Key Factors for Assessing Potential Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

28 January 2016
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report (LLNL-TR-648252, LA-UR-14-20115, PNNL-23073) has been reviewed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Pacific Northwest National Laboratory, and the National Energy Technology Laboratory and approved for public release.

Cover Illustration: Schematic showing the links between reservoir, well leakage, and aquifer models using the High Plains Aquifer case study as an example.

An electronic version of this report can be found at:
http://www.netl.doe.gov/research/on-site-research/publications/featured-technical-reports
https://edx.netl.doe.gov/nrap
Key Factors for Determining Risk of Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

Susan A. Carroll¹, Elizabeth Keating², Kayyum Mansoor¹, Zhenxue Dai², Yunwei Sun¹, Whitney Trainor-Guitton¹, Chris Brown³, Diana Bacon³

¹Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550
²Los Alamos National Laboratory, Bikini Atoll Road, SM 30, Los Alamos, NM 87545
³Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354

NRAP-TRS-I-003-2016

Level I Technical Report Series

28 January 2016
Table of Contents

EXECUTIVE SUMMARY ...1

1. INTRODUCTION ...3

2. METHODS ..6
 2.1 STORAGE RESERVOIR ..6
 2.2 WELLBORE LEAKAGE ...7
 2.3 MULTI-PHASE REACTIVE TRANSPORT OF CO₂ AND BRINE IN AQUIFERS9
 2.4 IMPACT THRESHOLDS ...14

3. CHANGES TO GROUNDWATER QUALITY ...16

4. DETECTION OF GROUNDWATER PLUMES ..25

5. IMPLICATIONS FOR MONITORING ..27

6. REFERENCES ..29
This page intentionally left blank.
List of Figures

Figure 1: Locations of sand/carbonate (a, violet) and sand/gravel (b, cyan and yellow) shallow drinking waters mapped by the U.S. Geological Survey..4

Figure 2: Schematic showing the links between reservoir, well leakage, and aquifer models using the High Plains Aquifer case study. Links between reservoir, well leakage, and the Edwards Aquifer case study are identical..........................8

Figure 3: Example CO₂ and brine leakage rates as functions of time...9

Figure 4: Location of unconfined portion of the Edwards Aquifer in south-central Texas........11

Figure 5: Location of alluvial High Plains Aquifer in Kansas..13

Figure 6: Color contour plots of pH and TDS at 200 years in plan view (XY) and cross section (XZ) (a,b,d,e) and the no-impact thresholds projected against shallow well locations (black dots) for a single simulation of the Edwards Aquifer (c,f). Groundwater flow is in the Y direction (North to South)...17

Figure 7: Color contour plots of pH and TDS at 200 years in plan view (XY) and cross section (XZ) (a,b,d,e) and the no-impact thresholds projected against shallow wellbore locations (black dots) for a single simulation of the High Plains Aquifer (c,f). Groundwater flow is in the X direction (East)...18

Figure 8: Correlation of CO₂ leakage rate in and out of the water table for the Edwards Aquifer..18

Figure 9: Unconfined carbonate (Edwards) aquifer: Comparison of plume volumes after 200 years of wellbore leakage for the MCL and no-impact thresholds for (a) As, (b) Cd, (c) Pb, (d) pH, and (e) TDS, based on 500 simulations............................19

Figure 10: Confined alluvium (High Plains) aquifer: Comparison of plume volumes after 200 years of wellbore leakage for the MCL and no-impact thresholds for (a) As, (b) Cd, (c) Pb, (d) pH, and (e) TDS..20

Figure 11: Comparison of the probability of occurrence of emulated plumes for the leakage scenarios investigated for the High Plains alluvium and Edwards carbonate aquifers that exceed the no-impact (a) and MCL (b) thresholds for pH, TDS, As, Cd, and Pb for volumes greater than 105 m³ against the likelihood ranges for expressing the probability of occurrence...22

Figure 12: pH (a, b) and TDS (c, d) no-impact plume volumes plotted versus cumulative mass of CO₂ and brine leaked into the unconfined carbonate aquifer (a, c) and the confined alluvium aquifer (b, d), where red and blue symbols indicated plume volumes 40 and 200 years after CO₂ injection has started..24

Figure 13: Plot of ER sensitivity index versus the plume length. Vertical lines represent the 50th and 95th percentile of the ER sensitivity index for simulations with non-plumes. ER will identify with high likelihood plumes that are ≥1,000 m in length (all samples to the right of the cyan vertical line). The samples between these two lines represent the most ambiguity in the ER signal...26
List of Tables

Table 1: Reference parameter values: horizontal permeability k_h, (±10) anisotropy ratio k_v/k_h, porosity Φ (±30%), pore compressibility β_p (±5), van Genuchten α (±5) and m (±30%) ...7

Table 2: Variable parameters and ranges sampled in the High Plains and Edwards studies...........9

Table 3: Uncertain parameters and their ranges for unconfined carbonate aquifer simulation ..12

Table 4: Uncertain parameters and their ranges for alluvium aquifer simulation.14

Table 5: Initial aquifer concentrations used in the simulations, no-impact and MCL (EPA, 2009) thresholds reported in Last et al. (2013) ...15

Table 6: Percent probability that any of the shallow aquifer wells will contain groundwater above the no-impact thresholds over the 200-year period. Actual shallow well locations are specific to the Edwards and High Plains areas shown in Figure 5 and 6. Deep well locations are the same for both systems. ..25
Acronyms, Abbreviations, and Symbols

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AoR</td>
<td>Area of review</td>
</tr>
<tr>
<td>ER</td>
<td>Electrical resistance</td>
</tr>
<tr>
<td>IAM</td>
<td>Integrated assessment models</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum contaminant level</td>
</tr>
<tr>
<td>NRAP</td>
<td>National Risk Assessment Partnership</td>
</tr>
<tr>
<td>PISC</td>
<td>Post injection site care</td>
</tr>
<tr>
<td>ROM</td>
<td>Reduced-order models</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>USDW</td>
<td>Underground sources of drinking water</td>
</tr>
<tr>
<td>WWC5</td>
<td>Kansas Geological Survey’s Water Well Completion Record</td>
</tr>
</tbody>
</table>
Acknowledgments

This work was completed as part of the National Risk Assessment Partnership (NRAP) project. Support for this project came from the U.S. Department of Energy’s (DOE) Office of Fossil Energy’s Crosscutting Research program. The authors wish to acknowledge Traci Rodosta (Carbon Storage Technology Manager), Kanwal Majajan (Carbon Storage Division Director), M. Kylee Rice (Project Manager), Mark Ackiewicz (Division of CCS Research - Program Manager), Susan Maley and Steve Seachman (NETL Strategic Center for Coal), and Regis Conrad (DOE Office of Fossil Energy) for programmatic guidance, direction, and support.

