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EXECUTIVE SUMMARY 
The National Risk Assessment Partnership (NRAP) brings together scientists and engineers from 
five U.S. Department of Energy’s (DOE) national laboratories (NL), to develop insights into the 
environmental risk behavior of long-term carbon dioxide (CO2) storage in geologic formations. 
Through stakeholder involvement, the NRAP program also benefits from the perspective of 
industry, government, non-government organizations, and academia regarding research needs on 
this topic. Phase I of the NRAP effort has recently concluded and this report summarizes the 
results of this 6-year effort. Phase I was focused on quantification of risk and related 
uncertainties, using the approach detailed in this report, and summarized in Figure 1, below.  

 

 
Figure 1: In the NRAP approach to quantitative risk assessment, sets of full-complexity numerical 

simulations of key system components (e.g., reservoir, potential leakage pathways, and overlying receptors) 
are used as the basis from which to build computationally-efficient reduced-order models (ROMs). Those 
ROMs can then be exercised to understand component behavior, or coupled in an integrated assessment 

framework with Monte Carlo-type analysis used to explore full-system risk performance through time, in the 
context of system uncertainties. 
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Improving the science base to build confidence for long-term CO2 storage decisions was another 
key aspect that was studied by the project personnel. The main results for this part of the effort 
are:  

• Development of physics based models of geologic carbon storage (GCS), systems and 
system components 

• Demonstration of the validity and limitations of reduced complexity models, and 
integrated assessments models 

• Computational and experimental analysis to address key system uncertainties 
• Simulation of long term carbon storage system performance, in the context of those 

uncertainties 

An important set of products from NRAP’s Phase I effort is the set of tools that can be used to 
explore environmental risk behavior at CO2 storage sites. The NRAP toolset is comprised of ten 
simulation tools representing important components of the engineered geologic system related to 
understanding the risk for and associated with potential fluid migration and induced seismicity. 
The tools, described in greater detail in the body of this report, are summarized below. 

• The Reservoir Evaluation & Visualization (REV) tool generates pressure and CO2 
plumes sizes over time. It may be helpful for making Area of Review (AoR) 
determinations. 

• The Reservoir Reduced-Order Model - Generator (RROM-Gen) tool generates reservoir 
look-up table reduced-order models (ROMs) from established reservoir simulations. It 
acts as a conversion tool which creates output that can be used directly by the NRAP 
Integrated Assessment Model-Carbon Storage (NRAP-IAM-CS). 

• The Wellbore Leakage Analysis Tool (WLAT) evaluates existing wells for leakage 
potential. The tool also models migration of brine and/or CO2 outside of storage reservoir 
and explores leakage response as a function of well disposition. 

• NRAP Seal barrier Reduced-order model (NSealR) estimates leakage through a fractured 
seal and flux through a fractured or perforated seal. This tool computes two-phase (brine 
and supercritical CO2) flux and includes fluid thermal/pressure dependence. 

• The Aquifer Impact Model (AIM) tool gives a rapid probabilistic estimation of aquifer 
volume impacted by a potential leak. It distinguishes between CO2 and brine leaks and is 
used to determine impact of threshold criteria. 

• Multiple Source Leakage Reduced-order model (MSLR) determines the probability that 
the receptors are located within the radius of dense gas concentration that is above a 
given critical concentration. MSLR handles single- or multiple-source CO2 leakage using 
a ROM. 

• NRAP Integrated Assessment Model-Carbon Storage (NRAP-IAM-CS) simulates long-
term full system behavior (from storage reservoir to aquifer/atmosphere). This tool 
provides results that can be used to compute risk profiles (time-lapse probability of 
leakage and groundwater impacts) and quantitative estimates of a storage site, with 
respect to system uncertainty. 
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• The prototype Designs for Risk Evaluation and Management (DREAM) monitoring 
optimization tool evaluates and selects the optimal monitoring design including 
subsurface monitoring design for a specific site. The tool also estimates the time to 
detection for the monitoring system. 

• The Short Term Seismic Forecasting (STSF) tool forecasts seismic event frequency over 
the short term for a window of a few days using probabilistic methods and historical data. 
The tool can complement stoplight approach for induced seismicity planning and 
permitting. 

• Ground Motion Prediction applications to potential Induced Seismicity (GMPIS) tool 
estimates ground motion at the surface that could result from potential induced 
earthquakes at CO2 storage sites, providing useful information for use during the project 
planning and permitting stages. 

These tools and supporting information can be accessed on the NRAP website 
https://edx.netl.doe.gov/nrap. 

https://edx.netl.doe.gov/nrap
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1. INTRODUCTION 
Geologic carbon storage (GCS), the injection of carbon dioxide (CO2) into permanent 
underground storage sites, is an important part of our nation’s strategy for managing CO2 
emissions. Several pilot-to intermediate-scale carbon storage projects in the United States (U.S.) 
and across the world have demonstrated the technical feasibility of GCS. However, some 
technical, regulatory, and policy questions remain to be addressed before full-scale GCS can be 
implemented in the U.S. and internationally. Business and regulatory concerns still hinder its 
rapid commercial deployment. Industry 
investors worry about the uncertainties and 
potential liabilities inherent in owning an 
operation that must remain safe and secure for 
hundreds, if not thousands, of years. 
Regulators also need broad technical 
information to effectively address CO2 storage.  
Of particular relevance to making a business 
case for large-scale, long-term GCS is the 
development of quantitative, science-based 
methods for estimating long-term 
environmental risks related to potential leakage 
and induced seismicity. Such methods, and 
tools based on those methods, will help inform 
decision making with respect to two critical 
considerations for full scale carbon storage: 1) 
long-term liability and 2) cost of monitoring, 
particularly in the period of post-injection site care (PISC).  

