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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or any agency thereof. 
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Executive Summary 

There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil 

organic carbon (SOC) change for national greenhouse gas accounting and the development of a 

soil carbon trading market.   Laboratory based soil characterization typically requires significant 

soil processing, which is time and resource intensive.  This severely limits application for large-

region soil characterization.  Thus, development of rapid and accurate methods for characterizing 

soils are needed to map soil properties for precision agriculture applications, improve regional 

and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal 

contamination, among others.   The greatest gains for efficient soil characterization will come 

from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-

based measurement costs.  Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) 

and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally 

different spectroscopic techniques that have the potential to meet this need.  These sensors have 

the potential to be mounted on a soil penetrometer and deployed for rapid soil profile 

characterization at field and landscape scales.  Details of sensor interaction, efficient data 

management, and appropriate statistical analysis techniques for model calibrations are first 

needed. 

In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for 

intensively mapping soil texture and organic carbon (SOC).  While lab-based VisNIR has been 

established as a viable technique for estimating various soil properties, few experiments have 

compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central 

Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR.  Lab-

based spectral data consistently provided more accurate predictions than on-the-go data.  

However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC 

predictions.  There was little SOC variability to explain across the eight fields, and on-the-go 

VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more 

variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better 

explanatory power.  There are several potential explanations for poor on-the-go predictive 

accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference 

between the spatial support of on-the-go measurements and soil samples collected for laboratory 

analyses. Though the current configuration of a commercially available on-the-go VisNIR 

system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and 

sieving) could improve soil carbon predictions. 

Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology 

with the potential to provide rapid, accurate and precise analysis of soil constituents, such as 

carbon, in situ across landscapes.  The research team evaluated the accuracy of LIBS for 

measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be 

encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ.  Over 

the course of three experiments, more than120 intact soil cores from eight north central Montana 

wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, 

WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC 

determination.  Partial least squares regression models were derived and independently validated 

at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC 

followed by TC and SOC.  Laser-induced breakdown spectroscopy is fundamentally an 
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elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC.  

Regression coefficients from initial models suggested a reliance upon stoichiometric 

relationships between carbon (247.8 nm) and other elements related to total and inorganic carbon 

in the soil matrix [Ca (210.2 nm, 211.3 nm, and 220.9 nm), Mg (279.55-280.4 nm, 285.26 nm), 

and Si (251.6 nm, 288.1 nm)].  Expanding the LIBS spectral range to capture emissions from a 

broader range of elements related to soil organic matter was explored using two spectrometer 

systems to improve SOC predictions.   Results for increasing the spectral range of LIBS to the 

full 200-800 nm found modest gains in prediction accuracy for IC, but no gains for predicting 

TC or SOC.  Poor SOC predictions are likely a function of 1) the lack of a consistent/definable 

molecular composition of SOC, 2) relatively little variation in SOC across field sites, and 3) 

inorganic carbon constituting the primary form of soil carbon, particularly for Montana soils.  

Exploration into alternative data reduction and statistical modeling techniques continues in an 

effort to increase prediction accuracy, model parsimony, and computational efficiency.  As 

research matures for this emerging spectroscopic method, new field-deployable equipment 

should be developed to exploit the unique ability of LIBS to rapidly characterize soil elemental 

composition. 

VisNIR and LIBS are fundamentally different, yet complementary spectroscopic techniques. The 

LIBS technique is an elemental analysis method that can quickly determine elemental 

composition of heterogeneous material, whereas VisNIR is based on the fundamentals of light 

energy absorption by molecular bond vibrations. The research team attempted to take advantage 

of these fundamental differences by combining spectral information obtained by VisNIR and 

LIBS sensors.  It was hypothesized that this may provide more accurate, robust, and spatially 

transferable soil carbon determination than individual sensors currently permit. The 120 cores 

interrogated with LIBS, as discussed previously, were concurrently scanned with VisNIR.  

Preliminary exploration of combining VisNIR and LIBS spectra was completed using data in 

2007 (78 cores) and PLS regression. Combining LIBS and VisNIR data slightly improved TC 

predictions, but did not improve IC or SOC predictions compared to individual sensor results.  

The results suggest that PLS regression is sensitive to large predictor datasets.  It is suspected 

that the 2046 LIBS wavelength predictors dominated the PLS analysis and overwhelmed 

information found in the 216 VisNIR wavelength predictors.  Reduction of LIBS spectra poses a 

difficult challenge to overcome.  Other approaches may be able to use the data at the current 

resolution to build better predictive spectral models for TC, IC, and SOC, regardless of the 

number of predictor variables; however alternative multivariate statistical and data mining 

approaches continue to be tested. 

VisNIR and LIBS spectroscopy have the potential to fill the growing need for rapid, accurate, 

and inexpensive methods to measure, and verify soil organic carbon change.  These 

fundamentally different techniques performed individually mostly as expected; however the 

combined LIBS-VisNIR data array did not consistently improve predictive accuracies over 

individual sensors.  A field unit with a LIBS-VisNIR array mounted in a soil penetrometer, when 

fully operational, would allow for rapid soil profile characterization and mapping at field and 

landscape scales. 
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1. Overview and Organization of Report 

This report summarizes research to study and compare two different spectroscopic techniques for 

conducting soil characterization: visible and near-infrared diffuse reflectance spectroscopy 

(VisNIR) and laser-induced breakdown spectroscopy (LIBS).  

Section 2 presents a study of VisNIR, and Section 3 presents a study of LIBS.  Section 4 presents 

the results of an updated LIBS study with modified instrumentation.  In Section 5, the results of 

the two techniques are compared and analyzed.  Section 5 also discusses research to use the two 

techniques in combination in order to enhance results. 
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2. On-the-go VisNIR: Potential and limitations for mapping soil clay and 

organic carbon 

Bricklemyer, R.S., and D.J. Brown. 2010. On-the-go VisNIR: Potential and limitations for 

mapping soil clay and organic carbon. Comput. Electron. Agric. 70:209-216. 

Abstract 

In situ or on-the-go visible and near infrared (VisNIR) diffuse reflectance spectroscopy has been 

proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon 

(SOC).  While lab-based VisNIR has been established as a viable technique for estimating 

various soil properties, few experiments have compared the predictive accuracy of on-the-go and 

lab-based VisNIR.  In this study, eight north central Montana wheat fields were intensively 

interrogated using on-the-go and lab-based VisNIR.  The on-the-go VisNIR system employed a 

spectrophotometer (350-2224 nm, 8-nm spectral resolution) built into an agricultural shank 

mounted on a toolbar and pulled behind a tractor.  Regional (whole-field out cross-validation) 

and hybrid (regional model including randomly chosen ‘local’ calibration samples) spectral 

models were calibrated using partial least squares regression.  Lab-based spectral data 

consistently provided more accurate predictions than on-the-go data.  However, neither in situ 

nor lab-based spectroscopy yielded even semi-quantitative SOC predictions.  For hybrid models 

with 9 local samples included in the calibrations, standard error of prediction (SEP) values were 

2.6 and 3.4 g kg
-1

 for lab and on-the-go VisNIR respectively, with SOC = 3.2 g kg
-1

.  With an 

SOC coefficient of variation (CV) = 26.7%, even with a relatively low SEP values, there was 

little SOC variability to explain.  For clay content, hybrid +7 calibrations yielded lab SEP = 53.1 

g kg
-1

 and residual product differential (RPD) = 1.8 with on-the-go SEP = 69.4 g kg
-1

 and RPD = 

1.4.  With more variability (Clay = 91.4 g kg
-1

 and CV = 49.6%), both lab and on-the-go VisNIR 

show better explanatory power.  There are a number of potential explanations for degraded on-

the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, 

and a difference between the spatial support of on-the-go measurements and soil samples 

collected for laboratory analyses.  In terms of predictive accuracy, our results are largely 

consistent with those previously published by Christy (2008), but on-the-go VisNIR was not able 

to capture the subtle SOC variability in Montana soils.  Though the current configuration of the 

Veris on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. 

drying, crushing, and sieving) could improve predictions. 

2.1 Introduction 

Soil properties, including soil organic carbon (SOC) and soil texture, vary spatially across 

landscapes (McBratney and Pringle, 1997).  To cost-effectively capture soil variability, on-the-

go visible and near infrared (VisNIR) spectroscopy has been proposed as a rapid and inexpensive 

method of intensively measuring and mapping SOC, soil texture (i.e. clay content), and other soil 

properties (Adamchuk et al., 2004; Christy, 2008; Gehl and Rice, 2007).  While lab-based 

VisNIR has been established as a viable technique for the estimation of multiple soil properties 

(Brown et al., 2006; Morgan et al., 2009; Reeves and McCarty, 2001; Shepherd and Walsh, 

2002; Viscarra Rossel et al., 2006; Waiser et al., 2007), and there are a few published studies of 

in situ VisNIR (Ben-Dor et al., 2008; Morgan et al., 2009; Viscarra Rossel et al., 2009; Waiser et 

al., 2007), few experiments have evaluated the potential and limitations of VisNIR on-the-go for 
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SOC or soil clay content (Christy, 2008; Shibusawa et al., 1999; Shonk et al., 1991; Sudduth and 

Hummel, 1993a; Sudduth and Hummel, 1993b).   

Researchers have evaluated lab-based estimation of SOC and soil clay content using VisNIR 

spectroscopy applied to air-dried, crushed and sieved soil samples for a diverse range of soil 

materials and calibration-validation designs (Viscarra Rossel et al., 2006).  Soil organic carbon 

content has been estimated using VisNIR spectra with root mean square error (RMSE) ranging 

from 0.9 g kg
-1

 to 12.7 g kg
-1

, depending upon soil diversity and validation rigor (Ben-Dor and 

Banin, 1995; Brown et al., 2006; Islam et al., 2003; McCarty et al., 2002; Morgan et al., 2009; 

Reeves et al., 1999; Shepherd and Walsh, 2002; Vasques et al., 2008).  Similarly, soil clay 

content has been predicted on prepared soils with RSME = 11 to 95 g kg
-1

 (Ben-Dor and Banin, 

1995; Brown et al., 2006; Islam et al., 2003; Janik et al., 1998; Shepherd and Walsh, 2002; 

Waiser et al., 2007).  If these results are screened to only include independently validated 

calibrations (Brown et al., 2006), the literature suggests that lab-based VisNIR can provide semi-

quantitative estimation (RPD = 1.5-2.0; with RPD>2.0 considered quantitative) of SOC and clay 

content. 

On-the-go and static in situ VisNIR methods introduce unique challenges for accurate 

determination of soil properties compared to controlled conditions in the laboratory.  Natural soil 

heterogeneity, macro-aggregation, and field moisture content have been identified as variables 

that can reduce the predictive accuracy of VisNIR methods (Christy, 2008; Morgan et al., 2009; 

Sudduth and Hummel, 1993a; Waiser et al., 2007).  Sensors moving through the soil can also 

cause inconsistent soil presentation, smearing, and spectral data that are averaged over some 

distance traveled, dependent on acquisition time and velocity, which can also degrade accurate 

VisNIR predictions (Morgan et al., 2009; Sudduth and Hummel, 1993a; Waiser et al., 2007).   

Both in situ and lab-based VisNIR accuracy statistics are affected by soil diversity and validation 

rigor (Brown et al., 2005; Morgan et al., 2009; Waiser et al., 2007). 

Static VisNIR is accomplished by holding a spectrometer fore-optic stationary on a soil face for 

interrogation, potentially via a penetrometer mounting.  This method has been tested on exposed 

soil faces in pit walls (Ben-Dor et al., 2008; Viscarra Rossel et al., 2009), exterior walls of 

extracted soil core holes (Ben-Dor et al., 2008), and the exterior walls of intact cores (Morgan et 

al., 2009; Waiser et al., 2007).  Waiser et al. (2007) predicted clay content in field-moist intact 

soil cores using partial least squares regression (PLSR) models, which were validated using 30% 

of cores randomly held out (RMSD = 61 g kg
-1

) and whole-field out cross validation (RMSD = 

average of 89 g kg
-1

, 64 - 143 g kg
-1

 across 6 fields).  For this study, smearing of the soil surface 

increased the 30% validation RMSD to 74 g kg
-1

.  As part of the same field campaign, Morgan et 

al. (2009) predicted SOC in field-moist intact soil cores using partial least squares regression 

(PLSR) models validated using 30% of cores randomly held out (RMSD = 5.4 g kg
-1

) and whole-

field out cross validation, with RMSD increasing an average of 1.3 g kg
-1

, -0.4 to 4.5 g kg
-1

 

across 6 fields.  Smearing had only a minor effect on SOC prediction statistics.  Rossel et al. 

(2009), using a large regional spectral dataset for calibration (1287 laboratory- and 74 field-

collected spectra), predicted clay content with RMSE = 7.9% clay.  Ben-Dor et al. (2008) 

predicted SOC
1
 with RMSE = 1.2 g kg

-1
; however, samples used for model validation were not 

                                                 

1
 SOC was estimated assuming 58% organic carbon in SOM (Nelson and Sommers, 1982). 
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completely independent of those used for calibration.  Ben-Dor et al. (2008)concluded that the 

method has good potential for in situ soil characterization and requires additional study and 

validation using independent samples. 