The authors are grateful for the technical reviews provided by Kirk Cantrell (PNNL) and also acknowledge Lawrence Livermore National Laboratories high performance computing facility that enabled physics-based simulations of the High Plains Aquifer.
EXECUTIVE SUMMARY

The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from carbon dioxide (CO₂) injection should leakage from a deep storage reservoir occur (www.netldeoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models, referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine and/or CO₂ from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. This approach was used to develop predictive ROM for two common types of aquifers, but the approach could be used to develop a model for a specific aquifer and/or other common types of aquifers.

This report describes potential impacts to groundwater quality due to CO₂ and brine leakage, discusses an approach to calculate thresholds above which quantitative groundwater impacts can be measured, describes the time scale for impact on groundwater, and discusses the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and emulations were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. Two aquifer types are targeted, an unconfined fractured carbonate aquifer based on a portion of the Edwards Aquifer in Texas and a confined alluvium aquifer based on a portion of the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The intent was to allow leakage in order to understand how the aquifers would respond should a failure occur, recognizing that these assumptions would not be expected for sites using best practices and operated under current Class VI regulations. The hypothetical leakage scenarios centered on the notion that wellbores are potential conduits for brine and CO₂ leaks. Leakage uncertainty was based on hypothetical injection of CO₂ for 50 years at a rate of 5 million tons per year into a depleted oil/gas reservoir with high permeability and, one or more wells provided leakage pathways from the storage reservoir to the overlying aquifer. This scenario corresponds to a storage site with historical oil/gas production and some poorly completed legacy wells that went undetected through site evaluation, operations, and post-closure.

For the aquifer systems and leakage scenarios studied here, CO₂ and brine leakage are likely to drive pH below and increase total dissolved solids (TDS) above the quantitative impact thresholds; and the subsequent plumes, although small, are likely to persist as long as the leak is active. In these scenarios, however, risk to human health may not be significant for two reasons. First, the simulated plume volumes are much smaller than the average inter-well spacing for these representative aquifers, so it is unlikely that the impacted groundwater would be pumped for drinking water. Second, even within the impacted plume volumes, only a small volume of water exceeds the primary maximum contamination levels. These observations point to:

- The potential utility of the NRAP toolset to evaluate the risk of leakage and inform monitoring and corrective action plans of a potential site for long-term CO₂ storage by capturing storage reservoir, leakage pathway, and aquifer heterogeneity.
- The importance of establishing baseline groundwater chemistry that captures the pre-injection variability of underground sources of drinking water (USDW) above the reservoir because the EPA has adopted a “no net degradation” policy towards the protection of groundwater resources.

- The importance of sufficient characterization of aquifer heterogeneity to capture the development of vertical pH plumes for unconfined aquifers and lateral pH plumes largely relegated to the lower permeable units for confined aquifers.

- The need to test and develop spatially diverse monitoring techniques capable of detecting leakage early and add confidence to assessments used to evaluate the length of the post-injection site care (PISC) period. In this study, the probability of detecting plumes using existing wells to sample the groundwater chemistry was very low, because the plumes were relatively small in both aquifers, also implies that the probability of contaminating well water is very low.

- The need to develop methodologies that prevent and/or directly detect and mitigate leakage prior to reaching USDWs, because the simulations predict that the volume of impacted groundwater is tied to the amount of CO₂ and brine leaked into an aquifer.
1. INTRODUCTION

Deep underground storage of carbon dioxide (CO₂) from stationary sources, such as power plants and industrial processes, is a promising strategy to limit the amount of CO₂ emitted into the atmosphere and to mitigate the effects of global climate change (IPCC, 2005; NETL, 2012). Long-term storage of CO₂ in deep underground reservoirs requires careful assessment of the reservoir integrity, well and fault susceptibility for potential leakage pathways, and consideration of the impact of leaks into the atmosphere or on shallow groundwater sources (Bachu, 2008; Herzog et al., 2003).

Potential impacts to groundwater quality are a focus for both state and federal regulatory agencies, because leakage of brine and/or CO₂ into groundwater resources and subsequent geochemical transformations may impact water quality. In the United States, the Class VI Rule sets minimum federal technical criteria that injection of supercritical CO₂ in geologic reservoirs are protective of underground sources of drinking water (USDW) that have less than 10,000 mg/l dissolved solids. The Class VI Rule and related documents are available at http://water.epa.gov/type/groundwater/uic/wells_sequestration.cfm.

The Class VI injection well permitting process requires baseline geochemical information on subsurface formations in the area of review (AoR) and the assessment of risk to water quality for all USDWs within the AoR prior to injection. Additionally, testing and monitoring for signs of leakage is required during the injection and post-injection phases above the confining zone and within overlying USDWs. The default period for post-injection site care (PISC) is currently set for 50 years, during which time operators are required to use periodic indirect (geophysical) and direct (well water) data to assess if USDWs have been or are likely to be compromised. Current guidelines on the duration of the PISC period are flexible and may be reduced if the operators can illustrate that CO₂ and brine are contained and USDWs are protected.

The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO₂ injection (www.netldeoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models, referred to here as reduced-order models (ROMs), for each component of the system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine and/or CO₂ from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. This approach was used to develop predictive ROMs for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer and/or other common types of aquifers.

The results presented in this report partially summarize NRAP’s effort on assessing groundwater impacts (Carroll et al., 2014).

The objectives of this report are to:

- Present summary findings that describe potential impacts to groundwater quality due to CO₂ and brine leakage
- Discuss an approach to calculate thresholds under which “no impact” to groundwater occurs
Key Factors for Assessing Potential of Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

- Describe the time scale for impact on groundwater
- Discuss the probability of detecting a groundwater plume should leakage occur

To facilitate this, the impact of CO₂ and brine leakage on groundwater quality within two distinct classes of shallow aquifer systems was compared given the same CO₂ storage reservoir and leakage pathways. This study focused on shallow USDWs because they are resources that are currently in use. Two classes of aquifer were targeted that share characteristics typical of many drinking water aquifers in the U.S.: an unconfined fractured carbonate aquifer and a confined alluvium aquifer (Figure 1).

Figure 1: Locations of sand/carbonate (a, violet) and sand/gravel (b, cyan and yellow) shallow drinking waters mapped by the U.S. Geological Survey. (http://water.usgs.gov/ogw/aquiferbasics/).
Multi-phase flow and reactive transport simulations and emulations were developed for these two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. The uncertain source term variables considered were: location and number of leaky wells, time-dependent brine/CO₂ leakage rates at each well, and total dissolved solids (TDS) and trace metal concentrations of the leaking brine. Two well-studied aquifers, the Edwards Aquifer in Texas and the High Plains Aquifer in Kansas, were used to represent hydrogeologic characteristics of carbonate and alluvium aquifers, respectively. Uncertainty in hydrogeologic properties was considered, as well.