The U.S. Department of Energy’s (DOE) Office of Fossil Energy and the National Energy 
Technology Laboratory (NETL) are conducting research to advance the science and engineering 
knowledge base for technologies that will accelerate the business case for large-scale CO2 
capture and storage, including prediction and quantification of risks. As part of this effort, NETL 
is leading a multi-laboratory effort that leverages broad technical capabilities across the DOE 
complex into a mission-focused platform to develop a critical science base and predictive tools 
that can be applied to risk assessment for long-term storage of CO2: the National Risk 
Assessment Partnership (NRAP). NRAP brings together researchers from five DOE national 
laboratories: NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National 
Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest 
National Laboratory (PNNL) to conduct integrated, collaborative, mission-driven research. This 
collaboration is strengthened even further by drawing on the expertise of academic and industry 
partners. Directed by multi-lab technical working groups (WGs), these research organizations 
conduct integrated, collaborative research.  

The goal of NRAP is to develop defensible, science-based methodologies and tools for 
quantifying risks amidst system uncertainty and to better inform decision making for GCS sites. 
To achieve this goal, the NRAP project is being executed in two phases, each of which improves 
the science-based platform.  

“NRAP is comprised of the Nation’s leading 
national laboratories in the areas of 
geosciences. This work, in turn, will provide 
an incredible toolset for the assessing, 
development, and management of geologic 
storage of CO2 for its users. The 
development of this tool kit reflects the 
stakeholder collaborations with the labs 
resulting in practical and well researched 
applications.”  

~Michael Moore,  
 Executive Director NACCSA,  
 NRAP Stakeholder 
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NRAP has completed Phase I activities (2011–2016), which focused on developing approaches 
to quantitatively assess site-scale risk performance. Phase I included efforts to build a critical 
science base to constrain key uncertainties in the behavior of important system components, 
develop methodologies and predictive tools for rapid estimation of long-term system 
performance and related uncertainties, and communicate the functionality and utility of those 
products to key GCS stakeholders. Through Phase I, NRAP researchers:  

• Generated the first long-term quantitative risk profiles for a full CO2 storage system  

• Developed predictive tools and conducted focused experimental studies to improve 
understanding of potential leakage pathway behavior  

• Developed a comprehensive risk model for induced seismicity, as well as tools to forecast 
near-term seismic potential and estimate potential ground motion effects from induced 
seismicity  

• Provided insights into the utility of select monitoring approaches and explored the 
potential for optimization of monitoring design  

• Developed an integrated assessment model (IAM) coupling computationally efficient 
ROMs of various system components to describe whole-system CO2 containment 
behavior and potential leakage risks and impacts 

NRAP Phase I efforts have resulted in the generation of a set of ten risk assessment tools that 
have been openly distributed for testing and use by the international carbon capture and storage 
(CCS) community. Products from these efforts also include the publication of numerous peer-
reviewed articles and technical reports detailing key findings from laboratory and computational 
studies, innovative reduced-order modeling approaches, new risk assessment and uncertainty 
quantification methodologies, and new insights into whole system risk performance and key 
storage security relationships and issues. Together, these accomplishments help to advance the 
state of understanding and provide a path forward for quantitative assessment of risks, risk 
management and uncertainty reduction.  

The tools and improved science base 
developed by NRAP will help operators design 
and apply monitoring and mitigation strategies. 
They will help regulators and their agents 
quantify risks and perform cost-benefit 
analyses for specific CCS projects. Finally, 
financiers and regulators will be able to invest 
in, and approve, CCS projects with greater 
confidence because the costs of long-term 
liability can be estimated with less uncertainty. 
Armed with the ability to quantify risk and to 
estimate the cost of long-term liability, 
industry will gain the confidence necessary to 
invest in CCS projects and regulators, 
government agencies, and the public will gain 
confidence in predictions of CCS site 
performance. 

“The NRAP toolkit provides users with the 
first complete suite of models to predict and 
diagnose the geological integrity of CO2 
geological storage sites. Previously this has 
been performed using discrete and 
independent models, so this is a significant 
accomplishment in providing assurance to 
stakeholders that CO2 Capture and Storage 
(CCS) is safe and secure. Testing and 
comparison of results now is an important 
step to validate use, along with 
incorporation into risk management 
methodologies prior to deployment.”  

~ Nigel Jenvey, BP 
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2. PHASE I ACCOMPLISHMENTS BY WORKING GROUP 

NRAP consists of multiple research organizations conducting integrated, collaborative research. 
NRAP Phase I is further broken down by technical WGs, comprised of researchers from 
technical teams from each NL. WGs are responsible for identifying key research needs to meet 
NRAP goals and for coordinating research across NLs. Throughout NRAP Phase I, six (6) WGs 
were structured around key technical elements associated with risk assessment at a potential 
storage site. 

2.1 RESERVOIR PERFORMANCE WG ACCOMPLISHMENTS  
The Reservoir Performance WG studies during Phase I focused on developing models, tools, and 
methods to quantify and assess pressure buildup and CO2 plume behaviors in injection 
reservoirs. Extents of pressure buildup and CO2 plume are important to describe area of review 
(AoR) for monitoring and assessment requirements based on the U.S. Environmental Protection 
Agency’s (EPA) Class VI rule for CO2 injection wells. The Reservoir Performance WG 
investigated and quantified the effects of both operational variables, such as injection rate and 
duration, and geological variables on the pressure buildup and CO2 plume extents. The WG 
developed new mathematical models for more accurate prediction of post-injection CO2 
distribution and trapping. Significant effort was also given to develop computationally efficient 
algorithms for visualizing and analyzing reservoir simulation results and developing reservoir 
ROMs used in NRAP integrated assessment studies. Approaching the end of NRAP Phase I, the 
Reservoir Performance WG conducted other important transitional studies such as development 
of a methodology for risk–based description of AoR and development of adaptive management 
strategies for risk management. The Reservoir Performance WG accomplishments for NRAP 
Phase I are summarized under three categories: 1) Reservoir Modeling, 2) Tool Development, 
and 3) Method Development.  