On-the-go VisNIR typically involves a spectrophotometer either enclosed within or connected to 

(via fiber optics) an implement that is inserted into the soil and pulled behind a tractor.  Several 

surface soil properties including surface SOM and SOC have been mapped using on-the-go 

VisNIR with varying degrees of success. Shonk et al. (1991) used a single wavelength diode 

(red, 660 nm) to predict soil organic matter (SOM) in real-time with good success (R
2
 > 0.83, 

SOM = 1-6%).  Sudduth and Hummel (1993a; 1993b) developed an on-the-go NIR spectrometer 

(1650-2650 nm) system that predicted surface SOC with standard error of prediction (SEP) of 

2.3 g kg
-1

 SOC in laboratory tests; however, SEP increased to 5.3 g kg
-1

 in independent field 

tests.  Shibusawa et al. (1999) tested a prototype on-the-go VisNIR (400-1700 nm) instrument; 

measured SOM was highly correlated to certain NIR wavelengths, however independent 

validation was not executed.  More recently, Christy (2008) reported good predicted accuracy 

(RMSE = 3.0 g kg
-1

) for mapping SOC
1
 in Kansas (SD = 5.1 g kg

-1
, SOC = 3.0-26.3 g kg

-1
) using 

a shank-mounted on-the-go VisNIR sensor (950-1650 nm) and whole-field cross-validation (n = 

8 fields).  To the best of our knowledge, there are no studies published in the utility of on-the-go 

VisNIR for soil clay content estimation. 

The primary objective of this study was to compare the predictive accuracy for estimating SOC 

and soil clay content measured in situ with an on-the-go VisNIR sensor versus a lab-based sensor 

interrogating air-dry, sieved soil samples.  Researchers also tested regional (i.e. whole-field out) 

calibration models versus hybrid regional models (regional models including a few “local” 

calibration samples), and quantified the change in prediction accuracy of hybrid models with 

increasing numbers of local samples in the calibration. 

2.2 Materials and Methods 

2.2.1 Study Area 

The study area for this research was in the north central region of Montana, USA (Figure 1).  

This region is characterized by soils formed in glacial till on gently rolling topography in a 

frigid, ustic, continental climate.  Soils in the study area were not highly weathered and typically 

were calcareous within 0.5 m of the surface.  Aridic intergrades of frigid, ustic, Mollisols, 

Entisols, and Inceptisols predominated.  Cropping systems in the study area generally consisted 

of reduced tillage, small grain-fallow rotations with a significant acreage managed by direct-

seeding (i.e. no-till).  All eight sampling sites had a general cropping history of cultivation 

beginning in the 1920’s progressing to wheat-fallow rotations with multiple tillage operations per 

year and finally conversion to a direct-seeded wheat-fallow rotation between 2004 and 2005. 
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Figure 1.Geographical location of the study area with eight (8) selected farm fields. 

 

2.2.2 Digital and Field Data  

The sampling design and data collection for this project was multi-leveled and multi-faceted.  

Eight farm fields (259 hectares [ha]; 640 acres [ac]) were selected at random from a larger 

population of farm fields enrolled in a carbon offset marketing pilot. The eight selected fields 

were each divided into 16.2 ha (40 ac) sub-fields and one sub-field was randomly chosen for 

VisNIR scanning and soil sampling in the fall of 2006. 

 

The research team intensively scanned each sub-field using a new commercially available on-

the-go VisNIR sensor (Veris Technologies Inc., Salina, KS, USA).  Fields were scanned 

approximately a week after rains to allow enough dry down time to permit field access.  The 

Veris system employed a spectrophotometer (350-2224 nanometers [nm], 8-nm spectral 

resolution) built into an agricultural shank mounted on a toolbar and pulled behind a tractor 

(Christy, 2008).  Spectral measurements were made through a sapphire window mounted on the 

bottom of the shank with fiber optic cables transferring the diffuse reflected light from the soil to 
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the spectrometer and into a laptop computer for storage.  The shank was lowered to 

approximately 10 cm into the soil and pulled at approximately 5 km/h along 15-m spaced, north-

south transects (Figure 2).  Approximately 20 spectra were acquired per second and a spectral 

average was calculated every 2.5-3 s, representing approximately 4 m of travel.  Spectral 

averages were stored on the laptop computer in conjunction with Wide Area Augmentation 

System (WAAS) real-time corrected GPS data for each point.   

 

 

Figure 2. Example of on-the-go north-south oriented transects showing 

data collection points (open circles) and 100 reference soil sample 

locations (black crosses).  Blank areas within transects were caused by 

sensor skips and temporary WAAS GPS signal loss. 

 

Soil sampling was designed to capture representative variability within each sub-field.  A 15 m 

grid, following the same transects used for VisNIR scanning, was superimposed over each sub-

field and 100 georeferenced grid intersections were chosen randomly with a 30-m spatial 

inhibition function added to ensure representative coverage of the sub-field (Figure 2).  Three 

surface soil samples (0-10 cm) were taken using a slide hammer and 5 cm diameter coring tube 

in a 1 m triangular configuration straddling the VisNIR transect at each of the 100 selected 

intersection points and homogenized for further analysis in the lab.  Samples were dried, crushed 

to pass a 2 mm sieve, and scanned using a lab-based VisNIR spectrometer produced by 

Analytical Spectral Devices, Inc. (ASD Inc., Boulder CO, USA;  FieldSpec Pro, 350-2500 nm, 3 

and 10 nm spectral resolutions for the 512 element silicon photo-diode array (350-1025 nm) and 

InGaS (1025-2500 nm) detectors, respectively).  Soil total carbon (TC) was measured by dry 

combustion (LECO TruSpec, Leco Corp., St. Joseph, MI), soil inorganic carbon (IC) was 

determined by modified pressure calcimeter method (Sherrod et al., 2002), and soil organic 
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carbon (SOC) was determined by the difference (SOC = TC – IC) (Bricklemyer et al., 2007).  

Soil clay content was determined by pipette method (Gee and Bauder, 1986).  For SOC and clay 

content, the standard error of laboratory measurement (SEL) was estimated using replicate 

laboratory measurements as described by Workman (2001). 

On-the-go spectral data used for model calibration and validation were extracted using GPS 

coordinates.  Using ArcMap (ESRI, Redlands, CA, USA), on-the-go measurement locations 

were matched with the nearest georeferenced soil sampling location and the corresponding 

VisNIR spectral data were extracted for post-processing, partial least squares regression (PLSR) 

modeling, and accuracy assessment. All spectra (lab-based and on-the-go) were checked for 

errors and smoothed using cubic smoothing splines with 1
st
 derivatives extracted in 10 nm 

increments directly from spline fits,  following methods outlined in Brown et al. (2006).   

2.2.3 Partial Least Squares Modeling 

Regional and “hybrid” Partial Least Squares Regression (PLSR) calibration models were derived 

for both SOC and soil clay content.  Regional models were constructed employing a whole-field 

out cross-validation approach, whereby each field was held out in turn for model validation, with 

data from the other seven fields used for model calibration.  For example, data for field #1 was 

held out from the calibration set, and data from fields 2-8 were used to calibrate PLSR models to 

independently predict SOC and clay content for field #1.  Then, data from field #2 was held out, 

and new PLSR models were derived using data from fields 1 and 3-8 to predict SOC and clay 

content for field #2.  The systematic removal of holding out data from whole fields, calibrating 

new PLSR models using data from the remaining fields, and predicting SOC and clay content for 

the held out field continued until each of the eight fields had been predicted.  For hybrid models, 

researchers included 1, 2, 3, 4, 5, 7, and 9 randomly selected “local” samples from the held-out 

validation field in the calibration set, with the same 8-fold cross-validation regional modeling 

approach.  To test for potential loss in prediction accuracy due to differences in the spectral 

ranges of the two sensors (lab-based = 350-2500 nm, on-the-go = 350-2200 nm), regional and 

hybrid PLSR calibration models were also derived using lab-acquired spectra reduced to the 

same spectral range as the on-the-go spectrometer. 

The quality of PLSR model fit was evaluated using performance statistics derived from the 

regression of PLSR predicted vs. laboratory measurements (Brown et al., 2005; Gauch et al., 

2003): 
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where b and r
2
 are the slope and square correlation, respectively, from the least-squares 

regression of Ypred on Ylab, SEP = standard error of prediction, RPD = residual product 

differential.  Lack of accuracy is described by portioning mean squared deviation (MSD) into 

three components: squared bias (SB), non-unity regression line (NU) and lack of correlation 

(LC). Researchers derived the RPL statistic (Ratio of Prediction error to Lab reference error) as a 

simple method to scale SEP relative to the precision error of the standard laboratory reference 

method (SEL). 

2.3 Results 

Summary statistics for standard laboratory measured soil organic carbon (SOC) and soil clay are 

presented in Table 1.  Values for SOC did not exceed 27.2 g kg
-1

 and clay content ranged 

between 55 and 483 g kg
-1

 across eight farm fields.  Soil organic carbon varied little across all 

sites (σ = 3.2 g kg
-1

, CV = 26.7%) compared to soil clay (σ = 91.4 g kg-1, CV = 49.6%).  

Standard error of lab measurements (SELSOC = 0.95 g kg
-1

, SELclay = 19.7 g kg
-1

) accounted for 

22% and 29% of clay and SOC variation, respectively. 
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Table 1: Summary Statistics  

 

 

The research team did not achieve even semi-quantitative levels of validation accuracy for 

regional SOC modeling ( 

Table 2: PLSR model statistics 

 

Summary statistics for standard laboratory measured soil organic carbon (SOC) and 

soil clay content in eight (8) north central Montana, USA wheat fields.

N Mean σ Median Min Max CV (%) SEL

g kg
-1

g kg
-1

g kg
-1

g kg
-1

g kg
-1

% g kg
-1

SOC 765 12.1 3.2 11.8 6.0 27.2 26.7 0.95

Clay 311 216.2 91.4 209.0 55.0 483.0 42.3 19.7

σ = standard deviation, CV = coefficient of variation, SEL = standard error 

of laboratory measurement

Table 1. 

Table 2.  

Regional and hybrid PLSR model statistics predicting soil organic carbon (SOC) and soil clay content using full and reduced spectrum

 lab-based (Lab) and on-the-go (In Situ) VisNIR. 

Spectra 

Presentation

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

SEP 2.8 2.8 3.5 2.6 2.6 3.4 62.4 63.4 90.3 51.6 53.1 69.4

RPD 1.1 1.1 0.9 1.3 1.3 1.0 1.5 1.4 1.0 1.8 1.8 1.4

RPL 2.8 2.8 3.5 2.5 2.5 3.4 3.0 3.1 4.5 2.4 2.5 3.4

R
2

0.36 0.36 0.00 0.42 0.39 0.02 0.59 0.59 0.17 0.75 0.74 0.50

SB (%)
†

0.1 0.7 0.2 0.6 0.1 0.3 9.2 14.0 9.3 10.7 13.1 7.7

NU (%)
†

23.5 24.5 80.8 36.1 43.3 84.5 51.2 44.1 56.4 43.9 40.9 52.2

LC (%)
†

76.4 74.8 19.0 63.3 56.6 15.2 39.6 41.9 34.3 45.4 46.0 40.1

Full = full spectrum (350-2500 nm), Reduced = reduced spectrum (350-2200 nm), MSD = mean squared deviation, SB = squared bias, 

NU = non-unity of regression line slope, LC = lack of correlation, RPD = residual product differential, SEP = standard error of prediction.

RPL = ratio of prediction to laboratory error [((SEP
2
-SEL

2
)
0.5

)/SEL]
†
 percent of mean squared deviation

Regional (N=311) Hybrid-7 (N=257)

Clay (g kg
-1

)

Regional (N=765) Hybrid-9 (N=693)

SOC (g kg
-1

)
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).  The best regional SOC calibration model (RPD = 1.1, RPL = 1.8) was derived using lab-based 

spectroscopy applied to prepared samples (Table 2, Figs. 3-6), with in situ data yielding less 

accurate predictions (RPD = 0.9, RPL = 2.3).  Though RPL values are actually low, standard 

error of prediction (SEP) values (2.8 and 3.5 g kg
-1

 for lab-based and in situ data, respectively) 

were similar to σsoc (3.2 g kg
-1

). The majority of mean squared deviation (MSD) for SOC 

predictions was attributed to lack of correlation (LC) using prepared sample data (LC = 76.4% of 

MSD) and non-unity of regression line slope (NU) using in situ data (NU = 80.8% of MSD). 
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Table 2: PLSR model statistics 

 

 

 

Table 2.  

Regional and hybrid PLSR model statistics predicting soil organic carbon (SOC) and soil clay content using full and reduced spectrum

 lab-based (Lab) and on-the-go (In Situ) VisNIR. 