Each simulation provided a spatially explicit, temporal evolution of a shallow groundwater plume. Due to dissolution of CO₂ in groundwater and advective transport of brine, the plumes are lower in pH, and higher in TDS and trace metal concentrations relative to background conditions. Changes in trace metal concentration due to reactions, such as decreases due to adsorption or increases due to pH-related desorption or dissolution were ignored for the purpose of simplification. Two types of metrics were considered: the volume of the plume as defined by concentrations that exceed 1) drinking water standards or 2) “background” thresholds. The latter metric requires statistical analysis of ample background water chemistry sampling at the site.

Hypothetical leakage scenarios were created that centered on the premise that abandoned wellbores are the most likely conduits for brine and CO₂ leakage. Leakage uncertainty was based on hypothetical injection of CO₂ for 50 years at a rate of 5 million tons per year into a depleted oil/gas reservoir with high permeability, and one or more wells provided leakage pathways from the storage reservoir to the overlying aquifer. The simulations capture variability within the storage reservoir, leakage pathway, and aquifer heterogeneity.
2. METHODS

Ultimately, the NRAP toolset will allow a complete stochastic assessment of carbon storage sites using integrated assessment models (IAMS) that couple individual sub-models for potential storage reservoirs, leakage pathways (such as wellbores or fractures), and groundwater aquifers. Each of the underpinning stochastic models can be used separately to gain insights into the behavior of specific components in the storage-site system. Although the IAMS are still under development, it is anticipated that a user will be able to develop and substitute site-specific sub-models as desired to assess various components of the storage-site system to plan the injection and post-injection site care activities. The current work focuses on the behavior of USDW aquifers, using leakage-scenario inputs developed separately from specific reservoir and wellbore sub-models.

This analysis uses the results of between 500 and 700 high-fidelity reactive-transport simulations of the physical and chemical processes that are likely to change groundwater quality if CO2 and/or brine were to leak from storage reservoirs to USDW aquifers, as well as statistical approximations generated by ROMs trained by detailed simulations. The simulated concentrations were used to quantify the size and location of the plumes relative to leakage sources (deep wellbores) and shallow groundwater receptors (drinking, agricultural, and industrial wells) to base discussions on monitoring and corrective action plans that are needed for the permitting of Class VI injection wells. The ROMs are needed to capture variability within the storage, leakage, and USDW aquifer systems through more thorough sampling of the parameter space and significantly faster simulation times to calculate the probability of a change in groundwater chemistry. An uncertainty quantification code called PSUADE (Tong, 2005, 2010) was used to establish sampling points for the reactive-transport simulations, to conduct parameter sensitivity analysis, and to train ROMs (see Carroll et al., 2014 for additional detail).

2.1 STORAGE RESERVOIR

The reservoir ROM is a look up table for the spatial and temporal distribution of CO2 saturation and pressure as function of variable permeability, porosity, pore compressibility, and van Genuchten and m for geologic layers in the storage and caprock formations (Table 1). It was derived from 200 simulations of CO2 injection using a geologic model developed for a potential industrial-scale storage project in the Southern San Joaquin Basin near Kimberlina, California (Zhou and Birkholzer, 2011; Wainwright et al., 2012). The geological structure and hydrogeological parameters of various subsurface layers were determined from field data. The storage formation, based on field data from the Vedder sandstone, was divided into six sand and shale layers. The parallel version of TOUGH2 (Zhang et al., 2008) was used to simulate CO2/brine migration and pressure buildup within the CO2 storage formation and overlying/underlying formations. The simulation time includes an injection period of 50 years with an injection rate of 5 Mt per year, and a post-injection period of 150 years.
Table 1: Reference parameter values: horizontal permeability k_h, (±10) anisotropy ratio k_v/k_h, porosity Φ (±30%), pore compressibility β_p (±5), van Genuchten α (±5) and m (±30%)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Caprock</th>
<th>Vedder Sand</th>
<th>Vedder Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_h, mD</td>
<td>0.002</td>
<td>Depth dependent</td>
<td>0.1</td>
</tr>
<tr>
<td>K_v/k_h</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Φ</td>
<td>0.338</td>
<td>Depth dependent</td>
<td>0.32</td>
</tr>
<tr>
<td>$\beta_p, 10^{10} \text{Pa}^{-1}$</td>
<td>14.5</td>
<td>4.9</td>
<td>14.5</td>
</tr>
<tr>
<td>$\alpha, 10^5 \text{Pa}^{-1}$</td>
<td>0.42</td>
<td>13</td>
<td>.42</td>
</tr>
<tr>
<td>m</td>
<td>0.457</td>
<td>0.457</td>
<td>0.457</td>
</tr>
</tbody>
</table>

2.2 WELLBORE LEAKAGE

In all the scenarios considered in this study, abandoned legacy wells were presumed to be possible pathways for leakage. This scenario would be consistent with a storage site with legacy wells from previous oil and gas operations that were not identified or remediated during site characterization or through monitoring at the site. The intent was to allow leakage in order to understand how the aquifers would respond should a failure occur, recognizing that these assumptions would not be expected for sites using best practices and operated under current Class VI regulations. “Plausible” leakage scenarios were selected under these conditions, such that the volumes of leaked brines and CO$_2$ were physically realistic.

Leaky wells were assumed to fully penetrate the caprock and connect the storage reservoir and the shallow aquifer. To generate a range of plausible wellbore leakage scenarios, simplified ROMs for the sequestration reservoir and leaky wellbore were linked. The predicted leak rates were then applied as a CO$_2$/brine source at the base of the aquifer, as shown in Figure 2. The wellbore leakage ROM considered uncertainty in wellbore permeability and depth (Jordan et al., 2013). This ROM used input from the storage reservoir ROM to link reservoir pressure and CO$_2$/brine saturation to the leakage rates. In all cases, CO$_2$ injection was assumed to cease after the first 50 years. However, once a wellbore began to leak, it was assumed to leak indefinitely. This assumption neglects potential natural processes such as self-sealing due to calcite precipitation or feedbacks between CO$_2$ leak and saturation/pressure in the reservoir, and possible active mitigation strategies such as reservoir pressure management or wellbore sealing. The response of the aquifer to leakage cessation will be the subject of future work.
Assumptions about the location and number of leaky wells differed between the two simulation studies, but both studies considered a similar range of leakage rates and brine chemistry assuming wellbore permeability between 10^{-14} to 10^{-10} m2 (Table 2). Typical CO$_2$ leakage rates were between 0.1 and 1 g s$^{-1}$ and cumulatively, represent less than 0.4% of the total mass of CO$_2$ injected in the reservoir. The rates are similar to those measured at Mammoth Mountain and Crystal Geyser (Lewicki et al., 2007; Wilson et al., 2007). A typical time-varying leakage scenario is shown in Figure 3.