2.1.1 Assessment of Pressure and CO2 Plume Behavior  
Collaborative efforts between LANL, LBNL, and NETL produced numerical simulations under 
different reservoir conditions to assess maximum extents of critical pressure buildup and CO2 
plumes as function of injection rate and volume. Selected reservoir types and properties included 
1) a generic sandstone formation (regional dip), homogeneous, and permeability variations; 2) 
multilayer, domal sandstone reservoir (based on Citronelle [Alabama] field data); 3) domal, 
sandstone, and limestone reservoir (based on Rock Springs Uplift in Wyoming) with 
heterogeneous properties and multiple injectors; and 4) Vedder formation, sandstone alternating 
with shale, Kimberlina, California. An NRAP Technical Report Series (TRS) document 
(Bromhal et al., 2014) reported the analyses of the reservoir simulation results in detail, with all 
the simulation results achieved. Some of these reservoir simulation results (e.g., the simulations 
in Vedder formation published in Wainwright et al., 2013) have been used to generate ROMs 
including look-up tables (LUTs) for NRAP integrated assessment studies. The results have been 
used across different NRAP groups for geo-mechanical damage and groundwater leakage risk 
assessments.  

The simulation results in general, indicate that the pressure plume size increases rapidly during 
injection and decays at a relatively faster rate, depending on reservoir boundaries and properties. 
The CO2 plume continues to grow slowly during post-injection time periods. Although the 
patterns of the plume sizes as a function of time look similar, the plumes sizes can be 
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significantly different for different sites. As shown by the global sensitivity analyses by 
Wainwright et al. (2013, 2014), the growth and decay of the pressure plume and extent of the 
CO2 plume are very sensitive to different hydraulic and two-phase flow properties existing in 
different reservoirs. This indicates the importance of reservoir characterization for reliably 
estimating the plume sizes for actual CO2 storage projects.  

Extracting the data from different simulators and printing the risk metrics related to critical 
pressure buildup and CO2 plume sizes required development of a Reservoir Evaluation & 
Visualization (REV) tool. Additionally, the REV tool has a graphical interface to visualize 
results from different models/simulators under the same platform.  

2.1.2 Development and Testing of Improved Reservoir Models  
Most of the existing reservoir simulators make the common assumption of constant residual 
saturation, neglecting the hysteresis effects. However, there is strong experimental evidence that 
residual saturation of the CO2 depends on the history and the maximum value of CO2 saturation 
experienced during the invasion of CO2. This necessitated the Reservoir Performance WG to 
improve numerical reservoir models by considering hysteresis for accurate assessments and 
quantifications of post-injection reservoir processes. The Reservoir Performance WG developed 
new hysteretic two-phase flow models (Cihan et al., 2014a, b; 2016) and tested successfully 
against experimental data (Trevisan et al., 2014a, 2015). These studies indicated that both 
heterogeneity and hysteresis play significant roles for controlling migration and entrapment of 
supercritical CO2 (scCO2) during post-injection and also showed the limitations of the existing 
reservoir model predictions that neglect hysteresis effects.  

2.1.3 Development of Reservoir ROMs  
The Reservoir Performance WG developed and tested the applicability of different ROMs 
including LUTs, surrogate reservoir model (SRM) (Mohaghegh et al., 2012), and polynomial 
chaos expansion (PCE) (Pau et al., 2014; Shahkarami et al., 2014; Zhang and Sahinidis, 2013a, 
b). Some of these methods were reported to be applicable under certain reservoir conditions. The 
Reservoir Reduced-Order Model – Generator (RROM-Gen) tool, produced by the Reservoir 
Performance WG, interpolates the reservoir simulation results onto a workable grid using LUT 
for integrated assessment studies. 

2.1.4 Upscaling Tool for Reservoir Modeling 
The Reservoir Performance WG also developed an upscaling tool for computationally efficient 
calculations of reservoir pressure and CO2 plume behavior using coarsened high-fidelity 
simulators. This tool generates coarser models from high-resolution reservoir models, including 
the effects of sub-grid scale heterogeneities. 

2.1.5 Risk-Based Methodology for Area of Review 
The Reservoir Performance WG developed a methodology to generate risk maps based on the 
potential impact to underground sources of drinking water (USDW) (Woodburn et al., 2016). 
Expanding a tiered-AoR description work by Birkholzer et al. (2013), the methodology can be 
used to provide risk-based descriptions of the AoR to inform site selection and monitoring during 
and post-injection. The demonstration studies assumed the two largest sources of uncertainty to 
be the location of the leaky well and the leaky well permeability. The results indicate that 1) 
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characterizing conductivity variations of abandoned wells in a storage site is critically important 
for reliable predictions of risks, and 2) presence of thief zones (i.e., high permeability non-
USDW layers between the storage zone and USDW) can dramatically decrease risk of brine 
leakage into USDW through leaky wells.  

2.1.6 Adaptive Management Approaches for “Conformance” 
The Reservoir Performance WG developed adaptive management approaches and tested an 
initial computational algorithm under generic reservoir conditions. Under an actual CO2 storage 
scenario, initial model predictions typically carry significant uncertainty due to incomplete 
knowledge, and model results can deviate significantly from actual observations. The Reservoir 
Performance WG studies demonstrate that conformity of long-term model results with the actual 
system behavior could only be approached reasonably closely, modeled within a reasonable 
variance by adaptively improving the model with the monitoring data. The adaptive strategies 
development initiated during NRAP Phase I will continue to be tested and expanded by adding 
“risk management” as part of the adaptive scheme during NRAP Phase II. 

2.2 WELLBORE AND SEAL INTEGRITY WG ACCOMPLISHMENTS 
Wells and seals represent the primary pathway through which leaking CO2 and/or brine can leave 
the storage formation and impact groundwater or other resources. The focus of NRAP Phase I for 
wells and seals was on understanding fundamental behavior through laboratory experiments and 
detailed numerical simulations. This work was then used to develop predictive tools that enable 
the rapid estimation of leakage behavior at the field scale.  

