

Process Name:	CBTL, 10% Torrefi Production Facility	ed Biomass, Fischer-7	Fropsch Jet Fuel
Reference Flow:	1 kg of F-T Jet Fue))	
Brief Description:	This unit process quantifies the input flows and emissions associated with the operation of a Fischer-Tropsch (F-T) jet fuel production facility, based on a coal biomass to liquids (CBTL), 20% torrefied biomass configuration.		
	Section I: N	leta Data	
Geographical Coverage:	US	Region:	Southeast
Year Data Best Represe	nts: 2012		
Process Type:	Energy Con	version (EC)	
Process Scope:	Gate-to-Gat	e Process (GG)	
Allocation Applied:	No		
Completeness:	All Relevant	Flows Recorded	
Flows Aggregated in Da	ta Set:		
Process	Energy Use	Energy P&D	Material P&D
Relevant Output Flows I	Included in Data Se	t:	
Releases to Air: \square	Greenhouse Gases	🛛 Criteria Air Pollu	utants 🛛 Other
Releases to Water:	Inorganic Emissions	Organic Emission	ons 🗌 Other
Water Usage:	Water Consumption	🛛 Water Demand	(throughput)
Releases to Soil:	Inorganic Releases	Organic Release	es 🗌 Other
Adjustable Process Para	imeters:		
None			
Tracked Input Flows:			
Coal	PRB Montana Rosebud Sub-bituminous coal used for F-T jet fuel production		
Torrefied Biomass		efied Southern Pine w Iel production	roody biomass used for F-7
Chipped Biomass	Chipped Biomass Chipp jet fue		oody biomass used for F-T

NETL Life Cycle Inventory Data

Process Documentation File

Tracked Output Flows:

F-T Jet Fuel	This reference flow represents mass of F-T jet fuel produced.	
F-T Naptha	Naptha co-product of F-T fuel	
F-T Diesel	Diesel co-product of F-T fuel	
Carbon Dioxide [Intermediate Product]	<i>Carbon dioxide captured from F-T conversion process for sequestration or enhanced oil recovery</i>	
LP Gas	LP gas co-product of F-T fuel	
Sulphur [Inorganic Intermediate Product]	Sulphur co-product recovered from F-T conversion process	
Electricity	Electricity co-product exported from F-T conversion process	
Soction II: Drocoss Description		

Section II: Process Description

Associated Documentation

This unit process is composed of this document and the data sheet (DS) *DS_Stage3_O_FTjet_CBTL_10pct_Torrefied_Biomass_2012.01.xls*, which provides additional details regarding calculations, data quality, and references as relevant.

Goal and Scope

The scope of this unit process covers the production operations for F-T jet fuel from Montana Rosebud coal and green woody biomass in Life Cycle (LC) Stage #3. This unit process is based on the reference flow of 1 kg of F-T jet fuel production, as described below, and in **Figure 1**. The inputs to the unit process include Montana Rosebud coal (technosphere) torrefied biomass (technosphere), groundwater (resource), and surface water (resource). Rosebud coal and torrefied biomass are used as the feedstocks for the F-T process; the energy and material flows for the upstream production and delivery of coal and biomass as well as LC emissions of coal and biomass production are not included in the boundary of this process. The air emissions from the CBTL process, and water usage, are included in the boundary.

Boundary and Description

The LC boundary of this unit process starts with the delivery of Montana Rosebud coal and torrefied biomass to the CBTL facility and ends with F-T jet fuel ready for delivery to end-use. The production operations for F-T jet fuel are based on the estimated coal, torrefied biomass, and water consumption of the conversion process and the yield rate of F-T jet fuel. **Figure 1** provides an overview of the boundary of this unit process. As shown, upstream emissions associated with the production and delivery of coal and biomass are accounted for outside of the boundary of this unit process. The methods for calculating these operating activities are described below. **Figure 2** provides a process diagram for the CTL facility.

NETL

At the CBTL facility, it is assumed that the coal is brought from the storage area and sent to milling and drying. Here, the coal is dried from the as-received value of 26% moisture down to 18% for feeding to the TRIG gasifier. It is assumed that the torrefaction of the Southern pine wood is accomplished in dedicated torrefaction facilities separate from the CBTL Facility complex. It is assumed that these future torrefaction plants produce commercial quantities of torrefied material for use in co-firing for electric power generation as well as for other purposes like gasification. The torrefied woody biomass is delivered to the CBTL Facility in trucks and consists of torrefied chips with a size range of about 2-3 inches in length. Before co-feeding to the TRIG gasification system, the torrefied biomass must be reduced in size to an average particle size of between about 0.4 and 0.8 mm (400-800 microns). This size reduction is accomplished in separate hammer mills from the coal milling machines, the electricity usage to operate these mills is not considered.