For the High Plains Aquifer study, the location of possible leaky wells was pre-determined using a database of 165 well locations. For each realization, between 1 and 5 leaky well location were selected randomly from those 48 wells located within a 5,000-meter radius of the injector. This percentage of wells (2–10%) spans the percentage (5%) of wells observed to have sustained casing pressure in the Canadian oil fields as reported by Watson and Bachu (2009), who offered this as an expected rate should legacy wells in an oil/gas region be left unchecked.

For the Edwards Aquifer study, only one leaky well was considered, with a fixed location. This assumption allowed very fine grid resolution at the location of the leak. And like the High Plains study, consideration of variation in reservoir and leaky wellbore properties allowed a large number of leakage rates to be considered.

Uncertainty in brine chemistry was also considered. A brine chemistry database (www.natcarbviewer.org) was used to evaluate the possible range of sodium and chloride concentrations in the brine, and an experimental study was used to evaluate the possible range of three trace metals (As, Pb, and Cd) (Karamalidis et al., 2013).
Figure 3: Example CO₂ and brine leakage rates as functions of time.

Table 2: Variable parameters and ranges sampled in the High Plains and Edwards studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>High Plains</th>
<th>Edwards</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>CO₂ leakage rate¹</td>
<td>0.0</td>
<td>168</td>
<td>0.00001</td>
</tr>
<tr>
<td>Cumulative CO₂ mass¹</td>
<td>0.0</td>
<td>995</td>
<td>0.00124</td>
</tr>
<tr>
<td>Brine leakage rate¹</td>
<td>0.0</td>
<td>56</td>
<td>0.0018</td>
</tr>
<tr>
<td>Brine mass¹</td>
<td>0.0</td>
<td>324</td>
<td>0.0112</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.001</td>
<td>6.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Arsenic²</td>
<td>10⁻⁷.98</td>
<td>10⁻⁵.87</td>
<td>10⁻⁷.76</td>
</tr>
<tr>
<td>Cadmium²</td>
<td>10⁻⁸.87</td>
<td>10⁻⁶.43</td>
<td>10⁻⁸.76</td>
</tr>
<tr>
<td>Lead²</td>
<td>10⁻⁸.12</td>
<td>10⁻⁴.74</td>
<td>10⁻⁸.02</td>
</tr>
</tbody>
</table>

¹Time dependence of CO₂ and brine leakage rates and masses were calculated from variations in wellbore permeability (10⁻¹⁴ to 10⁻¹⁰ m²).
²Trace metal concentrations were sampled independently from NaCl concentrations for the High Plains study. For the Edwards study trace metals were varied as a constant ratio of Cl (molar concentrations).

2.3 MULTI-PHASE REACTIVE TRANSPORT OF CO₂ AND BRINE IN AQUIFERS

The two classes of aquifers studied were an unconfined fractured carbonate aquifer based on the Edwards Aquifer, Texas, and a confined aquifer with variable lenses of high permeable sands and low permeable silts based on the High Plains Aquifer, Kansas. This study simulated the response of representative portions of these aquifers to CO₂ and brine leakage through wells.
from a CO₂ storage reservoir using multi-phase and multi-component reactive transport codes and calculated changes in pH, TDS, As, Cd, and Pb concentrations under a wide range of hydrogeologic conditions.

Computer codes NUFT (Nitao, 1998; Hao et al., 2012) and FEHM (Zyvoloski et al., 2011) were used for the confined alluvium aquifer and the unconfined carbonate aquifer, respectively. Both codes are highly flexible for modeling non-isothermal, multi-phase flow and reactive transport and have been extensively verified and used for a variety of subsurface flow and transport problems, including nuclear waste disposal, groundwater remediation, CO₂ sequestration, and hydrocarbon production.

The reactive transport simulations include a limited amount of chemistry to account for changes in groundwater pH due to CO₂ dissolution, as well as dissolved sodium and chloride as indicators of TDS. The dissolution of CO₂ in groundwater promotes the following sets of reactions:

\[
\begin{align*}
CO_2(g) & \leftrightarrow CO_2(aq) \quad (1) \\
CO_2(aq) + H_2O & \leftrightarrow HCO_3^- + H^+ \quad (2) \\
CaCO_3(\text{calcite}) + H^+ & \leftrightarrow Ca^{2+} + HCO_3^- \quad (3)
\end{align*}
\]

These reactions promote the acidification of the system, which is then buffered by calcite dissolution. Reactions that might affect trace metal concentrations in the aquifer were not included, such as decreases due to adsorption or increases due to pH-related desorption were ignored for the purpose of simplification. The trace metal plumes described below, therefore, only describe the fate of trace metals originating in the brine, and for that source term mechanism would tend to be conservative (over-estimates of true concentrations).

2.3.1 Unconfined Carbonate Aquifer

The impact of possible leakage from sequestration reservoirs on water quality in carbonate aquifers was studied because a large percentage of the U.S. drinking water supply is derived from carbonate aquifers. To guide the numerical model construction, a particularly well-characterized example was selected: the carbonate Edwards Aquifer located in south-central Texas (Figure 4). This aquifer covers an area of more than 10⁵ km² (Painter et al., 2007). This study focused on an unconfined portion of the aquifer near San Antonio. The San Antonio segment is one of the most productive karst aquifers in the world, and is the sole source water supply for more than 2 million people (Musgrove et al., 2010). Water levels and groundwater chemistry data from USGS reports for the San Antonio area were used to establish the local hydrologic gradient and background chemistry (Lindgren et al., 2004; Musgrove et al., 2010). The aquifer is composed of carbonate rocks of the Georgetown Formation and the Edwards Group (or their stratigraphic equivalents), which range in thickness from 121–152 m.
The numerical model consisted of hydrostatic lateral boundaries, a water table equal to the local hydrologic gradient of 7.5 Pa m$^{-1}$ and a thickness of 150 m, which matched the upper end of the aquifer’s observed thickness. The lateral extent of the model, 8,000 km \times 5,000 km, was selected pragmatically to be as small as possible (to allow very small grid blocks), yet much larger than any simulated groundwater plume. The computational mesh had variable grid spacing consisting of small cells near the well ($\Delta x = \Delta y = 9$ m, $\Delta z = 6$ m), gradually increasing to larger cells in the far field ($\Delta x = 200$ m, $\Delta y = 300$ m, $\Delta z = 20$ m) to capture CO$_2$ buoyancy physics. Using the range of model parameters described in Table 1, plumes never approached the lateral boundaries of the model.