2.2.1 Laboratory Experiments 
During NRAP Phase I, laboratory experiments conducted by the Wellbore and Seal Integrity WG 
were used to characterize the reactive transport processes that affect leakage along pathways in 
wells and seals. These resulted in critical observations that solidified the understanding of key 
chemical reactions and mechanical alterations that occur along leakage pathways (Carroll et al., 
2016). While the cement used in wells is reactive with CO2 and CO2-saturated waters, the 
chemical reactions dissolve cement phases while leaving a silica-rich phase that resists flow and 
potentially precipitating calcium carbonates. This finding has been observed for a range of 
conditions, e.g., pressure, temperature, cement composition, presence of formation rock, and 
injected gas contaminants (Carey, 2013; Jung and Um, 2013; Newell and Carey, 2013; Zhang et 
al., 2014a, 2014b). Thus, under many conditions, a leak path involving well cement is not 
expected to become a self-enhancing leak path. However, there may be conditions when the 
system becomes self-sealing. Self-sealing was observed due to secondary mineral precipitation 
(Huerta et al., 2015; Um et al., 2014) and due to geomechanical closure of the pathway (Mason 
et al., 2013; Walsh et al., 2014). Less laboratory work has been performed on characterizing seal 
leakage due to the difficulty in obtaining representative samples and the inability for 
experimental apparatus to simulate the correct subsurface conditions, though several case studies 
were attempted (Crandall and Bromhal, 2013). Recent advances within NRAP now allow 
experimental studies of leakage processes in fractured caprock using direct shear devices (Carey 
et al., 2015). These studies reveal the important role of ductile deformation in limiting 
development of significant permeability in damaged caprock. These new tools can make use of 
more readily available samples (due to the shale drilling boom) to understand how leak-path 
permeability changes due to various subsurface phenomena. While there remains several areas 
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that need fundamental experimental observations (e.g., casing corrosion and more seal leakage 
work) NRAP’s Phase I laboratory experiments have made significant contributions to 
understanding leakage risk in wells and seals.  

 

 
Figure 2: Well leakage research within Phase I focused on developing first-order models for well leakage at 
the field scale, while the fundamental processes for time-dependent leakage were studied using laboratory 

and numerical approaches. From this work, a deeper understanding was developed of the complex coupled 
reactive transport and geomechanical processes that can lead to self-sealing leakage behavior.  

 

2.2.2 Numerical Simulations  
Full physics simulations have been used to understand the effect of reservoir-scale phenomena 
on leakage and the time evolution of leakage that more recently incorporates findings from the 
laboratory experiments as a basis for the development of predictive tools. Numerical simulations 
for a leaky cemented well were conducted using the Finite Element Heat and Mass (FEHM) 
transfer code (Zyvoloski, 2007) to develop an understanding of the magnitude for leak flux. 
Input parameters considered were well permeability, well depth, reservoir pressure, and CO2 
saturation (Jordan et al., 2015). These results were instrumental in developing the ROMs 
discussed below. Additional simulations on more complex geometries, for example thief zones, 
provided insights to where the leaking brine and CO2 may be transported. These observations are 
important for signal monitoring around wells (Harp et al., 2016). Parametric investigations of 
wellbore and thief zone permeabilities indicated that as long as wellbore permeabilities were less 
than 1×10-14 m2, leakage remained extremely low, and that significant increases in leakage of 
brine or CO2 only occurred when wellbore permeability was relatively high (1×10-12 m2) and 
thief zone permeability was extremely low (1×10-18 m2) (Harp et al., 2014). In order to simulate 
the worst case leakage scenario of an opened well, a drift-flux model was applied for transient 
two-phase non-isothermal flow of CO2 and brine (Pan et al., 2011). These results were also used 
to develop the ROM for an open well. More advanced simulations were recently conducted to 
incorporate observations from the laboratory experiments of the geochemical effects (Brunet et 
al., 2016) and the combined geochemical and mechanical effects (Walsh et al., 2014a; Walsh et 
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al., 2014b). These results suggest that those effects significantly impact well response, and that a 
characteristic sealing behavior is observed at critical fluid residence times and as a function of 
several system parameters (e.g., gradient in potential, fracture aperture, leak length). Full-physics 
simulations provide not only field-scale understanding of how leakage evolves over time, but can 
also be used to develop more computationally efficient models that can, in turn, be used to create 
predictive tools for leakage risk assessment.  

2.2.3 Predictive Tools 
The Wellbore and Seal Integrity WG developed several user-friendly and computationally-
efficient models for estimating leakage along compromised wells and seals. The Wellbore 
Leakage Analysis Tool (WLAT) is a collection of four models that captures various aspects of 
leakage along wells (Huerta and Vasylkivska, 2016). The NRAP Seal barrier Reduced-order 
model (NSealR) uses a stochastic approach to model the leakage of CO2 and brine along 
relatively high permeability pathways (i.e., fractures) that traverse a low permeability sealing 
formation (Lindner, 2016). These tools can be used to get a rapid assessment of leakage flux and 
total leakage for different scenarios.  

WLAT comprises models developed within NRAP and by external researchers. The first 
component model, the Cemented Wellbore Model, was developed by performing many full-
physics simulations using LANL’s FEHM code over a range of key parameters (Jordan et al., 
2015; Harp et al., 2016). The results are constructed into ROMs to be sampled based on input 
conditions. These ROMs estimate the multiphase flow of CO2 and brine along a cemented 
wellbore. The model can treat leakage to a thief zone, aquifer, or to the atmosphere. The second 
component model, the Multi-segmented Wellbore Model, is an adaptation of the models 
developed at Princeton University (Celia et al., 2011; Gasda et al., 2012; Nordbotten et al., 
2009). Reduced-physics models were used to treat the leakage of CO2 and brine along wells with 
multiple thief zones. This model provides a useful validation case for the Cemented Wellbore 
Model. The third component model, the Open Wellbore Model, is a reduced-physics model 
based on the drift-flux approach (Pan, 2011; Pan et al., 2011, 2009). This model treats the 
leakage of CO2 up an open wellbore or up open (i.e., un-cemented) casing/tubing. The last 
model, the Brine Leakage Model, a reduced-physics model, was developed based on simple 
reactive transport theory and is tuned with experimental observations (Huerta et al., 2014). This 
model estimates the leakage of brine considering the effects that geochemical alteration (e.g., 
dissolution and precipitation) may have on the leak-path permeability.  