Spectra 

Presentation

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

Full     

Lab

Reduced 

Lab

Reduced   

In situ

SEP 2.8 2.8 3.5 2.6 2.6 3.4 62.4 63.4 90.3 51.6 53.1 69.4

RPD 1.1 1.1 0.9 1.3 1.3 1.0 1.5 1.4 1.0 1.8 1.8 1.4

RPL 2.8 2.8 3.5 2.5 2.5 3.4 3.0 3.1 4.5 2.4 2.5 3.4

R
2

0.36 0.36 0.00 0.42 0.39 0.02 0.59 0.59 0.17 0.75 0.74 0.50

SB (%)
†

0.1 0.7 0.2 0.6 0.1 0.3 9.2 14.0 9.3 10.7 13.1 7.7

NU (%)
†

23.5 24.5 80.8 36.1 43.3 84.5 51.2 44.1 56.4 43.9 40.9 52.2

LC (%)
†

76.4 74.8 19.0 63.3 56.6 15.2 39.6 41.9 34.3 45.4 46.0 40.1

Full = full spectrum (350-2500 nm), Reduced = reduced spectrum (350-2200 nm), MSD = mean squared deviation, SB = squared bias, 

NU = non-unity of regression line slope, LC = lack of correlation, RPD = residual product differential, SEP = standard error of prediction.

RPL = ratio of prediction to laboratory error [((SEP
2
-SEL

2
)
0.5

)/SEL]
†
 percent of mean squared deviation

Regional (N=311) Hybrid-7 (N=257)

Clay (g kg
-1

)

Regional (N=765) Hybrid-9 (N=693)

SOC (g kg
-1

)
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Figure 3: Whole-field out validation of soil 

organic carbon predicted using partial least 

squares regression modeling of lab-based (a) 

and on-the-go VisNIR (b) 

Figure 4: Hybrid model validation of SOC 

predicted using PLSR modeling of lab-based 

(a) & on-the-go VisNIR (b) 

 

Regional calibrations for soil clay content were more accurate using lab-based interrogation of 

prepared samples.  The regional clay model derived from prepared sample spectra achieved 

semi-quantitative accuracy (RPD = 1.5, RPL = 3.0).  Calibrations using the in situ spectra, again 

yielded limited prediction accuracy (RPD = 1.0, RPL = 4.5).  The lab-based regional clay model 

SEP (62.4 g kg
-1

) was substantially lower than both the in situ regional model SEP (90.3 g kg
-1

) 
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and σclay (91.4 g kg
-1

) (Table 2, Figures. 3-6).  The majority of the MSD for both prepared 

sample and in situ derived regional clay models was attributed to NU (51.2% and 56.4% of 

MSD, respectively). 

 

  

Figure 5: Whole-field out validation of soil 

clay content predicted using partial least 

squares regression modeling of lab-based (a) 

& on-the-go VisNIR (b) 

Figure 6: Hybrid model validation of soil clay 

content predicted using PLSR modeling of lab-

based (a) & on-the-go VisNIR (b) 
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Increasing the number of “local” samples added to regional calibrations (i.e. hybrid models) 

yielded some improvement in predictive accuracy.  Adding 1 to 9 local samples to regional clay 

models increased RPD values from 1.4 to 1.8 for lab calibrations and 1.0 to 1.4 for in situ 

calibrations (Figure 7).  There were, however, only slight accuracy improvements for SOC 

calibrations when local samples were added to regional models (Figure 7, Table 2). 

 

 

Figure 7: Predictive accuracy response to the addition of local samples in hybrid partial least 

squares regression calibration models for soil clay content & soil organic carbon (SOC) 

 

Differences in the spectral range of the sensors had little effect on prediction accuracy.  Reducing 

the spectral range of the lab-acquired data to match the spectral range of the on-the-go sensor 

only reduced R
2
 from 0.42 to 0.39 for the hybrid-9 SOC model, and SEP and RPD were 

unchanged (Table 2).  Regional clay models were only slightly degraded with SEP increasing 1.0 

g kg
-1

 and RPD decreasing 0.1 (Table 2).  Similarly, the hybrid clay model SEP increased 1.5 g 

kg
-1

 (Table 2). 
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2.4 Discussion 

Both lab-based and on-the-go SOC predictive accuracy results, expressed as SEP, were similar to 

studies reviewed in the introduction, although not highly correlated with laboratory 

measurements.  Both lab-based and on-the-go regional and hybrid SOC model RPD values (0.9 – 

1.3) were lower than on-the-go RPD (1.7) reported by Christy (2008).  But, measured SOC 

standard deviation (σsoc = 3.2 g kg
-1

) in this study, was substantially less than σsoc reported by 

Christy (5.1 g kg
-1

, 2008)
2
.  Interestingly, SEP values were similar between this and the Christy 

(2008) study (3.5 and 3.0 g kg
-1

, respectively).  Clay content was more variable than SOC (CV= 

42.3% vs. 26.7%, respectively), and clay models had higher RPD values.  It is important to 

remember that given constant prediction error (SEP), increasing target parameter variability (Y) 

will result in improved r
2
 and RPD statistics.  So the poor performance of on-the-go VisNIR in 

this study could be due to the low variability in SOC and to a lesser extent clay content.  The fact 

that even the lab-based VisNIR calibrations were very poor for SOC and only semi-quantitative 

for clay content lends credence to this argument. 

Previous studies have highlighted the necessity of a wider spectral range to accurately predict 

SOC.  For example, Brown et al. (2006) reported that reflectance between 2000 – 2500 nm was 

important for SOC and clay content prediction.  Similarly, Mouazen et al (2006) suggested that 

collecting diffuse VisNIR reflectance between 1700 and 2500 nm improved prediction accuracy 

for wet, in situ soil nitrogen (N), carbon (C), sodium (Na), and magnesium (Mg) measurements; 

and Sudduth and Hummel (1993a) reported that 1660 – 2620 nm was the most predictive range 

for organic carbon.  The spectral range of the on-the-go sensor in this study was 350 – 2200 nm, 

compared to 350 – 2500 nm captured by the laboratory instrument.  However, differences 

between the spectral ranges of the lab-based and on-the-go spectrometers did not contribute to 

meaningful differences in predictive accuracy.  The results from this study suggest that 1) 

spectral information between 2200 and 2500 nm did not improve lab calibrations for SOC and 

clay, and 2) the reduced spectral range was not responsible for degraded on-the-go sensor 

prediction accuracy for this study.   

On-the-go VisNIR measurements also have unique concerns related to continuously collecting 

data while moving through the field.  Soil passing the sensor during scanning could cause 

different wavelengths to be captured at different physical locations (Christy, 2008; Sudduth and 

Hummel, 1993a).  This potential problem was not a consideration in this study because the on-

the-go instrument employed an array spectrometer that captured the entire spectrum 

simultaneously by using a grating to separate the reflected light according to wavelength, and 

then projected the light onto an InGaAs detector with an integration time of 0.042 s.  Scanning 

type spectrometers, such as the lab-based instrument used in this study, measure one wavelength 

at a time and progress through the entire spectrum with an integration time of 0.1 s to complete a 

scan.  A scanning type spectrometer used on-the-go could degrade accuracy by measuring soil 

reflectance across different soil scenes as it collects data through the spectrum.  The scanning 

nature of the lab-based instrument was a non-issue in this study because soil samples were 

stationary when interrogated in the laboratory.   

                                                 

2
 σsoc estimated for the Christy (2008) study assuming 58% SOC in soil organic matter (Nelson and Sommers, 

1982). 
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Soil heterogeneity may have caused reduced prediction accuracy for the on-the-go VisNIR 

sensor compared to the lab-based spectrometer.  Precipitation just prior to field sampling 

operations likely increased spatial and temporal variation of soil moisture across the study area.  

Oxygen-Hydrogen (O-H) bonds associated with water have two strong absorption features near 

1400 and 1900 nm which may have obscured spectral information important to on-the-go SOC 

and clay predictions.  More so, inconsistent soil roughness occurring as soil macro-aggregates 

were disturbed by pulling a shank through the soil also may have negatively impacted accuracy 

results.  This is consistent with previous studies that have indicated that in situ measurement 

accuracy can be degraded by heterogeneity in soil moisture, aggregation, and surface roughness 

(Christy, 2008; Morgan et al., 2009; Shonk et al., 1991; Waiser et al., 2007).   

Inconsistent soil presentation and soil smearing are other possible sources of error in this study.  

Sudduth and Hummel (1993a) reported considerable reflectance value offset as sensor-to-sample 

height varied from 5 to 25 mm.  The quartz-sapphire window of the on-the-go sensor in this 

study slid along the bottom of a trench opened by the lead edge of the shank.  Under ideal 

conditions, the sensor window would have consistent soil contact, which maintains a constant 

view height and angle for the reflected VisNIR signal.  However, wheat field surfaces are not 

smooth and pulling a VisNIR sensor behind a tractor over rough and uneven surfaces possibly 

caused inconsistent soil contact with the bottom of the trench, thus view height and angle 

variation could have occurred.  Additionally, soil smearing, particularly under the moist 

conditions during field sampling, could have occurred as the shank and sensor window slid along 

the trench.  Simulating a VisNIR sensor being pushed vertically into soil, Waiser et al. (2007) 

and Morgan et al. (2009) both reported higher RMSD for predicting clay and SOC when field-

moist intact soil cores were smeared prior to VisNIR interrogation.   

Differences in spatial support (Dungan et al., 2002) for the reference laboratory analyses vs. in 

situ VisNIR interrogations could have impacted the estimated accuracy for in situ VisNIR soil 

calibrations.  Data obtained on-the-go was the average of 20 spectra collected at ~ 5 km/h along 

a ~10-cm deep trench, with each resulting spectrum capturing approximately 4-5 m of travel.  

For both in situ and lab-based VisNIR model calibration and validation, we extracted three 0-10 

cm deep, 5 cm diameter soil cores at the vertices of a triangle that measured 1-m along each side 

and straddled the transect.  These samples were composited and homogenized for laboratory 

VisNIR and reference analysis.  Christy (2008), however, collected reference soil samples for 

model calibration and validation that were 1 cm deep, 3 cm wide, and 1 m long from the bottom 

of the trench directly interrogated by the on-the-go VisNIR sensor.  Support differences between 

the on-the-go sensor and laboratory analyses could have contributed to the poorer in situ vs. lab-

based calibrations reported in this study. 

Most of the potential problems with on-the-go VisNIR soil spectroscopy are eliminated in the 

laboratory due to processing steps that remove moisture, remove gravels, break up aggregates, 

homogenize soil material, and ensure good sample presentation.  An instrument that processed 

soils on-the-go, in the field prior to VisNIR interrogation would likely produce substantially 

better calibrations.  Alternatively, perhaps on-the-go VisNIR should only be applied to fields 

with substantial variability in soil properties of interest. 

Including up to nine ‘local’ samples in hybrid models had differing effects on prediction 

accuracy for SOC and clay content.  Including up to nine ‘local’ samples in hybrid SOC models 

had no apparent impact on predictive accuracies, likely because there was little SOC variability 
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across the study area (CV = 26.7%).  In comparison, clay content had greater variation across the 

study area (CV = 42.3% ) and adding ‘local’ samples to regional clay models increased RPD 

from 1.5 to 1.8 and 1.0 to 1.4 for lab-based and in situ interrogations, respectively.  This finding 

suggests that hybrid models would be more effective for predicting target variables with greater 

variability. 

2.5 Conclusions 

Lab-based VisNIR spectroscopy provided somewhat more accurate predictions than in situ on-

the-go VisNIR sensing.  In terms of SOC predictive accuracy, our results are largely consistent 

with those previously published by Christy (2008), but on-the-go VisNIR was not able to capture 

the subtle SOC variability in Montana soils.  Estimating SOC in fields with low SOC variability 

did not produce usable results for either on-the-go or lab-acquired spectra. Spectra from prepared 

samples did, however, yield semi-quantitative regional and hybrid calibrations for soil clay.  

Regional clay models derived from on-the-go VisNIR spectra did not provide useful predictions; 

however, hybrid on-the-go soil clay models, using up to seven local samples in the calibration 

approached semi-quantitative predictive levels (RPD = 1.4, RPL = 3.4).  This suggests on-the-go 

VisNIR spectroscopy has potential for mapping soil clay, assuming that local samples are 

available for recalibration at every field.  Results comparing spectral ranges of the two 

instruments suggest increasing the spectral range of the on-the-go sensor similar to that of a lab-

based spectrometer will not improve predictions for this application.  Our findings indicate that 

on-the-go VisNIR might not be effective in mapping fields with relatively low target property 

variability.  Given the better performance with processed soil samples in the laboratory, 

researchers and equipment designers might consider developing instruments to process soils on-

the-go, in the field. 
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3. Intact soil core total, inorganic and organic carbon measurement using 

laser-induced breakdown spectroscopy (LIBS). (Accepted for publication, 

SSSAJ) 

Abstract 

Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology 

with the potential to provide rapid, accurate and precise analysis of soil constituents, such as 

carbon, in situ across landscapes.  Researchers evaluated the accuracy of LIBS measuring soil 

profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by 

a probe-mounted LIBS instrument measuring soil profile carbon in situ. The team interrogated 

78 intact soil cores from three north central Montana wheat fields.  Samples from each core were 

analyzed in the laboratory for total carbon (TC), inorganic carbon (IC), and soil organic carbon 

(SOC). Partial least squares 2 regression (PLS2) calibration models were derived using 58 cores 

(227 samples) and independently validated at the field-scale with the remaining 20 cores (79 

samples). Researchers obtained the best LIBS validation predictions for IC (r
2
 = 0.66, SEP = 5.3 

g kg
-1

, RPD = 1.7) followed by TC (r
2
 = 0.63, SEP = 6.0 g kg

-1
, RPD = 1.6) and SOC (r

2 
=0.22, 

SEP = 3.2 g kg
-1

, RPD=1.1).  Though the standard error of prediction (SEP) for SOC was less 

than that for TC and IC, low SOC variability resulted in low r
2
 and RPD statistics.  Laser-

induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS 

PLS2 models appeared to discriminate IC from TC.  Regression coefficients from these models 

suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other 

elements related to total and inorganic carbon in the soil matrix [Ca (210.2 nm, 211.3 nm, and 

220.9 nm), Mg (279.55-280.4 nm, 285.26 nm), and silicon (Si) (251.6 nm, 288.1 nm)].  

