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EXECUTIVE SUMMARY  
The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the 
quantitative analysis of the potential risks associated with changes in groundwater chemistry 
from carbon dioxide (CO2) injection. In order to address uncertainty probabilistically, NRAP is 
developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are 
built from detailed, physics-based process models to provide confidence in the predictions over a 
range of conditions. The ROMs are designed to reproduce accurately the predictions from the 
computationally intensive process models at a fraction of the computational time, thereby 
allowing the utilization of Monte Carlo methods to probe variability in key parameters. 

This research developed ROMs that describe changes in diluted groundwater chemistry if CO2 
and brine were to leak into an overlying alluvium aquifer similar to the High Plains aquifer, 
Haskel County, Kansas, USA. The protocol allows uncertainty and variability in aquifer 
heterogeneity, fluid transport and geochemical reactions to be collectively evaluated to assess 
potential changes in groundwater pH, total dissolved solids (TDS), As, Ba, Cd, Pb, benzene, 
naphthalene, and phenol concentrations by developing a scaling function that can be applied to 
correct the output from the hydrology ROM for geochemical reactions. The hydrology ROM 
takes into account the uncertainties in brine and CO2 leakage, aquifer heterogeneity and fluid 
transport, whereas the geochemical scaling function considers the uncertainties in chemical 
reactions. Inclusion of chemical correction increases trace metal plumes by 10 to 100 times, 
suggesting that CO2 leakage leaches trace metals from the aquifer sediments and should be 
considered. Corrections are needed for other trace metals, such as chromium, iron, manganese, 
and zinc. In contrast to the observed increases in trace metal plume volumes, inclusion of bio-
degradation greatly reduces plume volumes for organics.  

Although a general protocol has been established for developing a ROM that can be used to 
assess groundwater impacts by including physical and chemical uncertainty and variability, 
model accuracy was not able to reach the R2 = 0.90 goal in all cases. Correlation coefficients 
between emulations and simulation output range between R2 = 0.75 to 0.85 for trace metals and 
about 0.60 for the organics. Improvements may be achieved by increasing the number of 
simulations to more fully sample the parameter space and by applying different mathematical 
forms for the chemical scaling function. 

Better agreement between the hydrology pH and TDS ROMs at times less than 50 years is 
needed to assess near-term risks to leakage and to evaluate mitigation and monitoring plans. This 
will require a much finer mesh size to capture changes in groundwater chemistry from small 
amounts of CO2 and brine leaked into the aquifer. Smaller mesh sizes may also be needed to 
improve the overall performance of the TDS ROM. The small TDS plume volumes yield ROMS 
that are only accurate to about 75% with the current mesh structure. 

To make ROMs applicable for other alluvium aquifers, the authors recommend that ROMs be 
developed for variable thresholds since other aquifers are likely to have different background 
water chemistry in light of the “no net degradation” requirement in the U.S. Environmental 
Protection Agency (EPA) guidelines. The full chemical and hydrology ROMs developed here are 
specific to the output thresholds that define no net degradation to the High Plains aquifer. 
Variable threshold ROMs could be extracted from the same dataset used to develop the ROMs 
described herein. 
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1. INTRODUCTION 
Carbon dioxide (CO2) geologic storage is being considered as a possible measure to curb the 
anthropogenic emissions of greenhouse gases. A careful assessment of the risk associated with 
CO2 geologic storage is critical to deployment of large scale CO2 geological storage. One of the 
potential risks is the impact of potential CO2 leakage from deep subsurface reservoirs on 
overlying groundwater aquifers. The leakage of CO2 could affect such aquifers increasing the 
concentration of carbonic acid and causing pH to drop, by mobilizing trace elements through 
mineral dissolution, desorption, and/or exchange, and by increasing dissolved solids, trace 
metals, and organics directly from the leaking brine (e.g., Aiuppa et al., 2005; Zheng et al., 2009; 
Apps et al., 2010; Kharaka et al., 2010; Little and Jackson, 2010; Wilkin and Digiulio, 2010; 
Zheng et al., 2012; Trautz et al., 2012). Accurate prediction of groundwater impacts is 
complicated by uncertainty and variability in data, and key parameters are needed to describe 
leakage sources and the properties of aquifer systems. In principle, the full range of potential 
groundwater impacts could be assessed through rigorous numerical modeling, but a complete 
treatment of uncertainty and variability would be computationally prohibitive for most operators 
and regulators. 