The NSealR tool was developed at NETL to simulate the movement (leakage) of CO2 over time 
through a thin, relatively impermeable layer of rock overlying a rock formation where CO2 has 
been injected. The current theoretical base considers the one dimension (1D), two-phase flow of 
CO2 through brine-saturated rock under CO2 supercritical conditions.  

2.3 GROUNDWATER PROTECTION WG ACCOMPLISHMENTS 
The Groundwater Protection WG focuses on predicting potential impacts to groundwater 
systems that could occur as a result of CO2 storage. A key element of this WG is to quantify 
potential changes over time to groundwater chemistry (related to groundwater quality) as a 
function of the introduction of fluids (CO2 and/or brine). 
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2.3.1 Predictive Tools 
The Aquifer Impact Model (AIM) consists of two ROMs that can be used to predict the impact 
potential in the event of a (out of zone migration) or leak that CO2 and brine from a CO2 storage 
reservoir might have on overlying aquifers. The models predict the size of “impact plumes” 
according to nine water quality metrics. The development of this computationally efficient tool, 
and the underlying reactive transport simulations it emulates, have been described in several 
publications (Bianchi et al., 2016; Carroll et al., 2014; Dai et al., 2014; Keating et al., 2016a, b; 
Keating et al., 2014). The AIM is well suited to applications that consider a large number of 
scenarios such as risk assessment, sensitivity analysis, and uncertainty analysis. In addition to the 
stand-alone AIM tool, the groundwater ROMs have also been incorporated into the NRAP-IAM-
CS tool. 

More specifically, the NRAP AIM predicts the size of “impact plumes” in shallow aquifers 
caused by point-source CO2 and/or brine leaks introduced at the base of the aquifer. The input 
variables are 1) the location and number of point-source leaks, 2) flow rate of CO2 and brine at 
each point source, and 3) hydrogeologic and geochemical characteristics of the aquifer. The 
output variables are above threshold plume sizes for each of nine water quality metrics and the 
flux of CO2 across the water table. If the user is interested in predicting impacts due to time-
varying sequences of flow rates, the AIM will be called at each time in the sequence. For each 
point in time, the AIM inputs will be the instantaneous CO2 and brine mass flow rate and the 
cumulative mass of CO2 and brine leaked since the start of the leakage scenario. Although the 
AIM tool was developed using site-specific data from two aquifers (Edwards and High Plains), 
the models accept aquifer characteristics as variable inputs and therefore, may have more broad 
applicability. 

2.3.2 Full-Physics Simulations 
The AIM ROMs were derived from thousands of full-physics simulations of reactive CO2 and 
brine plumes in shallow aquifers. These simulations have been archived and can be accessed for 
future analyses. Potential applications include monitoring network design (DREAM or other 
similar tools) and risk assessment. If new water quality thresholds or metrics are developed in the 
future, new versions of the AIM tool could be derived from the archived simulations.  

2.3.3 Laboratory Experiments 
A series of batch and column experiments and solid phase characterization studies (quantitative 
X-ray diffraction and wet chemical extractions with a concentrated acid) (Lawter et al., 2016) 
and associated modeling work (Zheng et al., 2016) were conducted with representative rocks and 
sediments from an unconfined, oxidizing carbonate aquifer, i.e., the Edwards Aquifer in Texas, 
and an unconsolidated sand and gravel aquifer, i.e., the High Plains Aquifer in Kansas. These 
materials were exposed to a CO2 gas stream to simulate CO2 gas leakage scenarios, and changes 
in aqueous phase pH and chemical composition were measured in liquid samples (batch 
experiments) and effluent samples (column experiments) collected at pre-determined 
experimental times.   

Laboratory experiments (Varadharajan et al., 2013) and field tests (Trautz et al., 2013) funded by 
other agencies, but leveraged with NRAP funding, were also carried out for an aquifer in 
Mississippi and simulated with reactive transport models (Zheng et al., 2015). These experiments 



NRAP Phase I Accomplishments 2011–2016 

12 

and models significantly enhanced the understanding of which elements could potentially be 
released in response to the leakage of CO2, to what extent could they be released, and what are 
the controlling processes and key parameters of these events.  

Results from these experimental efforts provided valuable insights for the development of 
groundwater impact ROMs, including characterization of release mechanisms for trace metals 
from aquifer rock. The results from these investigations provided useful information to support 
site selection, risk assessment, and public education efforts associated with geologic, deep 
subsurface CO2 storage and sequestration (Harvey et al., 2013; Harvey et al., 2016; Lawter et al., 
2015; Lawter et al., 2016; Qafoku et al., 2014; Shao et al., 2015).  

2.3.4 No-Impact Thresholds 
In order to develop the aquifer impact ROMs, it was necessary to establish baseline datasets and 
statistical protocols for determining statistically significant changes between background 
concentrations and predicted concentrations that would be used to quantify and define a 
contamination plume (Last et al., 2016). 