Aquifer heterogeneity in the Edwards is controlled by large and unpredictable variations in karst features (Lindgren, 2006). Random Gaussian variations in permeability were assumed, using mean, variance, and correlation lengths determined for this aquifer by Painter et al. (2007) and Lindgren (2006). Stochastic fields of heterogeneous permeability were generated using the pilot point method and random Gaussian interpolation (Deutsch and Journel, 1992; Dai et al., 2007; Harp et al., 2008). All nodes were assumed to have anisotropic intrinsic permeability. Models allowed porosity to vary spatially along with permeability:

\[k = a \Phi^b \]

(4)

where, k [m2] is permeability, Φ is porosity, and a and b are coefficients ($a=4.84 \times 10^{-10}$ and $b=3$) (Bernabe et al., 2003; Deng et al., 2012). Ranges for uncertain rock parameters listed in Table 3 represent the current understanding of system variability and could be redefined over an alternate range to better describe characterization data from another site.
Table 3: Uncertain parameters and their ranges for unconfined carbonate aquifer simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Permeability</td>
<td>0.017</td>
<td>0.79</td>
<td>[km²]</td>
</tr>
<tr>
<td>2 Correlation length</td>
<td>1</td>
<td>3.95</td>
<td>[km]</td>
</tr>
<tr>
<td>3 Anisotropy</td>
<td>1.1</td>
<td>49.1</td>
<td>[-]</td>
</tr>
<tr>
<td>4 Mean</td>
<td>-13.5</td>
<td>-10.6</td>
<td>Log₁₀[m²]</td>
</tr>
<tr>
<td>5 Mean porosity</td>
<td>0.05</td>
<td>0.34</td>
<td>[-]</td>
</tr>
</tbody>
</table>

2.3.2 Confined Alluvium Aquifer

The High Plains Aquifer is representative of a sedimentary aquifer that might overlay a CO₂ storage reservoir. The aquifer, also known as the Ogallala Aquifer, is one of the largest aquifers in the world covering about 450,000 km² and spanning eight states in the Great Plains (Figure 5). The aquifer accounts for approximately 27% of all irrigated land in the United States and about 30% of all groundwater used for irrigation (USGS, 2011). It is comprised mainly of unconsolidated or partly consolidated silt, sand, gravel and clay rock debris deposited in the late Miocene to early Pliocene period when the Rocky Mountains were tectonically active (Gutentag et al., 1984).
Figure 5: Location of alluvial High Plains Aquifer in Kansas.

The top 300 m of the aquifer was used to develop a lithological model for the geological realizations of the numerical model. Lithologic descriptions were obtained from the Kansas Geological Survey’s Water Well Completion Record (WWC5) database (KGS, 2011). All simulations were based on a 10 km × 5 km domain that lies primarily in Haskel County and was selected due to the relatively higher density of lithological picks needed to represent the model depth of 240 m. A total of 468 lithological picks from 48 domestic, feedlot, irrigation, public water supply and oil field water supply wells were used to develop the geostatically derived indicator models using the TPROGS software (Carle, 1999). Correlation lengths were derived from the transition probability approach. The correlation lengths in the x- and y-direction varied uniformly from 200–2500 m and the correlation length in z-direction varied uniformly from 0.50–25.0 m. A total of 1,000 conditional geostatistical realizations were developed based on randomly selected material-volume fraction and correlation lengths using the PSUADE uncertainty quantification software package (Tong, 2005, 2010).

The 3-D numerical model domain captured the unsaturated and saturated zones of the heterogeneous High Plains Aquifer. The model domain extended to 10,000 m × 5,000 m × 240 m with 1 to 5 leakage sources placed at 198 m depth at known well locations. The orthogonal
numerical grid contained fixed cell widths in the x ($\Delta x = 100.0$ m), y ($\Delta y = 100.0$ m), and z ($\Delta z = 4.8$ m) directions. The grid dimensions were 100, 50, and 50 nodes in the x, y, and z directions, respectively, for a total of 250,000 nodes. Isothermal conditions were assumed with a generic temperature of 17°C in the entire domain. The uppermost portion of the model was set as atmospheric allowing for both saturated and unsaturated conditions. The east (minimum x) and west (maximum x) model boundaries were fixed in time. Hydrostatic-pressure gradients were achieved by changing the gravity vector. No-flow boundaries were assumed at the southern (minimum y), northern (maximum y) and bottom (minimum z) boundaries. A constant-pressure boundary condition was set on ground surface and at the aquifer bottom to maintain a hydrostatic initial condition with saturated and unsaturated zones. Regional groundwater flow was maintained by a 0.3% hydraulic gradient. Since the regional groundwater flow of the Great Plains Aquifer in southwestern Kansas flows eastward, the mesh is structured to accommodate flow in the predominant x-direction. The leakage source term was estimated from reservoir and wellbore ROMs (Jordan et al., 2013; Wainwright et al., 2012). Each simulation was executed for ~20–60 hours using the high performance computing facility at Lawrence Livermore National Laboratory (LNNL).

Ranges for uncertain rock parameters are listed in Table 4. Physical parameters, including porosity, density, permeability and van Genuchten unsaturated parameters, were taken from the USDA Rosetta database (Schaap et al., 2001).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sand volume fraction of aquifer</td>
<td>0.35</td>
<td>0.65</td>
<td>[-]</td>
</tr>
<tr>
<td>2 Correlation length of aquifer in x</td>
<td>200.0</td>
<td>2500.0</td>
<td>[m]</td>
</tr>
<tr>
<td>3 Correlation length of aquifer in z</td>
<td>0.50</td>
<td>25.0</td>
<td>[m]</td>
</tr>
<tr>
<td>4 Sand permeability of aquifer</td>
<td>-13</td>
<td>-10</td>
<td>$\log_{10}[m^2]$</td>
</tr>
<tr>
<td>5 Clay permeability of aquifer</td>
<td>-18</td>
<td>-15</td>
<td>$\log_{10}[m^2]$</td>
</tr>
</tbody>
</table>

*Mean values for correlation length in $y = 1,350$ m, sand and shale porosity of 0.38 and 0.47, sand and shale van Genuchten m of 0.66 and 0.19, sand and clay van Genuchten $\alpha = 5.6234 \times 10^{-5}$ and 1.5136 $\times 10^{-5}$ Pa $^{-1}$, and CO$_2$ diffusivity 10^{-9} m2s$^{-1}$

2.4 IMPACT THRESHOLDS

The simulations were used to calculate the volume of groundwater within the shallow aquifers that exceeds certain water quality thresholds. Two thresholds were considered in this study, as defined in Table 5 and developed by Last et al. (2013): “no impact” and maximum contaminant level (MCL) thresholds. The no-impact thresholds represent the lowest detectable concentrations above the background water chemistry that could be used to quantify a change in groundwater chemistry due to CO$_2$ or brine leakage, and were calculated as the 95%-confidence, 95%-coverage tolerance limit from data sets specific to each aquifer type. A key feature of the data presented in Table 5 is that the no-impact thresholds are much closer to the initial water chemistry in the carbonate aquifer case than the sands aquifer case. This may reflect differences in site-specific data used to define the initial model chemistry and the data used to estimate the no-impact thresholds. For the carbonate aquifer, the background thresholds were based on
temporal data within or immediately adjacent to the model domain for the unconfined portion of the Edwards Aquifer (Musgrove et al., 2010). For the confined alluvium aquifer, the background thresholds were based on a 2010 USGS groundwater survey of 30 wells within the High Plains Aquifer from an area outside of the lithologic model site. The high no-impact threshold for the High Plains Aquifer reflects spatial and temporal variability sampled by the survey. It was necessary to use these data because spatial and temporal data were not available from within the model domain.