Expanding the LIBS spectral range to capture emissions from a broader range of elements related 

to soil organic matter might improve SOC predictions.   Results indicate that LIBS spectral data, 

collected on intact soil cores, can be calibrated to accurately estimate and differentiate between 

soil total and inorganic carbon concentrations using PLS2 regression analysis.  A lack of SOC 

variability limited our ability to evaluate LIBS SOC prediction capabilities, with σSOC = 3.47 g 

kg
-1

 = 2.5 × SELSOC (standard error of the laboratory reference measurement).  Calibration 

performance statistics from this study were substantially degraded relative to previously 

published research, a result attributed to the challenges of interrogating intact soil surfaces vs. 

prepared soil samples. As research matures for this emerging spectroscopic method, new field-

deployable equipment should be developed to exploit the unique ability of LIBS to rapidly 

characterize soil elemental composition. 

 

3.1 Introduction 

There is a growing need for rapid, accurate, and inexpensive methods to measure and verify soil 

organic carbon (SOC) sequestration for national greenhouse gas accounting and the development 

of a soil carbon trading market (Council, 1999; Gehl and Rice, 2007).  In particular, techniques 

for the rapid measurement of SOC in situ are required (Christy, 2008; Gehl and Rice, 2007).  

Laser-induced breakdown spectroscopy (LIBS) is an emerging spectroscopic technique for rapid 

quantification of soil carbon and other soil constituents (Cremers et al., 2001; Ebinger et al., 

2003; Martin et al., 2003; Martin et al., 2004; Martin et al., 2007).  Moreover, the LIBS 

instrument is capable of being mounted in a soil penetrometer (Mosier-Boss et al., 2002) which 
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could be deployed for rapid soil profile characterization and mapping at field and landscape 

scales. 

Laser-induced breakdown spectroscopy (LIBS) is fundamentally an elemental analysis probe 

based on atomic emission spectroscopy.  Thus LIBS has the potential to complement 

characterization of soil minerals and organic molecules provided by visible-near infrared diffuse 

reflectance spectroscopy (Brown et al., 2006; Clark, 1999; Hunt, 1982).  Typical LIBS analysis 

involves directing a focused Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser onto 

the surface of a target material (Radziemski and Cremers, 1989).  The focused laser ablates a 

small amount of surface material producing expanding plasma, containing electronically excited 

ions, atoms, and small molecules.  As these excited species relax to lower electronic states they 

emit light at wavelengths indicative of the elemental composition of the ablated sample.  Some 

of the emission is captured by a fiber optic cable, directed into a dispersive spectrometer, and 

recorded with a charge coupled detector (CCD) (Clegg et al., 2009; Cremers et al., 2001; Ebinger 

et al., 2003; Martin et al., 2003; Radziemski and Cremers, 1989; Thompson et al., 2006).  The 

resulting spectra show discrete emission lines that represent electronic emissions for most atoms 

and ions present in the ablated material. LIBS spectra from elementally complex samples, such 

as soils, are spectrally complex as depicted in Figure 8.  The spectrally robust and complex 

nature of LIBS allows one to detect every element present in the sample probed (above the 

detection limit) on every laser shot. 

 

 

Figure 8: A LIBS spectrum (200-300 nm) of a representative soil core. LIBS spectra are typically 

spectrally rich containing many emission lines for each element in the sample.  Some of the 

emission features associated with the major elements present in the sample are identified. 
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Univariate calibrations of LIBS spectra are generally complicated by chemical matrix effects.   

Chemical matrix effects have been defined as chemical properties of the interrogated sample that 

impact the relationship between emission line intensity (or area) and the concentration of the 

element in the sample responsible for producing that line (Cremers and Radziemski, 2006; 

Eppler et al., 1996; Gornushkin et al., 2002; Häkkänen and Korppi-Tommola, 1998).  More 

specifically, matrix effects are related to the elemental and molecular composition of the sample, 

plasma composition, within plasma interactions, and laser-sample coupling efficiency.  

Previously published studies have attempted to compensate for these matrix effects and increase 

predictive accuracy by employing a variety of approaches (Clegg et al., 2009): (a)  peak height or 

peak area calibration to standards with known composition (Ebinger et al., 2003; Eppler et al., 

1996; Martin et al., 2003; Salle et al., 2006); (b) normalization of LIBS spectra to total emission 

intensity (Clegg et al., 2009; Thompson et al., 2006); (c) normalization of peak height or area to 

another spectral feature (Cremers et al., 2001; Eppler et al., 1996; Salle et al., 2006); (d) 

employing a plasma physics model without the use of calibration curves or “calibration-free 

LIBS” (Salle et al., 2006; Yaroshchyk et al., 2006); (e) spectrally averaging multiple 

interrogations per sample for calibration and and/or validation (Bousquet et al., 2007; Bousquet 

et al., 2008; Clegg et al., 2009; Eppler et al., 1996; Martin et al., 2003), and (f) employing 

chemmometric statistical approaches for predictive model calibration (Bousquet et al., 2007; 

Clegg et al., 2009; Ferreira et al., 2008; Martin et al., 2005; Martin et al., 2010; Martin et al., 

2007; Sirven et al., 2006) 

With proper calibration, LIBS can provide a precise and selective method for measuring metal 

ions such as lead (Pb), beryllium (Be), chromium (Cr), and strontium (Sr) in paint and soils 

(Sirven et al., 2006; Yamamoto et al., 1996), N, Pb, and Ba in sand (Eppler et al., 1996; Harris et 

al., 2004), and copper (Cu), zinc (Zn), and arsenic (As) in wood preservatives (Martin et al., 

2005).  Though there have been relatively few applications of LIBS for soil carbon 

determination, published calibrations show LIBS spectra to be well correlated with standard dry 

combustion measurements of total soil carbon with reported r
2
 values of 0.93 to 0.99 (Cremers et 

al., 2001; Ebinger et al., 2003; Martin et al., 2003; Martin et al., 2010; Martin et al., 2007).  

There is; however, no published literature demonstrating the ability of LIBS to distinguish 

between total and inorganic soil carbon. 

There has been little independent validation of published LIBS calibrations for soil carbon using 

a large number of soil samples.  Cremers et al. (2001) used a subset of 12 Colorado agricultural 

soil samples from conventionally tilled farms to calibrate a LIBS model (r
2
 = 0.96) and verified 

the model with a different subset (N=8) of the same Colorado soils, as well as soils from Los 

Alamos, NM (N=10) that formed in different parent materials (accuracy = 3 to 14% relative 

standard deviation).  Ebinger et al. (2003) used six randomly chosen soil samples from a dataset 

of 18 samples collected from three Colorado farm fields to calibrate a model (r
2
 = 0.99) then 

used the model to predict the remaining 12 samples (r
2
 = 0.95).  It is not yet standard practice in 

LIBS spectroscopy to ‘hold-out’ independent samples for validation (Martin et al., 2003; Martin 

et al., 2010; Martin et al., 2007).  While published research shows the potential of LIBS for SOC 

determination, further work is required with larger sample sets and more rigorous model 

validation. 

The soil samples employed in the studies cited above were pre-treated prior to LIBS 

interrogation.  Pre-treatments included: air-drying, sieving and packing in quartz tubes (Cremers 

et al., 2001); pelletizing under pressure (Martin et al., 2004; Martin et al., 2010; Martin et al., 
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2007); and treating with acid to remove carbonates, pelletizing in a tube, and air-drying (Martin 

et al., 2003).  Though LIBS has been proposed as an in situ SOC measurement tool (Gehl and 

Rice, 2007), it remains to be demonstrated that in situ results will match those obtained with 

prepared samples.   To our knowledge, the study reported in this paper is the first to measure soil 

carbon content in field-moist intact cores without soil physical pretreatments. 

The objectives of this study were to (1) evaluate the accuracy of field-scale LIBS calibrations for 

soil profile carbon in field-moist, intact soil cores without soil pretreatments, and (2) determine if 

TC, IC, and SOC can be differentiated using LIBS calibrations.  Though important SOC 

elements such as H, O and N cannot be detected with the 200-300 nm LIBS spectral range 

employed in this study, researchers theorized that it might be possible to estimate SOC by 

subtraction should Ca and Mg emissions support the discrimination of total and inorganic C.  

The team defined accuracy as agreement between LIBS measurements and standard laboratory-

based soil measurements.  Field-moist intact cores were used to simulate conditions that might 

be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ.  

3.2 Material and Methods 

3.2.1 Study Area 

The “Golden Triangle” region of north central Montana, USA served as our research study area 

(Figure 9).  This region was characterized by soils formed in glacial till on gently rolling 

topography.  Soils were not highly weathered and were typically calcareous within 0.5 m of the 

surface.  Aridic intergrades of frigid, ustic, Mollisols, Entisols, and Inceptisols predominated.  

Cropping systems in the study area were generally reduced tillage small grain-fallow rotations 

with a significant acreage managed by direct-seeding or no-till.  All three sampling sites had a 

general cropping history of cultivation beginning in the 1920’s progressing to wheat-fallow 

rotations with multiple tillage operations per year and finally conversion to a direct-seeded 

wheat-fallow rotation between 2004 and 2005. 

 

3.2.2 Soil Sampling 

In 2006, 78 intact cores were obtained from three 16.2 ha sub-fields in north central Montana 

with locations shown in Figure 9.  Soil coring locations were selected based on surface soil (0-10 

cm) visible and near-infrared (VisNIR) reflectance acquired for a parallel study focused on that 

technology (Bricklemyer and Brown, 2010).  Intact, 4.45 cm diameter by 50 cm deep soil cores 

were extracted using a truck-mounted hydraulic soil sampling tube fitted with removable plastic 

sleeves (Giddings Machine Co., Windsor, CO).  The field-moist intact cores were transported to 

the laboratory and stored under refrigeration prior to interrogation.  
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Figure 9: Geographical location of the study area with 3 selected farm fields (A), & randomly 

selected calibration (triangles) & validation (circles) core locations at the LYD (B), HOR (C), & 

MAT (D) sites. 

 

3.3 Core Interrogation 

Researchers interrogated intact soil cores to simulate conditions that might be encountered by a 

penetrometer-mounted LIBS instrument performing in situ soil characterization following the 

general protocol of Waiser et al. (2007).  Each field moist core was interrogated at 8 depths 

through ~ 3 x 3 cm windows cut in the plastic core sleeve (Figure 10). A prototype Los Alamos 
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National Laboratory LIBS Core Scanning (LIBS-CS) instrument was used to  probe the samples 

in an argon purged environment at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35, and 45 cm (+/- 1.5 cm) 

along each intact soil core with 9 interrogation points per depth.  Interrogation points were 

approximately 0.5 cm apart and centered within the 3 x 3 cm window.  Each LIBS interrogation 

point measured approx. 200 μm in diameter and probed a volume of ~ 8x10
-5

 cm
3
.  The LIBS-CS 

instrument employed a Big Sky Laser operating at 1064 nm, firing laser pulses at 10 Hz, 

producing approximately 80mJ/pulse.   

 

 

Figure 10: LIBS sampling depths on a representative intact soil core & LIBS interrogation point 

configuration within a depth sample (inset). 

 

The LIBS spectra were collected with an optical fiber and directed into an Ocean Optics HR2000 

spectrometer (200-300 nm, 0.1 nm spectral resolution, 2046 wavelengths).  The 200-300 nm 

spectral range was chosen because, at the time of instrument development, published studies 

measuring carbon with LIBS typically used univariate calibration using peak height of the 

carbon emission at 247.8 nm.  The spectrometer is readout noise limited and signal-to-noise 

ratios improve if emissions from multiple laser shots are used (Clegg et al., 2009).  For this 

experiment, the team set the spectrometer to a one-second integration time with 5 averages so 

that each spectrum (i.e. interrogation point) represented 50 laser shots.  An argon purge was used 

to replace ambient air between the sample and the sensor to reduce plasma interferences from 

oxygen. A similar argon purge would be operationally feasible for an in situ application, a LIBS 

instrument mounted in a soil penetrometer for example, given the small gas volume needed to 

purge a 200 m interrogation point along a soil profile.  The LIBS data were normalized to the 

total integrated intensity by dividing each wavelength value by the sum of all wavelength values 
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for each spectrum prior to spectral model calibration as detailed by Thompson et al. (2006) and 

Clegg et al. (2009) and then averaged by depth.  Normalization reduces the shot-to-shot 

variability in LIBS data that has been attributed to soil and chemical matrix effects (Mosier-Boss 

et al., 2002). 