The initial effort examined selected portions of two aquifer systems: the urban shallow-
unconfined aquifer system of the Edwards-Trinity Aquifer System (being used to develop the 
ROM for carbon-rock aquifers), and a portion of the High Plains Aquifer (an unconsolidated and 
semi-consolidated sand and gravel aquifer being used to develop the ROM for sandstone 
aquifers). No-impact threshold values were determined for cadmium, lead, arsenic, pH, and total 
dissolved solids (TDS) that can be used to identify potential areas of contamination predicted by 
numerical models of carbon sequestration storage reservoirs. No-impact threshold values were 
later determined for chromium and barium specifically to support the ROM being developed by 
LLNL for the High Plains Aquifer. These threshold values are based on an interwell approach for 
determining background groundwater concentrations as recommended in the U.S. EPA Unified 
Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and 
Recovery Act (RCRA) Facilities. 

The resulting no-impact threshold values can be used to inform a “no change” scenario with 
respect to groundwater impacts, rather than using a maximum concentration limit or secondary 
drinking water standard that in some cases could be significantly higher than existing 
concentrations in the aquifer. These no-impact threshold values are intended for use in helping to 
predict areas of potential impact and are not intended for use as alternate regulatory limits. 

2.4 SYSTEM (RISK) MODELING WG ACCOMPLISHMENTS  

2.4.1 Quantification of Environmental Risk Profiles  
Through the first phase of research, the NRAP System (Risk) Modeling WG developed and 
demonstrated a new approach to quantify environmental risks through time at GCS sites. Even 
though the concept of environmental risk profiles has been used effectively to communicate risks 
since its introduction in 2007 by Benson, examples have largely been “qualitative.” The NRAP 
quantification approach brings together the concepts of science based predictions and systems 
modeling. An example risk profile for probability of CO2 leakage to the atmosphere in excess of 
selected hypothetical cutoff values is shown below in Figure 3. The approach is embodied in 
NRAP’s flagship simulation tool for quantification of potential leakage risk: NRAP-IAM-CS. 
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Figure 3: Risk Profile of CO2 Leakage. 

 

2.4.2 Integrated Assessment Model (NRAP-IAM-CS) 
NRAP-IAM-CS is a first of its kind integrated model that can be used to perform stochastic 
simulations of long-term storage performance (hundreds to thousands of years) of GCS sites 
while exploring a wide range of system uncertainties. NRAP-IAM-CS is a system model that 
links ROMs for critical system components, including the primary storage reservoir, wellbore, 
groundwater and atmosphere, to simulate the total system behavior. The model can be used to 
estimate whether CO2 injection induced pressure and saturation changes in storage reservoirs can 
lead to CO2 and brine leakage and, if so, to estimate possible impacts due to those leaks in 
groundwater aquifers as well as potential changes in CO2 concentration in the atmosphere above 
GCS sites.  
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Figure 4: NRAP-IAM-CS Home Screen. 

 

The NRAP approach to develop NRAP-IAM-CS is described in Figure 1 in the Executive 
Summary; Figure 4 shows an image of the NRAP-IAM-CS front page. 

The ROMs utilized in NRAP-IAM-CS make it extremely computationally efficient, where 
stochastic simulations with thousands of realizations, each one simulating long-term storage site 
performance, can be performed in a matter of hours. During the stochastic simulations with 
NRAP-IAM-CS multiple, uncertain key parameters in all system components can be sampled to 
assess impact of parameter uncertainties over system performance and predicted leakage risks.  

2.4.3 Informing Decision Making with Uncertainties  
In order to effectively manage risks at GCS sites it is necessary to inform decision making 
related to site operations and risk management on how uncertainties in site characteristics affect 
overall risks. The System (Risk) Modeling WG demonstrated through the application of NRAP-
IAM-CS the effect of site specific uncertainties and site operational parameters on CO2 and brine 
leak rates as well as impacts of leakage on groundwater aquifers (Pawar et al., 2016).  

Figure 5 demonstrates the importance of uncertain parameters in various parts of a CO2 storage 
system on the change in TDS concentration in a groundwater aquifer at a hypothetical GCS site 
due to CO2 and brine leakage.  
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Figure 5: Predicted importance of various uncertain parameters on change in TDS due to leakage under a 
hypothetical scenario at a hypothetical GCS site. 

 

2.4.4 Key Findings 
In all cemented well scenarios evaluated with application of NRAP-IAM-CS, cumulative leakage 
is predicted to remain well below the Intergovernmental Panel on Climate Change (IPCC) 
storage permanence goal (99% retention after 1000 years), even in scenarios with very high 
cemented well density (10 wells per km2). 

Accounting for residual saturation improves storage reservoir performance, resulting in leakage 
profiles that decline following the period of active injection. 

In the scenarios evaluated for impact of leakage on groundwater, results showed that extremely 
low volumes of groundwater were impacted due to leakage. Additionally, the results also showed 
that the groundwater volume with pH change due to leakage was different than that with change 
in TDS which has implications on deployment of monitoring technologies.  

Overall, the multi-variate and sensitivity analysis for CO2 leakage to atmosphere shows that the 
wellbore cement permeability is the most important uncertain variable. 

On the other hand, the analysis for shallow aquifer impacts showed that, for low leak rates, the 
importance of wellbore cement permeability was lower than the groundwater aquifer uncertain 
parameters.  

2.5 STRATEGIC MONITORING WG ACCOMPLISHMENTS  
Monitoring approaches for GCS depend on objectives, subsurface reservoir/site dimensions, and 
the stage of a CO2 storage site. Different monitoring techniques should be selected for site 
characterization before CO2 injection starts, for monitoring while injecting CO2, or for a post-
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injection stage. Phase I Strategic Monitoring WG efforts focused on the demonstration of 
geophysical monitoring approaches and capabilities at existing test sites as well as the 
development of approaches using synthetic models/datasets. The former was done in cooperation 
with regional partnerships that were undertaking these field demonstrations; the latter was based 
on internally developed synthetic models, both having an overall goal of developing tools and 
approaches that can be integrated into risk assessment models/tools. The integration of 
monitoring with quantitative risk assessment requires an understanding of limitations and 
detection capabilities of each monitoring method as those translate into the field-scale 
uncertainties.  