The milled coal and finely ground torrefied biomass are mixed together before entering the lock hopper feeding system of the TRIG gasifiers, and the injected into the gasifiers just above the gasifier mixing zone. The coal and biomass react with the steam and oxygen to produce raw synthesis gas (syngas). Sensible heat from the hot syngas is recovered in a waste heat boiler/superheater and the gas is cooled for feeding to the raw shift and COS hydrolysis units. A portion of the cooled syngas is recycled to the TRIG gasifier. The shifted syngas is further cooled and sent to mercury removal. Upon exiting mercury removal, the syngas enters the two-stage Selexol unit. Here, hydrogen sulfide and carbon dioxide are removed in separate absorbers. The hydrogen sulfide stream is sent to the Claus unit for sulfur recovery. The Claus offgas enters Claus Offgas Treating (COT) to reduce breakthrough sulfur dioxide. The hydrogen sulfide from COT is recycled to the Selexol unit. The carbon dioxide stream is sent to dehydration and compression to produce a high pressure CO₂ stream suitable for pipeline transport and carbon management.

The cleaned syngas exiting Selexol is further reduced in sulfur by a zinc oxide sulfur polisher. The syngas would then contain less than 30 parts per billion of sulfur. The cleaned syngas then enters the slurry-phase, iron-based catalytic Fischer-Tropsch (F-T) reactors. The raw F-T products and unconverted synthesis gas are separated in the raw product separation unit into overhead gases that includes CO_2 , CO, H_2 , light hydrocarbons, an aqueous stream containing oxygenates, naphtha, distillate, and wax.

The overhead gas is sent to a methyldiethanolamine (MDEA) unit for CO_2 removal then to a cryogenic separation unit to separate a methane-rich gas, a hydrogen-rich gas, and liquefied petroleum gas (LPG). The methane rich gas that includes CO is sent to an oxygen-blown autothermal reformer (ATR). The ATR exit gas contains some methane, CO, H₂, and CO₂. This gas stream is divided so that some of the gas is used for plant fuel gas needs, some is recycled to the FT reactors, and the remainder is sent to the gas turbine combustors to generate electric power. The hydrogen-rich gas is sent to the pressure swing adsorption (PSA) unit to produce a pure hydrogen stream for the refinery and a low pressure fuel gas. The LPG stream is separated as a co-product of the plant.

Figure 1: Unit Process Scope and Boundary

The aqueous stream contains the oxygenate compounds like alcohols, acids, and ketones. This stream is sent to wastewater treatment. The naphtha is distilled from the distillate stream and receives no further treatment. The distillate is hydrotreated to remove olefins and becomes the diesel fuel product. The wax is hydrocracked to a jet fuel product. Jet fuel has a very narrow boiling point range and hence a small range of carbon numbers, typically from C₁₀ to C₁₆. When the FT wax, which has a wide range of carbon numbers (\sim C₂₃ to C₄₀₀), is hydrocracked to be within the narrow jet fuel range a large amount of over cracking occurs. This produces, in addition to the jet fuel, a significant amount of light hydrocarbon gases including LPG, and additional naphtha. The final products from the refinery are jet fuel, diesel, naphtha, and LPG.

Figure 1: CBTL, 10% Torrefied Biomass Facility Process Configuration

Refinery fired heaters for distillation and feed heating for hydrotreating and hydrocracking are heated in heaters using fuel gases. The flue gases from these heaters are vented to the atmosphere. The separate fuel gases sent to the gas turbines generate electric power for the plant. Heat is recovered from the turbine exhaust in HRSGs and the steam raised is used in the steam turbine for additional power generation. The exhaust flue gas from the HRSG is vented to the stack. Power produced in excess of plant parasitic requirements is sold. Steam turbine exhaust is condensed using conventional mechanical draft cooling towers.

The F-T conversion process results in the direct emission of greenhouse gases (GHGs), criteria air pollutants (CAPs), other air pollutant emissions, and water use. The emissions factors for GHGs are based on suggested values for F-T jet fuel production from coal and woody biomass (Noblis 2012a/Noblis 2012b). Emissions of NOx, particulate matter, and mercury are based on prior work completed by NETL estimating the emissions associated with an alternative configuration CTL facility (NETL 2010).