3.3.1 Soil sample analysis  

Subsamples of soil (~ 4 g) were taken from all interrogation depths for laboratory analysis.  To 

reduce analysis cost, yet capture representative soil variability within cores, researchers used 

stratified random sampling to choose samples from each core for carbon analysis and LIBS 

spectral modeling. Sample selection employed VisNIR spectra acquired concurrently with LIBS 

interrogations (Morgan et al., 2009).  VisNIR spectra from the 8 interrogation depths were 

clustered into 4 spectrally similar groups, per core, using Partitioning Around Mediods 

(Kaufman and Rousseeuw, 1990).  Partitioning Around Mediods (PAM) select a user-defined 

number of mediods (i.e. center points of clusters) such that within cluster variation is minimized 

while maximizing differences between clusters.  One interrogation depth was randomly chosen 

from each spectral group (78 cores  4 depths per core = 312 possible samples) and the 

corresponding soil sub-sample was analyzed for TC, IC, and SOC, using standard procedures 

described in Bricklemyer et al. (2005).  Total carbon was measured by dry combustion using a 

LECO TruSpec (LECO Corp., St. Joseph, MI, USA).  Inorganic carbon was measured by 

modified pressure calcimeter method as developed by Sherrod et al. (2002). Soil organic carbon 

(SOC) was calculated by difference: SOC = TC-IC where TC = total carbon and IC = soil 

inorganic carbon.  Standard carbon measurements were used for LIBS calibration and validation.  

The final dataset included 306 samples (Table 3) from 78 cores due to incomplete LIBS spectra 

for six samples.  
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Table 3: Laboratory measured soil total, inorganic & organic carbon summary 

statistics for 78 intact soil cores from 3 wheat fields in north central MT, 2007 

 Soil Total C
†
 Soil Inorganic C

‡
 Soil Organic C 

 ----------------------------- g kg 
-1

 ------------------------------ 

Median 15.74 7.95 7.82 

Min 1.43 0.00 0.85 

Max 56.56 45.27 19.32 

Mean 17.09 8.88 8.21 

σ 10.18 9.53 3.47 

CV 59.6% 107.4% 44.4% 

n 306 306 306 

σ = standard deviation; CV = coefficient of variation 

†
 dry combustion (Leco TruSpec, Leco Corp., St. Joseph, MI, USA) 

‡
 modified pressure calcimeter (Sherrod et al., 2002) 

 

3.3.2 Data Examination  

Exploratory data analysis was performed on TC, IC, and SOC data prior to spectral modeling.  

Descriptive statistics, median, mean, and sample standard deviation were calculated and tests of 

normality were performed to examine the distribution of soil carbon data.  The research team 

calculated the coefficient of variation (CV) to assess overall data variability.  Total C, IC, and 

SOC data were also examined for correlations using Pearson’s product moment correlation.  

Total C, IC, and SOC data were found to be non-normally distributed (data not shown).  

Inorganic carbon was particularly skewed due to a large number of near-surface samples that did 

not contain measureable IC concentrations.  Using the Box-Cox transformation routine in R (Box 

and Cox, 1964; Venables and Ripley, 2002), square root transformation was found to be the 

optimal power transformation to normalize the carbon data.   However, since better LIBS 

modeling results were obtained with non-transformed data, only the latter are reported. 

 

3.3.3 Spectral model calibration, validation, and evaluation  

The research team randomly selected data from 58 cores (represented by 227 of the 306 total 

samples) to calibrate LIBS partial least squares regression models for TC, IC and SOC.  
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Calibration models were validated using samples from the remaining 20 cores (represented by 

the remaining 79 samples).  With cores from only three fields, researchers were not able to 

construct a regional calibration with whole-field cross-validation, so results of this study indicate 

the quality of local within-field calibrations (Brown et al., 2005). 

Partial least squares 2 (PLS2) regression models were simultaneously fit to TC, IC, and SOC 

data. Researchers also fit single variable (PLS1) regression models to TC, IC, and SOC data 

individually for comparison.  PLS2 is fundamentally similar to PLS1 in that variable rotation is 

employed to account for variability in both the response and predictor space to maximize 

predictive power (Geladi and Kowalski, 1986; Wold et al., 2001a). However, PLS2 allows 

several response variables to be modeled simultaneously in order to take advantage of any 

correlations that may exist between the response variables.  Because total C and IC data were 

highly correlated in this study, PLS2 regression was theoretically the most appropriate TC, IC, 

and SOC PLS calibration approach (Wold et al., 2001a).  All PLS1 and PLS2 analyses were 

implemented using the Unscrambler® v8.0 (Camo Software Inc. Oslo, Norway).   

Chemometric approaches, such as PLS2, can be prone to overfitting (Brown et al., 2005; 

Dudragne et al., 1998).  Therefore, the number of latent variables to be included in each PLS2 

model was determined using calibration data only by examining a plot of full leave-one-out 

cross-validation residual variance against the number of latent variables.  A “first minimum” 

selection criteria, which involved identifying the point at which the calibration model cross-

validation residual variance no longer decreased with additional latent variables, was employed 

to reduce the potential for over-fitting (Brown et al., 2005).  

The research team took a multi-pronged approach to explore the extent to which IC predictions 

were based purely on correlations with TC. Firstly, they computed the pair-wise correlations 

between validation TC, IC and SOC both lab-measured and LIBS predicted, as well as 

correlations between TC, IC and SOC PLS2 model coefficients.  Secondly, they examined TC, 

IC, and SOC PLS2 regression coefficients to infer the role of stoichiometry in the construction of 

latent variables.  Finally, they constructed a simple linear regression (SLR) calibration for IC 

using only lab-measured TC as a predictor, then applied this regression model to predict IC for 

the validation data set using i) lab-measured TC, ii) TC predicted by LIBS PLS2, and iii) TC 

predicted by LIBS PLS1. 

To quantify the effects of mm-scale soil variability and estimate the minimum number of focused 

LIBS interrogations required to characterize a 1-2 cm diameter heterogeneous soil material, the 

team randomly selected and averaged 1, 2, 3, 5 and 7 interrogation points from the 9 acquired at 

each depth.  Previously described spectral processing and validation procedures were repeated; 

however, PLS1 modeling was used to build models for each of these “reduced” LIBS 

interrogation scenarios using the R statistical software package “pls” (R, 2008; Wehrens and 

Mevik, 2007). 

The quality of all PLS1 and PLS2 model fits were evaluated using regression of predicted vs. 

laboratory measurement and the following statistics following Gauch et al. (2003) and Brown et 

al. (2005): 
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where b and r
2
 are the slope and square correlation, respectively from the least-squares 

regression of Ypred on Ymeas.  The Mean Squared Deviation (MSD) is partitioned into three 

independent components describing lack of accuracy due to bias (SB), non-unity regression line 

(NU), and lack of correlation (LC), with MSD = SB + NU + LC (Brown et al., 2005).  The 

following chemometric modeling statistics were calculated for each model: 
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where SEP = validation standard error of prediction, y = predicted value by LIBS,  x = laboratory 

measured reference value, RPD = residual product differential, and SDx =  standard deviation of 

reference measurements (Islam et al., 2003).  We introduce a new validation statistic with the 

acronym PRL (pronounced “pearl”) representing prediction relative to laboratory error.  The 

PRL ratio scales adjusted prediction error (SEPadj) relative to the precision of the standard 

laboratory reference method (SEL).  For calibrations approaching laboratory precision, PRL 

approaches unity, but most predictions errors would be measured as some multiple of the 

reference method precision (e.g. “two times” SEL). 

The standard error of laboratory measurement (SEL) for TC and IC was estimated using replicate 

laboratory measurements as described by Workman (2001).   
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where y1 = first replicate laboratory measurement, y2 = second replicate laboratory measurement, 

and N = number of samples (not number of replicates).   For SOC, SEL was calculated using 

propagation of error estimation with the general equation (Andraos, 1996):  

                                    SEL: i

i

ii x
x

f
dff 




    (11)  

where f is a function with i = 1, 2, …,n variables each with an associated uncertainty Δxi  and    

Δfi = uncertainty of the function f.  For this study, SOC was calculated as an algebraic sum SOC 

= TC – IC.  Solving Eqn. 1 for an algebraic sum, applied to our example, we find:  

     5.022 )()( ICTCSOC SELSELSEL     (12) 

 

3.4 Results 

3.4.1 Exploratory data analysis 

Summary statistics for Lab
3
 TC, IC, and SOC are presented in Table 3.  For the samples in this 

study, TC values did not exceed 57 g kg
-1

, IC values were less than 46 g kg
-1

, and SOC values 

never exceeded 20 g kg
-1

.  Concentrations of IC were most variable in the dataset (σ = 10.18, CV 

= 107%) followed by TC and SOC (σ = 9.53 and 3.47; CV = 59.6% and 44.4%, respectively).  

The SEL for laboratory measurements were estimated at 0.90, 1.03, and 1.37 g kg
-1

 for TC, IC, 

and SOC, respectively.  Measured SOC was least variable, where σSOC was just 2.5 times 

SELSOC. Variability in SOC was substantially less than IC with highest concentrations of SOC 

occurring in A horizons and diminished with depth.  Variability in IC was a function of 

pedogenesis where IC was not present or present in low concentrations in A horizons (top 20 cm) 

and increased sharply in B horizons, the majority of which occurred below 20 cm.  The sharp 

boundary between the A and B horizons is evident in Figure 10. 

3.4.2 LIBS chemometric models 

Full cross-validated PLS1 and PLS2 calibration model performance statistics are presented in 

Table 4.  Single-response PLS calibrations for TC and IC yielded good explanatory power 

(RPD=2.1 and 2.3, r
2 

= 0.76 and 0.81, respectively); whereas explanatory statistics were notably 

weaker for the PLS1 SOC calibration (RPD = 1.5, r
2 

= 0.55).  Conversely, the lowest calibration 

dataset cross-validation prediction errors, both absolute and relative, were obtained from the 

PLS1 SOC model with SEP = 2.5 g SOC kg
-1

 soil and PRL = 1.5.  The other PLS1 cross-

validation prediction errors were 5.1 g TC kg
-1

 and 4.3 g IC kg
-1

 soil, with PRL values of 5.6 and 

4.3 for TC and IC, respectively.  The cross-validation statistics for PLS2 calibrations were 

                                                 
3
 “Lab” refers to laboratory measurements and “LIBS” refers to a LIBS PLS2 calibration, unless otherwise 

indicated. 
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uniformly worse than those obtained from PLS1, with SEP equal to 6.2 g TC kg
-1

 soil, 5.4 g IC 

kg
-1

 soil, and 3.4 g SOC kg
-1

 soil and PRL equal to 6.9, 5.2, and 2.3 for TC, IC, and SOC, 

respectively. 

 

 

  

Table 4: Soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC) calibration 

cross-validation statistics for laser-induced breakdown spectroscopy (LIBS) partial least 

squares 1 (PLS1) & 2 (PLS2) regression models. 

Model n r
2
 RPD 

SEP 

(g/kg soil) 
PRL 

SB
†
 

(%) 

NU
†
 

(%) 

LC
†
 

(%) 

PLS1 LIBS TC 227 0.76 2.1 5.1 5.6 0.0 24.6 75.4 

PLS1 LIBS IC 227 0.81 2.3 4.3 4.1 0.5 28.2 71.3 

PLS1 LIBS SOC 227 0.55 1.5 2.5 1.5 0.0 45.0 55.0 

PLS2 LIBS TC 227 0.65 1.7 6.2 6.9 0.0 26.9 73.1 

PLS2 LIBS IC 227 0.69 1.8 5.4 5.2 0.3 31.0 68.8 

PLS2 LIBS SOC 227 0.17 1.1 3.4 2.3 0.0 73.5 26.5 

RPD = residual product differential,  PRL = prediction error relative to lab, SEP = standard 

error of prediction, SB = squared bias, NU = non-unity, LC = lack of correlation 

† percent of mean squared deviation (MSD) 



Cropland Field Monitoring: MMV              Page 37 

 

 

Independent validation using 20 randomly selected hold-out cores showed that PLS2 models 

were more stable and robust than PLS1 models for TC, IC and SOC (Table 5).  For PLS1 

models, validations statistics were substantially degraded relative to calibration statistics, 

suggesting that the calibrations were overfit.  This is a potential issue with chemometric 

approaches such as PLS (Brown et al., 2005; Dudragne et al., 1998) even when a conservative 

number of latent variables are chosen.  Validation statistics for PLS2 models; however, were 

consistent with calibration cross-validation statistics.  Furthermore, PLS2 validation SEP for 

SOC and IC were 7 and 10% lower than for PLS1, respectively. Therefore, the remainder of the 

discussion is focused on the PLS2 calibrations. 

