr>
</tbody>
</table>

Core was scanned in 3 ft or smaller sections obtained from each core box. In highly-fractured regions, the true length of these sections were frequently excess of 3 ft and detailed information in log books and photographs of cores were used to merge multiple scans of cores when this occurred. In the following images, the overall depth for each scanned sub-section of core is listed and many interesting features are apparent, including pyrite nodules, defined fracture planes and fine-scale layering.
4.2 ARMSTRONG #1

Figure 22: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,545 to 7,553.8 ft.

7,545–7,548 ft 7,548–7,551 ft 7,551–7,553.8 ft
Figure 23: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,553.85 to 7,562.75 ft.
Figure 24: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,562.75 to 7,577 ft.
Figure 25: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,577 to 7,592 ft.
Figure 26: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,592 to 7,606 ft.
Figure 27: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,606 to 7,621 ft.
Figure 28: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,621 to 7,636 ft.
Figure 29: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,636 to 7,651 ft.
Figure 30: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,651 to 7,666 ft.
Figure 31: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,666.3 to 7,681 ft.
Figure 32: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,681 to 7,696 ft.
Figure 33: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,696 to 7,711 ft.
Figure 34: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,711 to 7,724.6 ft.
Figure 35: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,724.6 to 7,739 ft.
Figure 36: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,739 to 7,754 ft.
Figure 37: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,754 to 7,769 ft.
Figure 38: 2D isolated planes through the vertical center of the medical CT scans of the Armstrong #1 core from 7,769 to 7,783.4 ft.
4.3 ADDITIONAL CT DATA

Additional CT data can be accessed from NETL's EDX online system using the following link: https://edx.netl.doe.gov/dataset/armstrong-well. The original CT data is available as 16-bit tif stacks suitable for reading with ImageJ (Rasband, 2018) or other image analysis software. In addition, videos showing the variation along the length of the cross-section images shown in the previous section are available for download and viewing. A single image from these videos is shown in Figure 39, where the distribution of high-density minerals in a cross section of the core around a depth of 7,637.5 ft is shown. The red line through the on the XZ-plane image of the core shows the location of the XY-plane displayed above. The videos on EDX show this XY variation along the entire length of the core.

![Figure 39: Single image from a video file available on EDX showing variation in the Armstrong #1 core from 7,636 to 7,639 ft. Image above shows the variation in composition within the matrix perpendicular to the core length. Note the bright (high density) nodules in the matrix and the cross-cutting fractured zone.](image)

4.4 COMPILED CORE LOG

The compiled core logs were scaled to fit on single pages for rapid review of the combined data from the medical CT scans and MSCL readings. Two sets of logs are presented for the core; the first set with data from the CT scans and XRF, and the second set with calculated ratios from the XRF scans, P-wave data, and notable features. Features that can be derived from these combined analyses include determination of mineral locations, such as pyrite, from magnetic susceptibility and using the XRF to inform geochemical composition and mineral form.

Data from the MSCL that was obtained with P-wave velocity less than 330 m/s has been removed from these logs. This low P-wave velocity is less than the anticipated velocity through air, indicating a highly fractured zone and unreliable readings. The location of these fractured zones was confirmed through visual examination and with the medical CT scanned images.

The elemental results from the XRF were limited to Ca, Si and the remaining top nine elements (Fe, Ti, S, Al, V, K, Zn, Cd, and Mn). Of the remaining top nine elements, Fe was the most abundant with a maximum occurrence of 150,289 ppm at one location in the core, and Cd was the least abundant element with a maximum occurrence of 534 ppm at one location in the core.
All other elements measured, but not listed, were observed to have maximum occurrences of less than 6,700 ppm.

Trends in elemental ratios can provide insight into mineral composition, oxidation state, and depositional setting. Examples include: Ca/Si, which provides information on relative abundance of calcium carbonates versus silicates; Ca/Al, which gives approximate amounts of calcium carbonate versus clays and feldspars; Si/Al, which provides information on the abundance of illite and micas versus other clays, and Fe/S, which provides information on the abundance of pyrite versus Fe oxide minerals. Magnetic susceptibility can test for iron sulfides (reducing) or oxidized Fe and sulfate. Pyrite (reduced) should have low magnetic susceptibility, Fe oxide or hydroxide should have high magnetic susceptibility. Natural gamma is a proxy for organic carbon as well. These broad trends can quickly give information on large suites of core and direct more focused research. These logs are presented in Figures 40–43.
Figure 40: Compiled core log for Armstrong #1, from 7,545 to 7,662 ft.
Figure 41: Compiled core log for Armstrong #1, from 7,662.5 to 7,783.4 ft.
Figure 42: Compiled core log with elemental ratios, and detailed core description for Armstrong #1, from 7,545 to 7,662.5 ft.

Armstrong #1
API: 47-091-01116
PDC Energy
Lat: 39.291926 N
Long: -80.08322 W
Taylor County, WV

Measurements performed at the US Department of Energy National Energy Technology Laboratory, Morgantown, WV 2018

Analysis By: Dustin Crandall, Johnathan Moore, Sarah Brown, Thomas Paronis, and Paige Mackey
Data Collection: Scott Workman
Project Oversight: Dustin McIntyre and Tim Carr

Equipment:
- Mag. Sus.
- GeoTek Multi-Sensor Core Logger
- XRF
- - Innov-X Delta handheld XRF analyzer
- Toshiba Aquilion
Figure 43: Compiled core log with elemental ratios, and detailed core description for Armstrong #1, from 7,662.5 to 7,783.4 ft.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Magnetic Susceptibility (SI * 10^5)</th>
<th>Gamma Density (gm/cc)</th>
<th>P-Wave (m/s)</th>
<th>Ca/Si</th>
<th>Ca/Al</th>
<th>Si/Al</th>
<th>Fe/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>7660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7770</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7790</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Armstrong #1
API: 47-091-01116
PDC Energy
Lat: 39.291926 N
Long: -80.08322 W
Taylor County, WV

Measurements performed at the US Department of Energy National Energy Technology Laboratory, Morgantown, WV 2018

Analysis By: Dustin Crandall, Johnathan Moore, Sarah Brown, Thomas Paronish, and Paige Mackey
Data Collection: Scott Workman
Project Oversight: Dustin McIntyre and Tim Carr

Equipment:
- Mag. Sus
- GeoTek Multi-Sensor Core Logger
- ICP-OES Delta handheld XRF analyzer
- Computed Tomography Images
- Toshiba Aquilion
5. DISCUSSION

The measurements of the magnetic susceptibility, P-wave velocity, XRF, and CT analysis provide a unique look into the internal structure of the core and macroscopic changes in lithology. These techniques:

- Are non-destructive
- When performed in parallel, give insight into the core beyond what one individual technique can provide
- Can be used to identify zones of interest for detailed analysis, experimentation, and quantification
- Provide a detailed digital record of the core, before any destructive testing or further degradation, that is accessible and can be referenced for future studies.
This page intentionally left blank.
6. REFERENCES

Geotek Ltd. Multi-Sensor Core Logger Manual; Version 05-10; Published by Geotek, 3 Faraday Close, Daventry, Northamptonshire NN11 8RD, 2010. info@geotek.co.uk, www.geotek.co.uk

This page intentionally left blank.