Table 1 provides a summary of the site conditions for the modeled CBTL facility. **Table 2** provides a summary of modeled input and output flows. Additional details regarding input and output flows, including calculation methods, are contained in the associated DS sheet.

Site Characteristic	Site Condition
Elevation (Feet)	0
Barometric Pressure (PSIA)	14.7
Design Ambient Temperature, Dry Bulb (F)	60
Wet Bulb Temperature (F)	52
Ambient Relative Humidity (%)	60
Location	Greenfield, South Eastern USA
Topography	Level
Size, Acres	1,300
Transportation	Rail and Road
Ash Disposal	Off Site
Water	Municipal (assumed to be surface water) 50%: Groundwater 50%
Access	Landlocked; Access by rail and highway
CO ₂ Disposition	Compressed to 2215 psia on site then transported by pipeline to an EOR facility

Table 1: CBTL Facility Site Conditions

Flow Name*	Value	Units (Per Reference Flow)
Inputs		
PRB Coal	8.278	kg
Biomass	0.000	Kg
Torrefied Biomass	8.33E-01	kg
Water (ground water) [Water]	8.158	kg
Water (surface water) [Water]	8.158	kg
Outputs		
F-T Jet Fuel [Insert]	1.00E+00	kg
FT Naphtha	6.40E-01	kg
FT Diesel	1.96E-01	kg
Carbon dioxide [intermediate product]	9.36E+00	kg
LPG	1.14E-01	kg
sulphur [inorganic intermediate product]	3.01E-02	kg
Electricity	1.89E-03	MWh
Carbon dioxide [Inorganic emissions to air]	1.33E+00	kg
Carbon monoxide [Inorganic emissions to air]	0.00E+00	kg
Carbonyl sulfide [other emissions to air]	2.86E-13	kg
Hydrogen chloride [Inorganic emissions to air]	0.00E+00	kg
Ammonia [Inorganic emissions to air]	4.72E-05	kg
Sulphur dioxide [Inorganic emissions to air]	1.04E-11	kg
Ash [Waste for recovery]	8.05E-01	kg
Methane [Organic emissions to air (group VOC)]	0.00E+00	kg
Nitrogen dioxide [Inorganic emissions to air]	7.67E-06	kg
Particulate Matter, unspecified [Other emissions to air]	7.67E-06	kg
Mercury (+II) [Heavy metals to air]	9.26E-04	kg
NMVOC [Organic emissions to air (group VOC)]	7.52E-08	kg

Table 3: Unit Process Input and Output Flows

* **Bold face** clarifies that the value shown *does not* include upstream environmental flows. Upstream environmental flows were added during the modeling process using GaBi modeling software, as shown in Figure 1.

Embedded Unit Processes

None.

References

NETL 2010

NETL (2010). NETL Life Cycle Inventory Data – Unit Process: CBTL Plant Operation with Coal and SRWC Feed. U.S. Department of Energy, National Energy Technology Laboratory. Last Updated: February 2010

	(version 01). www.netl.doe.gov/energy-analyses (<u>http://www.netl.doe.gov/energy-analyses</u>).
White et al. 2012a	White et al., Model for the Production of Jet Fuel from Coal and Woody Biomass: A Comparative Analysis of Coal/Wood Co-Gasification and Separate Coal and Wood Gasification Configurations. Noblis. 2012.
White et al. 2012b	White et al., Production of Jet Fuel from Coal and Woody Biomass: A Comparative Analysis of Coal/Wood Co-Gasification and Separate Coal and Wood Gasification Configurations. Noblis. 2012.

Section	III: Document Control Information

1 47 0040

Date Created:	April 17, 2012
Point of Contact:	Timothy Skone (NETL), Timothy.Skone@NETL.DOE.GOV

Revision History:

NETL

Original/no revisions

How to Cite This Document: This document should be cited as:

NETL (2012). *NETL Life Cycle Inventory Data – Unit Process: CBTL, 10% Torrefied Biomass, Fischer-Tropsch Jet Fuel Production Facility, Operation.* U.S. Department of Energy, National Energy Technology Laboratory. Last Updated: May 2012 (version 01). www.netl.doe.gov/energy-analyses (http://www.netl.doe.gov/energy-analyses)

Section IV: Disclaimer

Neither the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) nor any person acting on behalf of these organizations:

- A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe on privately owned rights; or
- B. Assumes any liability with this report as to its use, or damages resulting from the use of any information, apparatus, method, or process disclosed in this document.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by NETL. The views and opinions of the authors expressed herein do not necessarily state or reflect those of NETL.