For the hold-out validation dataset, the LIBS PLS2 analysis best predicted inorganic carbon (r
2 

= 

0.66, RPD = 1.7; Table 5, Figure 11) with total carbon explanation nearly as good (r
2
 = 0.63, 

RPD = 1.6; Table 5, Figure 4), and minimal explanatory capability for SOC (r
2
=0.22, RPD= 1.1, 

Table 5, Figure 11).  Validation SEP values were 6.0 g TC kg
-1

 soil, 5.3 g IC kg
-1

 soil, and 3.2 g 

SOC kg
-1

 soil in absolute units, or relative to the lab precision PRL = 6.5, 5.0 and 2.1 for TC, IC 

and SOC, respectively.  For SOC, though validation SEP was only twice SELSOC, the standard 

deviation of the target variable (σSOC) was also very low relative to SELSOC (1.37 g kg
-1

).  

Partitioning MSD into three components, we found the LIBS TC model had low bias (SB=2.3%) 

and marginal non-unity (NU=15.4%) (Table 5).  The LIBS IC model also had low bias 

(SB=0.1%); however, non-unity was greater (NU=24.5%).  Bias remained low for the LIBS SOC 

model (SB=4.0%), but non-unity greatly increased (NU=77.5%; Table 5, Figure 11).  Lack of 

Table 5: Soil total carbon (TC), inorganic carblon (IC), and organic carbon (SOC) 

independent validation statistics for laser-induced breakdown spectroscopy (LIBS) partial 

least squares 1 (PLS1) & 2 (PLS2) regression models. 

Model n r
2
 RPD 

SEP 

(g/kg soil) 
PRL 

SB
†
 

(%) 

NU
†
 

(%) 

LC
†
 

(%) 

PLS1 LIBS TC 79 0.68 1.6 5.8 6.3 3.3 5.6 91.1 

PLS1 LIBS IC 79 0.60 1.5 5.8 5.6 0.1 19.2 80.7 

PLS1 LIBS SOC 79 0.19 1.0 3.4 2.3 3.7 46.5 49.8 

PLS2 LIBS TC 79 0.63 1.6 6.0 6.5 2.3 15.4 82.3 

PLS2 LIBS IC 79 0.66 1.7 5.3 5.0 0.1 24.5 75.4 

PLS2 LIBS SOC 79 0.22 1.1 3.2 2.1 4.0 77.5 18.5 

RPD = residual product differential, PRL = prediction error relative to laboratory error, SEP = 

standard error of prediction, SB = squared bias, NU = non-unity, LC = lack of correlation 

† percent of mean squared deviation (MSD) 
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correlation accounted for the majority of MSD for the LIBS TC and IC models (82.3% and 

75.4%, respectively) but only 18.5% of MSD for the SOC model (Table 5).   

 

 

Figure 11: Independent validation of predicted soil total carbon (TC), inorganic carbon (IC), & 

organic carbon (SOC) using LIBS and partial least squares 2 regression models. Nine 

interrogation spectra were averaged for PLS2 analysis. 

 

The importance of specific elemental emissions in TC, IC, and SOC PLS2 models (Figure 12) 

suggests that stoichiometric relationships were used for prediction.  The major carbon emission 

at 247.8 nm was an important predictor for TC, IC, and SOC (relatively); though the magnitude 

of the regression coefficient varied between models.  Researchers expect that the carbon 

emission line would be an important predictor for the three calibrations. However, Si (silicate 

mineral framework element), Mg and weak secondary Ca (associated with carbonates) emissions 

were also useful for predicting IC and TC.  The LIBS regression coefficients for SOC were all 

close to zero, as might be expected with a weak calibration. 
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Figure 12: Partial least squares regression (PLS2) coefficient values for soil total, inorganic, & 

organic carbon.  The magnitude of the coefficients indicates the relative importance of each 

emission line.  Dashed vertical lines indicate important elemental emission lines for predicting 

the various forms of soil carbon.  All wavelengths were used for predictions. 

 

Lab TC and IC were strongly correlated for calibration set soils in this study (r = 0.972, Table 6), 

raising questions regarding the ability of LIBS to distinguish TC and IC.  Total C and IC LIBS 

regression coefficients were also highly correlated (r = 0.997, Table 6) with the associated TC 

and IC predictions somewhat less correlated (r = 0.976, Table 6). Lab SOC (r = 0.302 and -

0.076), LIBS SOC regression coefficients (r = 0.938 and 0.911), and LIBS SOC predictions (r = 

0.384 and 0.198) were not as correlated with TC or IC, respectively (Table 6).   
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Validation results from simple linear regression (SLR) calibrations of IC on TC suggest that 

PLS2 IC predictions were not based solely on a correlation with TC (Table 7, Figure 13).  Using 

validation set lab TC (total combustion analysis), the research team was able to obtain 

substantially improved validation IC predictions relative to LIBS PLS2 IC predictions (SEP = 

3.4 vs. 5.3 g kg
-1

).  Of course, TC is not usually known at locations where researchers want to 

predict IC using LIBS.  Using validation set TC predicted by LIBS PLS2, the SLR model yields 

slightly worse predictions for IC than obtained from LIBS PLS2 direct predictions of IC (SEP = 

5.4 vs. 5.3 g kg
-1

).  When inorganic C (IC) was completely removed from the estimation of 

validation set TC (using PLS1), SLR IC validation predictions were substantially degraded 

relative to PLS2 and PLS1 IC predictions (SEP = 7.7 vs. 5.3 and 5.8 g kg
-1

 for PLS2 and PLS1, 

respectively). 
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Figure 13. A simple linear regression of calibration set IC on TC (lab reference measurements) applied to 

validation set TC: a) measured by total combustion; b) predicted by LIBS PLS2; and c) predicted by 

LIBS PLS1. 
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Table 6: Pearson's correlation coefficients (r) for laboratory measured soil 

carbon, laser-induced breakdown spectroscopy (LIBS) partial least squares 

2 (PLS2) regression coefficients, & PLS2 carbon predictions. 

 TC vs. IC TC vs. SOC IC vs. SOC 

Carbon Lab Measurements (y’s) 0.972 0.302 -0.076 

PLS2 Coefficients (Χ’s) 0.997 0.938 -0.911 

Carbon PLS2 Predictions (y ’s) 0.976 0.384 -0.198 

TC = Total soil carbon; IC = inorganic carbon; SOC = soil organic carbon. 

 

 

Figure 14 shows the effect of spectrally averaging multiple LIBS interrogation points per sample 

on TC, IC, and SOC predictions. Spectrally averaging up to 9 interrogation points decreased TC 

SEP by 6.3% and IC SEP by 3.6% relative to using a single interrogation point; however, SEP 

was unchanged for SOC.  Values for SEP ranged from 6.0 – 7.0 g C kg
-1

 soil for TC, 5.3 – 6.2 g 

C kg
-1

 soil for IC and 3.1 – 3.7 g C kg
-1

 soil for SOC.  Only slight accuracy improvement was 

observed for spectrally averaging more than five LIBS interrogation points per interrogation area 

(Figure 14). 

Table 7: Prediction statistics from a simple linear regression of calibration set inorganic 

carbon (IC) on total carbon (TC) using lab reference measurements applied to 

validation set TC: a) measured by total combustion; b) predicted by laser-induced 

breakdown spectroscopy (LIBS) partial least squares 2 (PLS2); and c) predicted by 

LIBS PLS1. 

TC Source n r
2
 RPD 

SEP 

(g/kg soil) 
PRL 

SB 

(%) 

NU 

(%) 

LC 

(%) 

Lab IC 79 0.86 2.6 3.4 3.2 5.3 17.2 77.5 

PLS2 LIBS TC 79 0.64 1.6 5.4 5.2 0.1 31.7 68.2 

PLS1 LIBS TC 79 0.35 1.2 7.7 7.4 0.4 28.8 70.8 

RPD = residual product differential,  SEP = standard error of prediction, PRL = 

prediction relative to laboratory error (SEP/SEL), SB = squared bias reported as  

percent of mean squared deviation (% MSD), NU = non-unity (% MSD), LC = lack of 

correlation (% MSD) 

 



Cropland Field Monitoring: MMV              Page 43 

 

 

 

Figure 14. Predictive accuracy response, as indicated by the standard error of prediction (SEP), to 

spectrally averaging multiple LIBS interrogation points for soil total carbon (TC), inorganic carbon (IC), 

and organic carbon (SOC) determination. 

 

 

3.5 Discussion 

Realistic evaluation of model accuracy and transferability requires testing with truly independent 

validation samples (Brown et al., 2005; Dardenne et al., 2000), a requirement that has rarely been 

met for published LIBS soil characterization studies.  Of the studies referenced previously, only 

four report some type of model validation. Cremers et al. (2001) collected soil samples at 0-10 

and 10-20 cm depths from three farm fields in Colorado, used 12 soil samples for model 

calibration, and tested the model using 8 samples from the Colorado farm fields and 10 New 

Mexico forest soil samples. While the 10 New Mexico forest samples were independent of 

calibration samples, geographic independence of the Colorado validation samples was unclear.  

Researchers could not compare validation statistics as it was unclear how model “accuracy of 3-

14%” was determined and r
2
 was not reported.  Ebinger et al. (2003) randomly selected six soil 

samples from a dataset of 18 samples from three farm fields in Colorado for calibration and then 

predicted soil carbon for the remaining 12 samples (SEP and RMSE not reported).  Martin et al. 

(2010) reported full cross-validation accuracy for a LIBS PLS1 TC calibration (SEP = 3.1g C kg
-

1
) using soil samples from a single soil series in each of three states–not a geographically 

independent validation given that the samples were not selected to be geographically 

independent (Brown et al., 2005; Brown et al., 2006; Dardenne et al., 2000).  Lastly, Belkov et 

al. (2009) calibrated combined- and double-pulse LIBS to “homemade certified standards”, then 
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used those calibrations to predict soil carbon in 15 soil samples truly independent from 

calibration samples with RMSE = 130 and 200 g C kg
-1

, respectively.   

In this study, the research team was not able to explain SOC variance using LIBS (r
2 

= 0.22, 

RPD = 1.1) even though the LIBS prediction error (SEP) for SOC was less than that for TC and 

IC (Table 3).  Assuming a constant prediction error, r
2
 and RPD will both increase with greater 

variation in the target variable.  For the experiment reported in this paper, researchers estimate 

the RPD performance statistic assuming the standard error associated with the LIBS 

measurement is exactly equal to the standard error of the laboratory reference measurement 

(SEL): 

22

LIBSSESELSEP   , where LIBSSE is the LIBS measurement error; therefore 

 
 

8.1
kg g 1.372

kg g 3.47
1-

-1

22








LIBS

SOCSOC

SESELSEP
RPD


, given LIBSSE = SEL. 

Even assuming that LIBS interrogation of intact soil material is as precise as standard laboratory 

analyses of prepared samples (a very optimistic assumption), the best result researchers could 

obtain would be a semi-quantitative (RPD < 2) explanation of SOC variability due to low SOC 

variance.  If LIBSSE equaled 2-4 times SEL, the RPD statistic would decline to a corresponding 

range of 1.5 to 1.1.   The team can conclude that the LIBS analysis of intact soil has a 

measurement error greater than or equal to four times the standard error of the laboratory 

reference measurement (SEL). Beyond this limited conclusion, they were not able to fully 

evaluate the capability of LIBS to predict SOC due to the low SOC variance of the soils 

interrogated in this study. 

Several other factors could have contributed to calibration statistics being lower than previous 

LIBS soil carbon studies.  These factors include (a) greater soil compositional diversity; (b) less 

variance/range in the target variables; and (c) LIBS measurements taken on in situ vs. prepared 

soils.  Soil compositional diversity and range in target variables were likely not significant 

factors leading to the low calibration results.  Previous studies have calibrated LIBS to soils of 

comparable or greater diversity. For example, Cremers et al. (2001) and Ebinger et al. (2003) 

calibrated LIBS to samples from three farm fields in Colorado, and Martin et al. (2010) 

calibrated LIBS using soil samples from Illinois, Michigan, and North Dakota farm fields.  

Furthermore, the range in measured TC and IC content (55 and 45 gC kg
-1

, respectively) was 

similar to soil carbon content ranges reported by others [32 to 57 gC kg
-1

, (Bel'kov et al., 2008; 

Belkov et al., 2009; Cremers et al., 2001; Ebinger et al., 2003; Martin et al., 2003; Martin et al., 

2010; Martin et al., 2007)].  Researchers therefore suspect that difficulties associated with 

interrogation of intact cores contributed to relatively low calibration and validation statistics. 

