{"private": false, "poc_id": "5c50bc22-907e-43ed-8e48-c78bb3c9772e", "num_resources": 0, "submission_authors": [], "id": "42ab925e-1a83-4f63-bc9f-1f87c5ad222f", "metadata_created": "2014-03-24T16:59:57.504656", "metadata_modified": "2020-04-03T15:15:16.796445", "author": "Athanasios K. Karamalidis", "author_email": "akaramal@andrew.cmu.edu", "state": "active", "creator_user_id": "45826aab-11c8-4d58-8357-e3c10fbe3586", "type": "tool", "resources": [{"rating": null, "cache_last_updated": null, "revision_timestamp": "March 24, 2014, 17:00:39 (EST)", "package_id": "42ab925e-1a83-4f63-bc9f-1f87c5ad222f", "refSystem": "", "file": "", "owner": "admin", "datastore_active": false, "id": "9d21965c-98e1-4e3a-83cb-7a93538d88a1", "size": null, "categories_json": "[]", "scale": "", "state": "active", "locations_json": "[]", "last_modified": null, "hash": "", "description": "The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO2 solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304\u2212433 K, pressure range 74\u2212500 bar, and salt concentration range 0\u22127 m (NaCl equivalent), using 173 published CO2 solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO2 solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO2 solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.", "format": "HTML", "mimetype_inner": null, "folder_id": "root", "url_type": null, "recycle_removed": false, "intended_use_auth": false, "mimetype": null, "cache_url": null, "typeofgep": "Not Applicable", "name": "CO2 Online Solubility Tool", "created": "2014-03-24T13:00:39.942579", "url": "http://faculty.ce.cmu.edu/co2calculator/", "owner_org": null, "license_type": "cc-by", "position": 0, "revision_id": "c45fe714-2bf2-b161-adfd-3f1f0cf9a384", "resource_type": "link"}], "tags": [{"vocabulary_id": null, "state": "active", "display_name": "CO2", "id": "7fdee636-7568-40e8-a55e-01734e92741d", "name": "CO2"}, {"vocabulary_id": null, "state": "active", "display_name": "Carbon Dioxide", "id": "d9c2b76f-3916-4054-a429-d5f03fbdd0af", "name": "Carbon Dioxide"}, {"vocabulary_id": null, "state": "active", "display_name": "Carnegie Melon", "id": "06fd8c5e-10aa-42f8-ae0a-4513b3618eda", "name": "Carnegie Melon"}, {"vocabulary_id": null, "state": "active", "display_name": "EDXtool", "id": "c349a03f-4119-4a31-9ca4-f917e5218f61", "name": "EDXtool"}, {"vocabulary_id": null, "state": "active", "display_name": "Gases", "id": "02e25d5b-3584-4f54-a182-ad25e6b26811", "name": "Gases"}, {"vocabulary_id": null, "state": "active", "display_name": "Geochemistry", "id": "685da570-5449-4de6-9346-04351da14c66", "name": "Geochemistry"}, {"vocabulary_id": null, "state": "active", "display_name": "MMoPS", "id": "725bcfa0-0964-4d64-bc13-3cb126e0f008", "name": "MMoPS"}, {"vocabulary_id": null, "state": "active", "display_name": "Resource", "id": "b797ea08-c7b1-4f68-8a4c-60be4f54fc93", "name": "Resource"}, {"vocabulary_id": null, "state": "active", "display_name": "Solubility", "id": "92d7219c-0a7f-46c6-b8b2-d0773d92e382", "name": "Solubility"}, {"vocabulary_id": null, "state": "active", "display_name": "Tool", "id": "da1edae2-cd6f-445d-a0b8-24d500fa1928", "name": "Tool"}], "groups": [{"display_name": "EDX Tools", "description": "Tools provide access to data and information assembled as custom themes of high interest. Tools are standard, static, frameworks; however, the data presented within them may update and change with time, thus offering fresh and current information. Tools may accommodate spatial and/or non-spatial data. Some Tools are designed to allow the Tool to communicate with EDX servers to allow for searching, querying, and displaying data.", "image_display_url": "https://edx.netl.doe.gov/groups/edx-tools/2020-06-23T14:30:45.604031.png", "title": "EDX Tools", "id": "92c6fd10-1f22-495a-8019-4b6e1a64cc29", "name": "edx-tools"}], "package_reviewed": true, "num_tags": 10, "name": "co2-online-solubility-tool", "isopen": true, "notes": "The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO2 solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304\u2212433 K, pressure range 74\u2212500 bar, and salt concentration range 0\u22127 m (NaCl equivalent), using 173 published CO2 solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO2 solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO2 solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.", "extras": [{"key": "citation", "value": "http://faculty.ce.cmu.edu/co2calculator/"}, {"key": "netl_product", "value": "yes"}, {"key": "poc_email", "value": "Alexandra.Hakala@netl.doe.gov"}, {"key": "point_of_contact", "value": "Ale Hakala"}, {"key": "program_or_project", "value": "Carbon Storage"}, {"key": "tool_image_url", "value": "https://edx.netl.doe.gov/edx-admin/upload/image/f4036184-7a88-4b26-8440-7be89c4280a9/co2mmops_checker.png"}], "title": "CO2 Online Solubility Tool", "revision_id": "961d6266-7a0c-4967-8a04-aacbd8ee29fa"}