The MCL threshold refers to concentrations that exceed primary or secondary maximum contaminant levels designated by the U.S. EPA (2009). Primary drinking water standards are for trace metals (such as As, Cd, Cr, Cu, and Pb, among others) and are legally enforced for the protection of public health by limiting the levels of contaminants in drinking water. Secondary drinking water standards (which include standards for Fe, Mn, and Zn) are non-enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water.

Table 5: Initial aquifer concentrations used in the simulations, no-impact and MCL (EPA, 2009) thresholds reported in Last et al. (2013)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unconfined Carbonate Aquifer (Edwards Aquifer)</th>
<th>Confined Unconsolidated Sands Aquifer (High Plains Aquifer)</th>
<th>U.S. EPA Regulatory Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Model</td>
<td>No-Impact Threshold<sup>b</sup></td>
<td>Initial Model</td>
</tr>
<tr>
<td>pH</td>
<td>6.9</td>
<td>6.6</td>
<td>7.6<sup>a</sup></td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>330</td>
<td>420 mg L<sup>−1</sup></td>
<td>570 mg L<sup>−1</sup></td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.31</td>
<td>0.55 μg L<sup>−1</sup></td>
<td>1.5 μg L<sup>−1</sup></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.00</td>
<td>0.04 μg L<sup>−1</sup></td>
<td>0.059 μg L<sup>−1</sup></td>
</tr>
<tr>
<td>Lead</td>
<td>0.06</td>
<td>0.15 μg L<sup>−1</sup></td>
<td>.086 μg L<sup>−1</sup></td>
</tr>
</tbody>
</table>

(a) Based on Carroll et al. (2009)
(b) 95%-confidence, 95%-coverage tolerance limit based on log values except for pH, which is already a log value.
(c) Threshold value exceeds regulatory standard, however using the regulatory standard may result in widespread false positives under field conditions.
(d) Value is about 0.5 pH units lower than no-impact threshold estimated by Last et al. (2013) because ROMs at higher threshold produced non-physical results.
3. **CHANGES TO GROUNDWATER QUALITY**

CO₂ and brine leakage into shallow aquifer resources can change the groundwater chemistry to values above the no-impact and MCL thresholds. pH and TDS plume distributions over the 200-year simulation period were, in large part, controlled by the distinct lithology of the respective aquifers, as is illustrated for single realizations for the High Plains and Edwards Aquifers in Figures 6 and 7. This is especially true for the pH plume because it is tied to the transport of CO₂ gas in the aquifer systems through chemical solubility (Equations 1–3). The unconfined nature of the carbonate Edwards Aquifer allows buoyant CO₂ gas to transport vertically from the leakage source term to the atmosphere with some advection in the direction of groundwater flow. Once the plume reaches the water table, the flux rate of CO₂ across the water table rapidly reaches steady-state and matches the flux of CO₂ from the leaking wellbore (Figure 8). In contrast, variable lenses of permeable sands and impermeable shale, characteristic of the High Plains Aquifer, limit the vertical transport of CO₂ gas and yield plumes that are largely relegated to the lower permeable sand units within the aquifer, where only a small fraction of the CO₂ leaked into the aquifer is transported to the vadose zone above the water table (0.01 and 0.1%).
Figure 6: Color contour plots of pH and TDS at 200 years in plan view (XY) and cross section (XZ) (a,b,d,e) and the no-impact thresholds projected against shallow well locations (black dots) for a single simulation of the Edwards Aquifer (c,f). Groundwater flow is in the Y direction (North to South).
Figure 7: Color contour plots of pH and TDS at 200 years in plan view (XY) and cross section (XZ) (a,b,d,e) and the no-impact thresholds projected against shallow wellbore locations (black dots) for a single simulation of the High Plains Aquifer (c,f). Groundwater flow is in the X direction (East).

Figure 8: Correlation of CO₂ leakage rate in and out of the water table for the Edwards Aquifer.
Figure 9: Unconfined carbonate (Edwards) aquifer: Comparison of plume volumes after 200 years of wellbore leakage for the MCL and no-impact thresholds for (a) As, (b) Cd, (c) Pb, (d) pH, and (e) TDS, based on 500 simulations.
Figure 10: Confined alluvium (High Plains) aquifer: Comparison of plume volumes after 200 years of wellbore leakage for the MCL and no-impact thresholds for (a) As, (b) Cd, (c) Pb, (d) pH, and (e) TDS.
Images, such as those shown in Figures 6 and 7, highlight the role that aquifer characteristics play on the spatial and temporal distribution of groundwater plumes, but only for a single realization. In total, more than 500 and 700 detailed reactive transport simulations were performed to fully capture knowledge gaps and natural system variability for the Edwards and High Plains Aquifers, respectively. The results measure the current understanding of the contribution of CO₂ and brine leakage on groundwater quality given the inherent uncertainty in the storage reservoir, leakage pathways, and dilute aquifer for these model systems.

Figures 9 and 10 plot the cumulative distribution of emulated plume volumes at representative time intervals for CO₂ injection (40 years) and post injection (200 years) for pH and TDS thresholds for the unconfined carbonate (Edwards) and confined alluvium (High Plains) aquifers when exposed to the same leakage scenarios (MCL TDS for the alluvium aquifer remained below the baseline value and is not plotted). The unconfined aquifer plot extends to smaller plume volumes (10² m³) because of the smaller grid size and consequent ability to resolve smaller plumes.

The results and probability of occurrence ranges were used to forecast the likelihood that leakage will impact groundwater quality over 200 years (Figure 11). The lowest volume threshold used was 10³ m³ so that the results of the two models can be compared, regardless of grid size. The probability of occurrence is shown against the no-impact and the MCL thresholds for each aquifer. There is a higher probability of exceeding the no-impact threshold for the unconfined carbonate aquifer than the alluvium aquifer because the thresholds in these examples are much lower and closer to the initial model chemistry for the Edwards Aquifer than for the High Plains Aquifer. Leakage is likely to result in a statistically significant change of the trace metal concentrations pH and TDS for the Edwards example. Whereas, leakage is only likely to cause a statistically significant change to groundwater pH for the High Plains example; changes in TDS and Pb have an even chance of occurring, and changes in Cd and As concentrations are unlikely. Forecasts of groundwater quality measured against no-impact thresholds are site specific and cannot be transferred to similar aquifer sites, because the site threshold depends on spatial and temporal variability as well as the absolute concentration.