Interrogating undisturbed soil core surfaces presents several challenges for acquiring high quality 

LIBS data compared to prepared samples.  Soil samples prepared as pressed “pucks”, as is the 

standard method for LIBS soils research, provide a target virtually free of moisture with 

consistent sample density and a smooth surface for interrogation.  Sensitivity of LIBS is reduced 

by sample moisture because a portion of the laser energy is used to vaporize water rather than 

ablate the targeted sample (Castle et al., 1998).  Similarly, low sample density can cause poor 

ablation efficiency and result in up to 40% variation in LIBS signal, with localized complete 

signal loss, when analyzing non-pressed soil samples (Bousquet et al., 2008). Uneven sample 
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surfaces can cause the distance from the laser focal point to the sample to vary among and within 

interrogation areas, with naturally occurring fractures and macropores potentially obstructing 

collection optics.  Finally, prepared samples are free of plant litter and roots that would likely 

influence soil carbon LIBS calibrations.  The results of this experiment suggest that in situ LIBS 

soil C calibrations will be substantially degraded relative to the interrogation of prepared 

samples. 

Soil heterogeneity is another factor that has the potential to reduce the accuracy of LIBS.  Soils 

have sub-cm variation that is evident even with the naked eye, and some LIBS experts expect 

this short-range soil variation to cause LIBS signal to vary from one location to another, thus 

reducing the accuracy of the method (Bousquet et al., 2008).  This is of particular concern for 

direct in situ application of LIBS undisturbed soil core surfaces.  Somewhat surprisingly, the 

effect of fine-scale (i.e. sub-cm) soil heterogeneity on LIBS prediction was lower than expected.  

The results from spectrally averaging 1, 2, 3, 5, 7, and 9 interrogation points per depth suggest 

that short-range soil variation may not be as troublesome of an issue, for no more than 5 

interrogations per sample were required for representative in situ measurements of small 

interrogation volumes (~3 cm
3
).  This finding also implies that interrogation areas were relatively 

homogenous with respect to carbon content and the soil matrix.  Each LIBS interrogation point 

was the spectral average of 50 laser shots that probed a volume of ~ 8x10
-5

 cm
3
.  Averaging 5 

interrogation points equated to ~0.02% of the total sample volume, a very small proportion.  Five 

LIBS interrogations may have been representative of the small sampled volume. However, 

researchers have yet to determine how representative those small sampled volumes were of the 

associated core depth increments (e.g. 0-10 cm). 

Important PLS2 regression coefficients suggested stoichiometric relationships were used to 

predict both IC and TC.  The strong C emission line at 247.8 nm was an important predictor for 

TC, IC, and SOC, as would be expected given that C is a component of all three measures of soil 

carbon.  The fact that Mg and Ca emission lines were also important predictors for both TC and 

IC indicates that these PLS2 calibrations were built on carbonate-associated cation content 

(Sposito, 2008) as well as elemental carbon.  For IC this is not surprising, but for TC this 

highlights the value in using a chemometric approach that extracts information from indirect 

relationships as opposed to a single-peak calibration.  A silicon emission line at 251.6 nm was a 

significant predictor of TC and IC, despite the fact that Si is not an important component of 

either organic matter or carbonates and has no stoichiometric relationship with TC or IC.  The 

team attributes the importance of the Si emission to chemical matrix effects associated with the 

LIBS method.  Silicon (Si) is a fundamental backbone element found in silicate soil minerals and 

likely serves as a “scaling” factor, adjusting predictions relative to the overall amplitude of each 

spectrum. 

While TC and IC were highly correlated in this study (r = 0.972, Table 6), it would be incorrect 

to infer that LIBS IC predictions were based solely on correlations with elemental or total carbon 

(TC).   While LIBS is fundamentally an elemental technique, as discussed above carbonate-

associated stoichiometric relationships clearly played an important role in LIBS PLS2 

calibrations for TC and IC.  Validation predictions of IC using LIBS PLS2 models were better, 

though only slightly, than those obtained indirectly from a regression of calibration IC on TC 

applied to validation LIBS PLS2-predicted TC.  The relatively small difference in predictive 

accuracies between these direct and indirect predictions should not be surprising given that PLS2 

calibrations explicitly use response variable correlations.  In contrast, the TC PLS1 calibration 
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that did not use the TC-IC correlation yielded TC validation predictions that were substantially 

less correlated with validation lab-measured IC (r
2
 = 0.35 vs. 0.64 for PLS1 and PLS2, 

respectively).  While it is impossible to fully evaluate the potential of LIBS PLS models to 

distinguish IC and TC given their degree of correlation in this study, the results do suggest that 

stoichiometric relationships may support such a chemometric separation. 

Measuring LIBS emissions beyond the 200-300 nm spectral range recorded with the Ocean 

Optics HR2000 spectrometer in this study could improve all predictions, particularly for SOC 

(Clegg et al. 2009, Tucker et al 2010).  Previously, researchers focused on univariate calibrations 

based largely on the C emission at 247.8 nm (Ebinger et al., 2003; Eppler et al., 1996; Martin et 

al., 2003; Salle et al., 2006) for which the 200 – 300 nm spectral range was adequate.  A key 

finding of this study was that PLS2 models utilize a larger number of peaks, particularly for 

elements associated with soil C (e.g. Ca and Mg with carbonates) and the soil matrix as a whole 

(e.g. Si).  The spectral range employed in this study did not capture emissions from several other 

elements associated with organic C such as H (656.27 and 656.29 nm), N (742.3, 744.2, and 

746.8nm) and O (777.4nm) and soil inorganic C such as primary Ca emissions (315.89, 317.93, 

393.37, 396.85 and 422.60 nm).  Clegg et al. (2009) observed that the best calibration models for 

predicting elemental composition of igneous rocks were generated when the entire LIBS 

spectrum (200 – 800 nm) was used in PLS2.  To date, full-spectrum LIBS PLS calibrations have 

not been reported for soil carbon calibrations. 

3.6 Conclusions 

To the best of our knowledge, this study represents the first rigorous validation of LIBS 

calibrations for field-scale characterization of soil carbon using intact soil cores without soil pre-

treatment.  It also reports the first attempt at differentiating IC from TC with LIBS-derived 

stoichiometry.  Using LIBS with a spectral range of 200-300 nm and employing partial least 

squares 2 regression (PLS2) modeling, the research team achieved semi-quantitative validation 

accuracies for total carbon (TC) (r
2 

= 0.63, RPD = 1.6, SEP = 6.0 g kg
-1

, SEL = 0.9 g kg
-1

) and 

inorganic carbon (IC) (r
2
 = 0.66, RPD=1.7, SEP = 5.3 g kg

-1
, SEL = 1.03 g kg

-1
).  Soil organic 

carbon (SOC) predictions were not useful (r
2 

=0.22, RPD=1.1) despite a low prediction error 

(SEP = 3.2 g kg
-1

).  Low SOC variability (σ = 3.47 g kg
-1

) precluded a rigorous evaluation of 

LIBS capability to determine SOC.  Calibration statistics from this study were substantially 

degraded relative to previously published research, a result attributed to the challenges of 

interrogating intact soil surfaces vs. prepared soil samples. 

A key finding of this study was that LIBS was able to distinguish IC from TC. Regression 

coefficients from PLS2 models suggested that calibrations utilized stoichiometric relationships 

between C and elements related to C in the soil matrix.   The primary C emission (247.8 nm) was 

an important predictor for TC and IC.  Additionally, Mg (279.55-280.4 nm, 285.26 nm), Si 

(251.6 nm, 288.1 nm), and weak secondary Ca emissions (210.2, 211.3, and 220.9 nm), were 

important predictors for TC and IC.  The relatively narrow spectral range (200 – 300 nm) of the 

LIBS spectrum recorded in this study, however, omitted primary emissions from elements 

related to soil carbon, including primary O, H, and N.  Increasing the spectral range to the full 

LIBS spectrum (200 – 800 nm) could increase predictive accuracies for in situ measurement of 

both inorganic and organic C. 

Additional improvements in LIBS soil characterization might come from two directions.  First, 

the LANL-LIBS-CS instrument design could be improved to compensate for uneven soil core 
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surfaces.  Secondly, researchers need to acquire soil cores from a more diverse set of locations to 

evaluate the potential of developing regional LIBS calibrations.  Ultimately, the team would like 

to see LIBS and VisNIR used in a complementary fashion—simultaneously interrogating soils in 

situ for soil mineralogy and elemental composition. 
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4. Full spectrum laser-induced breakdown spectroscopy (LIBS) for intact 

soil core total, inorganic and organic carbon measurement. (unpublished 

data) 

4.1 Material and Methods 

4.1.1 Instrumentation 

Building on the results from previous intact soil core interrogations (Bricklemyer et al., 

Accepted), two additional experiments using the LANL-LIBS-CS instrument were conducted in 

2008 and 2009 that included modification from the original design.  In 2008, the LANL-LIBS-

CS instrument underwent design modifications to address two of the issues reported to have 

contributed to poor prediction accuracies in 2007 (Bricklemyer et al., Accepted).  The first 

modification was to increase the focal length from 50 mm to 500 mm.  Increasing the focal 

length of the laser reduces the angle at which the laser energy is redirected.  This has the benefit 

of maintaining more consistent laser energy when the distance from the laser focal point to the 

sample varies across uneven surfaces.  The second modification was to employ an Echelle type 

spectrometer that captured the full LIBS spectrum (200-800 nm).  Results from 2007 suggested 

that increasing the spectral range to the full LIBS spectrum (200 – 800 nm) could increase 

predictive accuracies for in situ measurement of both inorganic and organic C.  The full spectrum 

would provide spectral emissions for all elements related to inorganic and organic soil C (ex. C, 

Ca, Mg, O, N, P, K, and H).  This second LIBS experiment would test the hypothesis that by 

providing emissions of all soil elements, stoichiometric relationships suggested previously would 

increase prediction accuracies for soil IC and OC. 

Further testing of the Echelle spectrometer at Los Alamos National Lab, after completion of the 

2008 LANL-LIBS-CS experiment, called the quality of the 2008 spectral data into question.  

Therefore, the experiment was repeated in 2009 where the Echelle spectrometer was replaced by 

a series of three Ocean Optics spectrometers (identical to the spectrometer used in 2007) that 

spanned the full LIBS spectrum (225-925 nm). 

 

4.1.2 Study area, soil sampling, core interrogation, soil analysis, spectral model evaluation 

See section 3.2 above for details. 

 

4.1.3 Spectral model calibration and validation 

Regional LIBS models were constructed for TC, IC, and SOC employing a whole-field out 

cross-validation approach whereby each field was held out in turn for model validation, with data 

from the remaining fields used for model calibration.  For example, data for field #1 was held out 

from the calibration set and data from the remaining fields were used to calibrate PLS2 models to 

independently predict TC, IC, and SOC for field #1.  Then, data from field #2 was held out and 

new PLS2 models were derived using the remaining data.  The systematic removal of holding 

out data from whole fields, calibrating new PLS2 models using data from the remaining fields, 

and predicting TC, IC, and SOC for the held out field continued until each of the fields had been 

predicted.   
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4.2 Results and Discussion 

4.2.1 Exploratory data analysis 

Summary statistics for Lab
4
 TC, IC, and SOC are presented in Tables 8 and 9.  For the samples 

in the 2008 study (Table 8), TC values did not exceed 52 g kg
-1

, IC values were less than 43 g 

kg
-1

, and SOC values never exceeded 32 g kg
-1

.  Concentrations of IC were most variable (σ = 

8.25, CV = 150%) followed by TC and SOC (σ = 8.56 and 4.26; CV = 57% and 45%, 

respectively).  The SEL for laboratory measurements were estimated at 0.28, 0.44, and 0.55 g kg
-

1
 for TC, IC, and SOC, respectively.  Measured SOC was least variable, where σSOC was just 7.7 

times SELSOC. Variability in SOC was substantially less than IC with highest concentrations 

occurring in A horizons and diminished with depth.  Variation in IC was a function of 

pedogenesis where IC was not present or present in low concentrations in A horizons (top 20 cm) 

and increased sharply in B horizons, the majority of which occurred below 20 cm (Figure 10, 

above).   

Similar patterns in the summary statistics were found in 2009 TC, IC, and SOC laboratory 

measured values (Table 9).  Total carbon values did not exceed 45 g kg
-1

, IC values were less 

than 32 g kg
-1

, and SOC values never exceeded 25 g kg
-1

.  Concentrations of IC were again most 

variable (σ = 7.56 g kg
-1

, CV = 131%) followed by TC and SOC (σ = 8.18 and 3.39 g kg
-1

; CV = 

55% and 37%, respectively).  The SEL for laboratory measurements were estimated at 0.11, 

0.60, and 0.60 g kg
-1

 for TC, IC, and SOC, respectively.  Measured SOC was least variable, 

where σSOC was just 5.7 times SELSOC. Variation in SOC was substantially less than IC with 

highest concentrations occurring in A horizons and diminished with depth.  Variation in IC was 

again a function of pedogenesis where IC was not present or present in low concentrations in A 

horizons (top 20 cm) and increased sharply in B horizons, the majority of which occurred below 

20 cm (Figure 10, above). 

 

  

                                                 
4
 “Lab” refers to laboratory measurements and “LIBS” refers to a LIBS PLS2 calibration, unless otherwise 

indicated. 
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Table 8: Laboratory-measured soil total, inorganic, and organic carbon 

summary statistics for 80 intact soil cores from 7 wheat fields in north 

central MT & the Cook Agronomy farm near Pullman, WA, 2008. 