Initially, the NRAP Strategic Monitoring WG focused on underlying science issues related to 
monitoring CO2 storage. The goals driving this early work included: 1) assess and improve the 
resolution of individual monitoring technologies; 2) quantify and improve the temporal and 
spatial uncertainty of monitoring data; and 3) develop comprehensive joint/combined inversion 
of monitoring data. A focus of NRAP’s Strategic Monitoring WG was the development of a 
journal publication (Harbert et al., 2016). Field scale monitoring gaps were identified and 
priority, risk-driven, monitoring needs were evaluated. 

2.5.1 Monitoring Technologies at Field Sites 
An example of NRAP work addressing these goals was the collaborative work with the 
Southeast Carbon Sequestration Partnership (SECARB) on monitoring at the Cranfield, 
Mississippi detailed area study (DAS) injection site. NRAP extended planned vertical seismic 
profile (VSP) monitoring to include investigations of 3D-VSP resolution, VSP uncertainty and 
joint inversion of hydrologic, seismic, and electrical monitoring data (e.g., Ajo-Franklin et al., 
2013; Carrigan et al., 2013; Commer et al., 2016; Daley et al., 2015b; Doetsch et al., 2013). The 
3D-VSP processing addressed the improvement of subsurface seismic image quality and 
evaluation of monitoring with expensive 3D surface seismic versus less expensive, higher 
frequency, borehole-based 3D-VSP surveys at the Cranfield site. This work was later 
supplemented with an acoustic anisotropic analysis of two sonic dipole geophysical logs from 
the DAS site. As part of the Cranfield VSP work, the Strategic Monitoring WG developed a 
novel least-squares reverse-time migration method to enhance image resolution and enlarge the 
imaging region. Other NRAP work focused on electrical resistance monitoring at Cranfield- both 
the electrical resistance tomography (ERT) and uncertainty quantification and as part of joint 
inversion (Yang et al., 2014; Yang et al., 2015). For the ERT method, for example, the maximum 
standard deviation of CO2 saturation was found to be around 6% with a corresponding maximum 
saturation of 30% for a dataset collected 100 days after injection began. There was no apparent 
spatial correlation between the mean and standard deviation of CO2 saturation but the standard 
deviation values increased with time as the saturation increased.  

2.5.2 Monitoring Approaches using Synthetic Datasets 
In the late stages of NRAP Phase I, and in preparation for the integration of strategic monitoring 
into the NRAP-IAM-CS, the Strategic Monitoring WG began work on an integrated synthetic 
dataset based on the Kimberlina site. Kimberlina was a proposed storage site in the southern San 
Joaquin Basin in California that could be used to test the NRAP-developed ROMs and to test the 
risk-driven monitoring designs. One Kimberlina ROM dataset, based on the High Plains Aquifer, 
simulates CO2 and brine leaked into the overlying aquifer with variable heterogeneity.  
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A second synthetic dataset involves leakage from a compartmentalized aquifer along a well into 
the overburden containing multiple permeable and impermeable strata. The output models from 
these ROMs become the input to monitoring models. During this process, it was learned that the 
ROMs may not have the parameters necessary for geophysical simulations unless the parameters 
are specified in the design criteria. Further, before using ROMs to demonstrate monitoring tools 
and their capabilities, it is necessary to establish the capabilities and limitations of geophysical 
techniques (EM, seismic, InSAR [Interferometric Synthetic Aperture Radar], gravity, etc.) using 
full-resolution models.  

Previously, monitoring strategies have been selected using site specific information and expert 
judgment. However, quantitative risk assessments need more rigorous tools. One approach 
investigated within NRAP was a value of information (VOI) approach (Trainor-Guitton et al., 
2013). This approach was demonstrated for a post-injection stage, a scenario in which CO2 and 
accompanying brine would leak from a deep reservoir into a shallow aquifer via an abandoned 
wellbore. Geochemical reactions of CO2 and brine would cause an increase in groundwater 
salinity or TDS. Since this groundwater would be used to irrigate corn crops, high saline 
concentrations would result in economic losses. VOI uncertainty quantification evaluation was 
done using TDS and a range of possible economic outcomes from an agricultural decision, and 
showed that any information would be relevant only when plumes would exceed 2,000 ppm 
TDS. Remote sensing geophysical methods, e.g., electrical and EMs, can detect these TDS 
plumes as electrical resistivity is sensitive to TDS changes. The value of the crop resources can 
then be compared to the cost of monitoring and decisions made based on those results. 

2.5.3 Monitoring Tools 
During Phase I, the NRAP Strategic Monitoring WG produced software tools to improve 
monitoring. The Designs for Risk Evaluation and Management (DREAM) tool is used to develop 
risk-based monitoring strategies by designing and evaluating monitoring networks (Yonkofski et 
al., 2016b). DREAM is an optimization tool that reads ensembles of CO2 leakage simulations 
generated by common multiphase flow simulators. DREAM then generates monitoring 
configurations based on user-specified technologies, budgetary constraints, and spatial 
constraints. A simulated annealing algorithm optimizes over the ensemble evaluating the 
generated configurations in order to minimize time to CO2 leakage detection (Yonkofski et al., 
2016a).  
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Figure 6: DREAM Welcome Window. 

The Strategic Monitoring WG also developed a tool (currently in internal testing) for optimal 
design of passive seismic monitoring using surface and/or borehole geophones (Shang and 
Huang, 2012). This method provides the optimal number of geophones needed for a given 
tolerable error in event locations and target monitoring regions such as the reservoir or fault 
zones. 

2.6 INDUCED SEISMICITY WG ACCOMPLISHMENTS 
The central objective of the NRAP Induced Seismicity WG is to develop practical tools to 
support the management of induced seismicity at carbon storage operations. The goal is to 
identify site characteristics and operational approaches that can lower seismic risk. The Induced 
Seismicity WG is also developing new techniques to quickly identify hazardous situations and 
address problematic seismicity, should hazardous situations appear.  