Groundwater impacts to unconfined carbonate and confined alluvium aquifers are comparable when measured against MCL thresholds, with leakage likely to change pH and TDS concentrations above the thresholds. Of importance for this MCL-based metric is that probability of occurrence for trace metal impacts is unlikely to extremely unlikely to occur.

The likelihood ranges are useful, because they forecast the gross performance of the storage system, but they do not convey information on the size or the evolution of the plume with time. The reader is referred back to the emulated volumes shown in Figures 9 and 10 to discuss the time scale of groundwater impacts if leakage were to occur. Recall that all emulated groundwater plumes result from the injection of 5 million tons of CO₂ per year for 50 years in which leakage is allowed to occur in up to 10% of the wells with variable permeability (10⁻¹⁴ to 10⁻¹⁰ m²) with no option to mitigate the leak if it were detected. The pH plumes continue to increase because of buoyancy driven CO₂ transport and because smaller more acidic pH plumes are diluted through natural recharge and dispersion towards the more neutral thresholds, as are the TDS plumes. The emulations show a 10-fold increase in plume volume between the injection and post injection periods, on average, from 40 to 200 years. Because impacts to shallow groundwater chemistry, as measured changes in pH and TDS above pre-injection values, can be sustained for long periods of time if the leak continues, it is important to detect and mitigate leakage sources as early as possible.
Key Factors for Assessing Potential of Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

Figure 11: Comparison of the probability of occurrence of emulated plumes for the leakage scenarios investigated for the High Plains alluvium and Edwards carbonate aquifers that exceed the no-impact (a) and MCL (b) thresholds for pH, TDS, As, Cd, and Pb for volumes greater than 105 m3 against the likelihood ranges for expressing the probability of occurrence.

Figure 12 plots pH and TDS plume volumes for no-impact thresholds against the cumulative mass of CO$_2$ and brine leaked into the unconfined carbonate and confined alluvium aquifers at 40 and 200 years after the initiation of CO$_2$ injection. Plume volume is largely dependent on the mass of CO$_2$ or brine that leaks into the aquifer (where TDS concentration is also important). Up to one million tons of CO$_2$ and brine leaked into the aquifers and produced plume volumes as large as 100 million cubic meters (108m3). In both the Edwards and High Plains models, the amount of leaked CO$_2$ and brine comprised a very small fraction (\leq 0.4%) of the CO$_2$ injected into the storage reservoir (250 million tons) and reservoir brine in the area of review even after 200 years of simulation.
Data in Figure 12 was used to estimate leakage bounds that do not result in a measureable change in the groundwater composition (defining plume volume \(> 10^5 \text{m}^3 \)). The lower bound for pH plume volumes is about 100–1,000 tons of CO\(_2\) for the unconfined carbonate or confined alluvium aquifer examples. Similar lower bounds on CO\(_2\) leakage for the two different aquifers can be explained by buffering capacity of carbonate minerals in both systems and by the nearly identical no-impact thresholds for each system. There is a more marked difference for the lower bounds for brine leakage for the two aquifers, largely because the no-impact thresholds differ significantly. The simulated results indicate that leakage as small as 1–10 tons could result in a measurable change in the carbonate aquifer with a TDS\(_{\text{no impact threshold}} = 420 \text{ mg L}^{-1}\). Whereas the lower bound for the alluvial aquifer was about 100–1,000 tons of brine because this particular aquifer has a higher no-impact threshold (TDS\(_{\text{no impact threshold}} = 1300 \text{ mg L}^{-1}\)). Establishing a given aquifer’s leakage tolerance requires a thorough assessment of the pre-injection chemistry at the site that accounts for variability of current land use practices. In some cases, a high-density of data may be available within the model domain, as was the case for the Edwards Aquifer used as the basis for the unconfined aquifer in this study. However this was not the case for the High Plains Aquifer where the no-impact threshold was based on data collected over a very large region and consequently sampled greater variability.
Figure 12: pH (a, b) and TDS (c, d) no-impact plume volumes plotted versus cumulative mass of CO₂ and brine leaked into the unconfined carbonate aquifer (a, c) and the confined alluvium aquifer (b, d), where red and blue symbols indicated plume volumes 40 and 200 years after CO₂ injection has started.
4. DETECTION OF GROUNDWATER PLUMES

Figures 9, 10, and 12 suggest that relatively small amounts of CO₂ and brine leaked from the storage reservoir can result in a measurable change to the shallow aquifer chemistry. Despite the nominally large range of plume volumes, the computations show the probability of detecting the plumes using the available shallow water infrastructure is extremely to very unlikely over the entire 200-year period (Table 6). This determination was made using the simulated results because it allowed individual leakage source points to be compared with individual shallow groundwater receptors. The conceptual model contains 165 deep wells, of which 49 serve as potential leakage source terms because they penetrate the area of review. Actual shallow groundwater receptors consist of 128 drinking wells in the carbonate aquifer; and 48 drinking, agricultural, and industrial wells for the confined alluvial aquifer. Receptor density is about 2.6 wells per km for the carbonate aquifer’s model domain and 1 well per km for the alluvial aquifer’s model domain. The analysis assumes that shallow wells are screened from the top to the bottom of the aquifer and can detect a plume at any depth.

Table 6: Percent probability that any of the shallow aquifer wells will contain groundwater above the no-impact thresholds over the 200-year period. Actual shallow well locations are specific to the Edwards and High Plains areas shown in Figure 5 and 6. Deep well locations are the same for both systems.

<table>
<thead>
<tr>
<th>Aqueous Component</th>
<th>Unconfined Carbonate Aquifer (Edwards)</th>
<th>Confined Alluvium Aquifer (High Plains)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4.3%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>3.8%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.4%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Lead</td>
<td>2.8%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Clearly, to increase the likelihood of detecting changes in groundwater chemistry a much higher density of shallow wells would be needed. Moreover, groundwater sampling is unlikely to be a reliable early leak detection strategy. Alternatives should be considered, including geophysical techniques such as electrical resistance (ER) data that samples regions in between monitoring wells using surface arrays of electrodes. Trainor-Guitton et al. (2013) computed an ER sensitivity index for a suite of groundwater simulations to assess ER’s sensitivity to plume and non-plume results, where the sensitivity index is a mean log ratio of the electrical response at two different times. In other words, the ratio is the electrical response at a time after CO₂ injection scaled by the electrical response at time = 0 (before CO₂ injection). In general, Trainor-Guitton et al. found that the sensitivity of electrical resistivity depends on both the aspect ratio (the plume’s dimension versus depth) and plume’s TDS concentration. The study demonstrates the trade-off introduced when using a geophysical technique: it provides better areal coverage (between wells) without the expense of drilling boreholes, but there is a possibility of “false negatives” or “false positives” of plume occurrence because the groundwater is not sampled directly. This is demonstrated in Figure 13, where plume length (plume defined as TDS ≥ 1500 mg L⁻¹) is plotted versus the ER sensitivity index. Ambiguity in the remote sensing data exists...
because samples with no plume (green) yielded a positive index. Both plume and non-plume simulations can produce the same ER sensitivity as seen in the area between the dashed lines corresponding to the 50th and 95th percentile of ER sensitivity for non-plumes. A reasonable threshold for detectability would be for all plumes with ER sensitivity ≥ 0.0012 (to the right of the 95th percentile - cyan line) corresponding to plumes between 100 and 3,000 m in length. Although this technique may not be able to resolve the diffuse boundary defined by the no-impact threshold, it would be able to detect more concentrated brines within the plume. Once detected, monitoring wells could be drilled to target the plume and assess the ability to mitigate the leak and the need for corrective actions.