 

Soil Total C
†
 Soil Inorganic C

‡
 Soil Organic C 

 

----------------------------- g kg 
-1

 ------------------------------ 

Median 12.33 0.40 8.47 

Min 4.11 0.00 2.08 

Max 51.96 42.79 31.76 

Mean 14.91 5.51 9.40 

σ 8.56 8.25 4.26 

CV 57% 150% 45% 

n 316 316 316 

σ = standard deviation; CV = coefficient of variation 

†
 dry combustion (Leco TruSpec, Leco Corp., St. Joseph, MI, USA) 

‡
 modified pressure calcimeter (Sherrod et al., 2002) 
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Table 9: Laboratory-measured soil total, inorganic and organic carbon 

summary statistics for 60 intact soil cores from 6 wheat fields in north 

central MT, 2009. 

 

Soil Total C
†
 Soil Inorganic C

‡
 Soil Organic C 

 

-------------------------- g kg 
-1

 ---------------------------- 

Median 12.74 0.58 8.78 

Min 3.18 0.00 0.22 

Max 44.81 31.36 24.56 

Mean 14.98 5.77 9.21 

σ 8.18 7.56 3.39 

CV 55% 131% 37% 

n 240 240 240 

σ = standard deviation; CV = coefficient of variation 

†
 dry combustion (Leco TruSpec, Leco Corp., St. Joseph, MI, USA) 

‡
 modified pressure calcimeter (Sherrod et al., 2002) 

 

4.2.2 LIBS chemometric models 

For the 2008 whole-field out cross validation, the LIBS PLS2 analysis best predicted inorganic 

carbon (r
2 

= 0.75, RPD = 2.0; Table 10) with total carbon explanation somewhat lower (r
2
 = 

0.62, RPD = 1.6; Table 10), and virtually no explanatory capability for SOC (r
2
=0.03, RPD= 1.0, 

Table 10).  Validation SEP values were 5.3 g TC kg
-1

 soil, 4.2 g IC kg
-1

 soil, and 4.4 g SOC kg
-1

 

soil in absolute units, or relative to the lab precision PRL = 19, 9.4 and 8.0 for TC, IC and SOC, 

respectively.  Partitioning MSD into three components, the research team found the LIBS TC 

model had no bias (SB=0.0%) and marginal non-unity (NU=34.1%) (Table 10).  The LIBS IC 

model also had low bias (SB=1.7%); however, non-unity was lower (NU=19.7%).  Bias 

remained low for the LIBS SOC model (SB=0.3%), but non-unity greatly increased (NU=75.8%; 

Table 10).  Lack of correlation accounted for the majority of MSD for the LIBS TC and IC 

models (65.8% and 78.6%, respectively) but only 23.9% of MSD for the SOC model (Table 10).   

2009 Whole-field out cross validation results followed very similar patterns as 2008 results.  

Inorganic carbon was again best predicted (r
2 

= 0.78, RPD = 2.1; Table 10) with total carbon 

explanation somewhat lower (r
2
 = 0.59, RPD = 1.5; Table 10), and virtually no explanatory 
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capability for SOC (r
2
=0.02, RPD= 0.8, Table 10).  Validation SEP values were similar to 2008 

results with 5.43 g TC kg
-1

 soil, 3.62 g IC kg
-1

 soil, and 3.99 g SOC kg
-1

 soil in absolute units, or 

relative to the lab precision PRL = 49.3, 5.9 and 6.6 for TC, IC and SOC, respectively.  It is 

important to note that differences in PRL from experiment to experiment must be compared with 

caution as SEL for TC, IC, and SOC varied by year.  Partitioning MSD into three components, 

we found the LIBS TC model had no bias (SB=0.0%) and marginal non-unity (NU=16.6%, 

Table 10).  The LIBS IC model also had low bias (SB=1.9%); however, non-unity was 

somewhat reduced (NU=8.8%).  Bias was negligible for the LIBS SOC model (SB=0.0%), but 

non-unity greatly increased (NU=82.4%; Table 10).  Lack of correlation accounted for the 

majority of MSD for the LIBS TC and IC models (83.3% and 89.4%, respectively) but only 

17.6% of MSD for the SOC model (Table 10). 

 

Table 10: Soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC) whole-

field out independent cross validation statistics for 2008 & 2009 laser-induced breakdown 

spectroscopy (LIBS) partial least squares 2 (PLS2) regression models. 

Model n r
2
 RPD SEP PRL SB NU LC 

         g kg
-1

    --------- % MSD --------- 

2008 TC 316 0.62 1.6 5.33 19.0 0.0 34.1 65.8 

2008 IC 316 0.75 2.0 4.15 9.4 1.7 19.7 78.6 

2008 SOC 316 0.03 1.0 4.43 8.0 0.3 75.8 23.9 

2009 TC 240 0.59 1.5 5.43 49.3 0.0 16.6 83.3 

2009 IC 240 0.78 2.1 3.62 5.9 1.9 8.8 89.4 

2009 SOC 240 0.02 0.8 3.99 6.6 0.0 82.4 17.6 

RPD = residual product differential; SEP = standard error of prediction; PRL = prediction 

relative to laboratory error (SEP/SEL); SB = squared bias reported as percent of mean 

squared deviation (% MSD); NU = non-unity (% MSD); LC = lack of correlation (% MSD). 

 

4.3 Conclusions 

Preliminary results for increasing the spectral range of LIBS to the full 200-800 nm in order to 

capture elemental emissions of all elements in a given soil sample suggest marginal gains in 

prediction accuracy for inorganic carbon, but no gains for predicting total and organic carbon.  

Poor SOC predictions are likely a result of 1) the lack of a consistent/definable molecular 

composition of SOC, 2) relatively little variation in SOC across field sites, and 3) inorganic 

carbon being the primary form of soil C, particularly for Montana samples.  Continued 
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exploration into alternative data reduction and statistical modeling techniques continues in an 

effort to increase prediction accuracy, model parsimony, and computational efficiency. 
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5. Analysis and Conclusions 

5.1 Introduction 

Visible-near infrared diffuse reflectance spectroscopy (VisNIR) and LIBS are fundamentally 

different, yet complementary spectroscopic techniques. The LIBS technique is an emerging 

elemental analysis method that can quickly determine elemental composition of heterogeneous 

material, whereas VisNIR is based on the fundamentals of energy absorption by molecular bond 

vibrations. Taking advantage of the fundamental spectroscopic differences in these techniques, 

by combining spectral information obtained by VisNIR and LIBS sensors, may provide more 

accurate, robust, and spatially transferable soil C determination than individual sensors currently 

permit.   

 

5.2 Material and Methods 

VisNIR spectra were collected concurrently with LIBS analysis on intact soil cores (described 

previously). All VisNIR spectra were checked for errors and smoothed using cubic smoothing 

splines with 1
st
 derivatives extracted in 10 nm increments directly from spline fits, following 

methods outlined in Brown et al. (2006).  Model calibration and validation strategies were 

consistent with those described for LIBS in 2007 and 2008.   

 

5.3 Results and Discussion 

5.3.1 VisNIR chemometric models 

Preliminary PLS regression results from 2007 and 2008 experiments found that VisNIR TC 

prediction accuracy was similar to LIBS; IC prediction accuracy was markedly lower than LIBS; 

however VisNIR outperformed LIBS for predicting SOC (Table 11).  The degraded explanatory 

power of the 2008 VisNIR SOC model (r
2
 = 0.33) compared to the 2007 VisNIR model was 

likely a function of 1) a more rigorous whole-field out cross validation used for 2008 models 

compared to the random whole-core out cross validation used in 2007, and 2) additional core 

samples from the WSU Cook Agronomy farm.  The Cook farm soils are substantially different 

from the MT soils in several key characteristics.  Cook farm soils are wind deposited, have lower 

pH, generally lower clay content, higher SOC content, and negligible IC content compared to 

MT soils. 
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Table 11: Soil total carbon (TC), inorganic carbon (IC), and organic carbon 

(SOC) independent validation statistics for 2008 and 2009 Visible-near infrared 

spectroscopy (VisNIR) partial least squares regression models. 

Model N r
2
 RPD SEP SB NU LC 

         g kg
-1

  ------ % MSD ------ 

2007 VisNIR TC 80 0.61 1.5 6.0 1.7 19.7 78.6 

2007 VisNIR IC 80 0.65 1.7 5.4 0.5 29.0 70.5 

2007 VisNIR SOC 80 0.51 1.3 2.9 0.3 8.8 90.9 

2008 VisNIR TC 316 0.55 1.4 5.9 1.0 20.3 79.2 

2008 VisNIR IC 316 0.69 1.8 4.6 1.0 28.2 71.3 

2008 VisNIR SOC 316 0.33 1.2 3.5 1.8 42.8 55.4 

RPD = residual product differential; SEP = standard error of prediction; SB = 

squared bias reported as percent of mean squared deviation (% MSD); NU = 

non-unity (% MSD); LC = lack of correlation (% MSD). 

 

5.3.2 Combined LIBS-VisNIR chemometric models 

Preliminary exploration of combining VisNIR and LIBS spectra was completed using 2007 data 

and PLS regression. Combining 2007 LIBS and VisNIR data slightly improved 2007 TC 

predictions, but did not improve IC or SOC predictions compared to individual sensor results.  

The combined LIBS-VisNIR TC model was the best TC predictor with a slightly higher r
2
 value 

than LIBS alone and deviated less from the 1:1 line (See NU, Table 5 and Table 12).  The LIBS-

VsiNIR IC model (r
2
 = 0.68) performed similar to both 2007 VisNIR and LIBS models alone (r

2
 

= 0.65, and r
2
 = 0.66, respectively).  Conversely, the LIBS-VisNIR SOC model (r

2
 = 0.40) 

improved predictions compared to LIBS alone (r
2
 = 0.22), but did not perform as well as VisNIR 

alone (r
2
 = 0.51).  
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Researchers suspect that the 2046 LIBS wavelength predictors collected in 2007 are diluting, if 

not dominating, the PLS analysis and overwhelming the 216 VisNIR wavelength predictors.  

Although PLS is similar to principal component analysis in that both use statistical rotations of 

predictor variables, PLS rotates both the X and Y variables “semi-orthogonally” relative to the 

response variable to maximize predictive capabilities (Brown et al., 2006; Wold et al., 2001b).  

One would expect that the combined LIBS-VNIR data would perform at least as well as the best 

individual sensor results.  The results suggest that PLS is sensitive to large predictor datasets.  

Reduction of LIBS spectra poses a difficult challenge to overcome.  High spectral resolution is 

required for elemental analysis, because elemental emission features are often distinct peaks that 

occur at very specific wavelengths.  For example, the carbon emission peak occurs specifically at 

247.8 nm.  This precludes a strict re-sampling algorithm (commonly used with VisNIR) that 

reduces the spectral resolution below a yet undetermined critical resolution required to spectrally 

resolve elemental features.  Other approaches may be able to use the data at the current 

resolution to build better predictive spectral models for TC, IC, and SOC, regardless of the 

number of predictor variables.  One option may involve using principal components analysis of 

individual sensor data, then combining those principal components in a PLS regression 

environment (Hamalainen and Albano, 1992). Alternative multivariate statistical and data mining 

approaches continue to be tested. 

 

5.4 Conclusion 

VisNIR and LIBS spectroscopy have the potential to fill the growing need for rapid, accurate, 

and inexpensive methods to measure, and verify soil organic carbon change.  These 

fundamentally different techniques performed individually mostly as expected; however, the 

combined LIBS-VisNIR data array did not consistently improve predictive accuracies over 

individual sensors.  Data reduction methods are needed for LIBS spectral data, and other 

statistical and data mining algorithms need to be tested before integrating these sensors into an 

Table 12: Partial Least Squares model statistics for combined VisNIR-LIBs for predicting total 

carbon (TC), inorganic carbon (IC), & soil organic carbon (SOC) in intact soil cores. 

Model N r
2
 RPD 

SEP      

g kg
-1

  

SB
†
 

(%) 

NU
†
 

(%) 

LC
†
 

(%) 

LIBS-VisNIR TC 80 0.69 1.7 5.5 0.2 5.9 93.9 

LIBS-VisNIR IC 80 0.68 1.7 5.1 0.5 27.7 71.8 

LIBS-VisNIR SOC 80 0.40 1.0 3.5 0.8 7.1 92.1 

RPD = rational product differential, SEP= standard error of prediction, SB = squared bias, NU= 

non-unity, LC = lack of correlation 

† percent of mean squared deviation (MSD) 
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operational field unit.  A field unit with a LIBS-VisNIR array mounted in a soil penetrometer, 

when fully operational, would allow for rapid soil profile characterization and mapping at field 

and landscape scales.  Instrumentation modifications to the LIBS sensor will be to extend the 

focal length of the laser to reduce the effects of uneven core surfaces on spectral intensity and 

variability.  To the best of our knowledge this is the first attempt to combine these two proximal 

sensing techniques.   
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