2.6.1 Short-Term Seismic Forecasting Tool 
A central control on seismic risk is the rate and magnitude-distribution of earthquakes in the 
vicinity of a project. Unfortunately, the seismicity rate and its connection to subsurface injection 
are site-specific and difficult to accurately predict prior to injection. As a result, operators must 
use continuous microseismic monitoring of their site to properly assess the ongoing seismic 
hazard and react quickly to problematic situations as they arise (White and Foxall, 2014). To 
support this monitoring and management feedback loop, the Induced Seismicity WG developed 
the Short-Term Seismic Forecasting (STSF) tool (Bachmann et al., 2016). The tool uses a 
statistical analysis of observed seismicity, injection rate, and injection pressure to automatically 
calibrate a site-specific empirical model for seismicity rate and its relationship to injection 
activities (Bachmann et al., 2011; Mena et al., 2013). The tool then uses the planned injection 
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schedule to forecast an expected seismicity rate within a forecast window, usually looking ahead 
a few days to weeks. As new microseismic and injection data is recorded, the underlying data 
model and forecast are continuously updated. The impact of alternative injection scenarios on 
future seismicity can also be explored. In Phase I, an initial version of this forecast model was 
deployed and tested against a number of available induced seismicity datasets. In Phase II, model 
development will continue by improving the physical fidelity of the underlying statistical models 
and further testing the approach against recently acquired datasets. 

2.6.2 Ground Motion Prediction Tool 
A second key control on seismic risk is the severity of ground motion caused by induced 
earthquakes. This ground motion can be a nuisance to nearby populations or cause structural 
damage. Ground motion is both site- and earthquake-specific, and is strongly influenced by a 
number of geologic factors. To help operators appropriately identify nearby structures and 
communities at risk from induced events, the Induced Seismicity WG developed the Ground 
Motion Prediction applications to potential Induced Seismicity (GMPIS) tool (Coblentz et al., 
2016). This tool, based on empirical Ground Motion Prediction Equations (GMPEs), was 
developed using shallow, small-magnitude (<M4) earthquake data (Douglas et al., 2013). The 
tool also includes a model for site-specific ground motion amplification effects due to near-
surface geology (Abrahamson and Silva, 2008; Boore and Atkinson, 2008). Storage operators 
can use this tool to compute shakemaps for the local region under different earthquake scenarios 
to help improve seismic risk management plans. 

2.6.3 Probabilistic Seismic Risk Assessment Tool 
A logical approach for quantifying induced seismicity risk is to adapt the standard Probabilistic 
Seismic Risk Assessment (PSRA) technique widely used to estimate the risk of structural 
damage from naturally occurring (tectonic) earthquakes. As certain regions of the world are now 
dealing with both natural and induced events, a unified framework can also provide a common 
language for risk communication. PSRA couples the probability of earthquake occurrence with 
its societal consequences, which in the case of induced seismicity includes nuisance from felt 
ground motion as well as structural damage. While the general PSRA framework remains useful 
for induced seismicity, a number of substantial modifications are necessary to address important 
nuances associated with the underlying physical process (White and Foxall, 2016a; Pawar et al., 
2015). Therefore, the Induced Seismicity WG created a new code framework (RiskCat) to 
support seismic risk assessment at carbon storage projects. RiskCat takes input regarding 
earthquake occurrence, ground motion potential, and community vulnerability and generates an 
output of a probabilistic estimate of project risk. The resulting risk profile can be used to guide 
project design and can be continuously updated as new site characterization and monitoring data 
becomes available. 

2.6.4 Hydromechanical Simulators 
During Phase I, the Induced Seismicity WG developed a number of improved hydromechanical 
simulation capabilities for modeling static and dynamic fault slip and the potential for fluid 
leakage along faults. In particular, the WG helped support the development and application of 
RSQSim, a quasi-dynamic earthquake simulator originally developed at the University of 
California, Riverside for modeling natural earthquakes sequences (Richards-Dinger and 
Dieterich, 2012; Dieterich et al., 2015). RSQSim has been coupled to a number of reservoir 
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simulators to study the impact of different injection scenarios on the statistical distributions of 
induced events that may be observed. The WG also performed detailed studies on different 
aspects of fault reactivation and fluid leakage using various hydromechanical simulation 
packages developed at DOE laboratories—e.g. (Cappa and Rutqvist, 2011, 2012; Lu et al., 2012; 
Rinaldi et al., 2014; Nguyen et al., 2016). 
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3. SUMMARY 
The NRAP project has completed Phase I activities (2011–2016) focused on developing 
approaches to quantitatively assess site-scale risk performance. Phase I included efforts to build a 
critical science base to constrain key uncertainties in the behavior of important system 
components, develop methodologies and predictive tools for rapid estimation of system risk 
performance and related uncertainties, and communicate the functionality and utility of those 
products to key GCS stakeholders. These efforts resulted in the development of insights on key 
storage-security relationships, methodologies for quantitative assessment of risk performance in 
CO2 storage systems, and a novel set of tools that have been made freely available to the 
international GCS research, development, and deployment community. 

NRAP is now entering a second phase of collaborative research in which predictive capabilities, 
methodologies, and insights developed through Phase I will be applied and extended to consider 
the active management and mitigation of risk associated with large-scale CO2 storage, and 
reduction of associated uncertainties through strategic monitoring. NRAP Phase II activities will 
include:  

• Development of methodologies and tools to assure effective containment of CO2 and 
evaluation of select mitigation alternatives  

• Advancement of seismic risk assessment and management strategies  
• Development of strategic monitoring for conformance assessment and uncertainty 

reduction  
• Field demonstration, application, and validation of NRAP tools and methodologies  

These efforts will be focused toward addressing critical questions related to assessment and 
management of environmental risk at CO2 storage sites. 
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