![Figure 13: Plot of ER sensitivity index versus the plume length. Vertical lines represent the 50th and 95th percentile of the ER sensitivity index for simulations with non-plumes. ER will identify with high likelihood plumes that are $\geq 1,000$ m in length (all samples to the right of the cyan vertical line). The samples between these two lines represent the most ambiguity in the ER signal.](image)

Above-zone pressure measurements have also been suggested as an effective means to detecting leakage because pressure signals travel fast and can be collected continuously at relatively low cost. Leakage simulations into shallow groundwater suggest that leakage rates comparable to those studied here can lead to small changes in down-hole pressure (1–5 psi) and can be detected at wellbore spacing between 100 and 500 m away from the leaking well (Sun et al., 2013; Sun and Nicot, 2013). Continuous pressure testing of monitoring wells may provide early detection of leakage into shallow groundwater.
5. IMPLICATIONS FOR MONITORING

The U.S. EPA Class VI well permitting process for CO₂ storage requires that the area of review and risk to overlying USDW resources be assessed. Simulation and emulation studies that capture the storage reservoir, leakage pathways, and aquifer heterogeneity can be used to evaluate effective monitoring strategies of a potential storage site. Identification of possible leakage rates, coupled with predictions of plume volumes, can be used to identify potential monitoring and corrective action strategies should leakage from the storage reservoir occur. In the case of the two aquifer examples, the models assumed a fixed 50-year injection period, variable wellbore leakage pathways to either an unconfined carbonate aquifer or a confined alluvium aquifer, and that no corrective actions were made to the leaking wells for the 200-year simulation period. The following discussion refers to results measured against the no-impact thresholds, as they represent the earliest point at which a detectable change in groundwater quality can be measured in the aquifer systems studied here.

The U.S. EPA has adopted a no net degradation policy for managing groundwater resources. Therefore, it is extremely important to establish a given USDW’s baseline chemistry, as this baseline data can be used to develop no-impact threshold values for the site. The no-impact thresholds calculated as part of this study were demonstrated to be site specific. Key differences in the calculated values between the two sites were due to a combination of aquifer properties, as well as by the availability of existing spatial and temporal groundwater data on which the no-impact threshold was based. In the case of the Edwards Aquifer, sufficient data were available from wells located within the model domain. However this was not the case for the High Plains Aquifer, where the no-impact threshold values were based on data collected over a very large region. If no-impact thresholds are used to define plumes, aquifers with substantial temporal and spatial variability in water quality will have smaller plumes that will be more difficult to detect. Despite vertical transport of CO₂ out of the unconfined carbonate aquifer, the probability of impact to groundwater quality is higher than for the unconfined carbonate aquifer because the pre-injection chemistry is lower and the natural variability is smaller.

Although CO₂ and brine leakage are likely to drive pH below and increase TDS above the no-impact thresholds for both aquifers evaluated, the size of the plumes is small relative to spacing of the current network of wells in both the unconfined (2.6 wells/km²) and confined (1 well/km²) aquifers. There is a very low probability that the plumes would intersect USDW wells in the two study areas and in other areas with similar receptor density, based on the initial simulations and current understanding of parameters for both shallow aquifer systems. This result points to the need to test and develop spatially diverse, yet robust, monitoring techniques capable of detecting leakage early, which can be used to add confidence to data generated through typical groundwater assessments.

Some period of post-injection site care is required. The simulations predict that even small amounts of CO₂ and brine, will produce changes in USDW pH and TDS concentrations for as long as the leak is active. The difficulty is deciding the time period for post-injection site care, because it could take many years to directly observe the impacted waters in monitoring wells. The focus of this study was on using simulations to predict potential impacts within shallow USDWs, not on identifying methods for early leakage detection. Future efforts will focus on understanding how early detection and mitigation of leaks impacts plume volume and the time required for the aquifer chemistry to rebound to pre-leakage conditions.
This page intentionally left blank.
6. REFERENCES

Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press, 2005.

Last, G. V.; Brown, C. F.; Murray, C. J.; Bacon, D. H.; Qafoku, M. P.; Sharma, M.; Jordan, P. D. Determining threshold values for identification of contamination predicted by reduced order models; Pacific Northwest National Laboratory, Richland, WA, 2013.

This page intentionally left blank.
NRAP is an initiative within DOE’s Office of Fossil Energy and is led by the National Energy Technology Laboratory (NETL). It is a multi-national-lab effort that leverages broad technical capabilities across the DOE complex to develop an integrated science base that can be applied to risk assessment for long-term storage of carbon dioxide (CO2). NRAP involves five DOE national laboratories: NETL, Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Pacific Northwest National Laboratory (PNNL).

Technical Leadership Team

Diana Bacon
Lead, Groundwater Protection Working Group
Pacific Northwest National Laboratory
Richmond, WA

Jens Birkholzer
LBNL Lab Lead
Lawrence Berkeley National Laboratory
Berkeley, CA

Grant Bromhal
Technical Director, NRAP
Research and Innovation Center
National Energy Technology Laboratory
Morgantown, WV

Chris Brown
PNNL Lab Lead
Pacific Northwest National Laboratory
Richmond, WA

Susan Carroll
LLNL Lab Lead
Lawrence Livermore National Laboratory
Livermore, CA

Abdullah Cihan
Lead, Reservoir Performance Working Group
Lawrence Berkeley National Laboratory
Berkeley, CA

Tom Daley
Lead, Strategic Monitoring Working Group
Lawrence Berkeley National Laboratory
Berkeley, CA

Robert Dilmore
NETL Lab Lead
Research and Innovation Center
National Energy Technology Laboratory
Pittsburgh, PA

Nik Huerta
Lead, Migration Pathways Working Group
Research and Innovation Center
National Energy Technology Laboratory
Albany, OR

Rajesh Pawar
LANL Lab Lead
Lead, Systems/Risk Modeling Working Group
Los Alamos National Laboratory
Los Alamos, NM

Tom Richard
Deputy Technical Director, NRAP
The Pennsylvania State University
State College, PA

Josh White
Lead, Induced Seismicity Working Group
Lawrence Livermore National Laboratory
Livermore, CA