The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the 
analysis of the potential risks associated with changes in groundwater chemistry from CO2 
injection. This quantification approach is based on simulating coupled physical and chemical 
processes to predict how the natural system behaves over time, and it includes uncertainty 
quantification explicitly. In order to address uncertainty probabilistically, NRAP is developing 
efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from 
detailed, physics-based process models to provide confidence in the predictions over a range of 
conditions. However, the ROMs are designed to reproduce accurately the predictions from the 
computationally intensive process models at a fraction of the computational time, thereby 
allowing the utilization of Monte Carlo methods to probe variability in key parameters.  

The development of ROMs that describe impacts to protected groundwater should consider all 
relevant physical flow and chemical processes. Developing ROMs based on high-fidelity 
numerical models that incorporate all relevant chemical reactions and transport fields is very 
challenging and computationally demanding. These difficulties are circumvented by correcting 
output from the hydrology ROM with chemical scaling functions derived from process models 
that are optimized for chemical reactions.  

The natural system studied here is an alluvium aquifer consisting of layers of relatively high-
permeable sands interbedded with low-permeable clays based on the hydrostratigraphic structure 
of the High Plains aquifer. Input parameters considered include: aquifer heterogeneity, 
permeability, porosity, regional groundwater flow, injection period, wellbore remediation, CO2, 
total dissolved solids (TDS), trace metal leakage rates over time, and geochemical parameters. 
The hydrology ROM and the chemistry scaling function are specific to thresholds described in 
Section 2 that represent no net degradation to the groundwater quality. The hydrology ROM is 
derived from physics-based simulations accounting for heterogeneous transport conditions, 
carbonate buffering, and mitigation for leakage through a single wellbore and is described in 
Section 3. The chemistry scaling function corrects hydrology ROM output for relevant 
geochemical reactions and is described in Section 4. The impacts to groundwater chemistry are 
discussed in Section 5. Section 6 assesses the ability of natural recharge to restore groundwater 
quality of the protected resource. 
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2. IMPACT THRESHOLDS 
The hydrology ROMs and chemical scaling functions generated in this study are specific to 
thresholds that represent no net degradation to the groundwater quality. The impact thresholds 
defined for pH, TDS, trace metals, and select organics in Table 1 represent concentrations above 
the background water chemistry. Each threshold was calculated as the 95%-confidence, 95%-
coverage tolerance from data collected in a 2010 U.S. Geological Survey (USGS) groundwater 
survey of 30 wells within the High Plains aquifer from an area outside of lithology model site. 
This dataset was chosen because spatial and temporal data were not available from model site. 
Benzene, naphthalene, and phenol were considered as representative of: benzene, toluene, 
ethylbenzene, and xylene-volatile aromatic compounds typically found in petroleum (BTEX); 
poly-aromatic hydrocarbons (PAH), and phenol organic compounds that could be present in the 
leaking brine (Zheng et al., 2010). Table 1 also includes regulatory standards referring to 
concentrations that exceed primary or secondary maximum contaminant levels designated by the 
U.S. Environmental Protection Agency (EPA, 2009). Primary drinking water standards are for 
trace metals, such as, Ba, Cd, Cr, Cu, Pb, and BTEX organics among others, and are legally 
enforced for the protection of public health by limiting the levels of contaminants in drinking 
water. Secondary drinking water standards, which include standards for Fe, Mn, and Zn, are non-
enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in 
drinking water. Currently PAHs and phenols are unregulated.   
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Table 1: Initial aquifer concentrations used in the simulations and estimated mean aquifer values, and no-
impact thresholds 

Parameter 

Initial Value Used in 
Third-Generation 

Simulations 
Mean of Selected and 
Adjusted 2010 Datab 

Impact 
Thresholdc 

U.S. EPA Regulatory 
Standard 

pH 7.6a 7.5c 7.0 6.5 

TDS 570 mg/La,d 440 mg/Ld 1,300 mg/Ld,e 500 mg/Le 

Arsenic 1.500 μg/L 1.500 μg/L 9.300 μg/L 10.0 μg/L 

Barium 43.000 µg/L b 43.000 µg/L b 140.000 μg/L 2,000 μg/L 

Cadmium 0.059 μg/L 0.059 μg/L 0.250 μg/L 5 μg/L 

Chromium 1.000 μg/L 1.000 μg/L 3.900 μg/L 100 μg/L 

Iron 5.400 µg/L b 5.400 µg/L b 43.000 µg/L b 300 µg/L 

Lead 0.086 μg/L 0.086 μg/L 0.630 μg/L 15 μg/L 

Manganese 0.350 µg/Ld 0.350 µg/L d 7.000 µg/L d 50 µg/L 

Benzene 0 <0.030 µg/L d 0.030 µg/L g 5 µg/L 

Naphthalene 0 <0.200 µg/L d 0.200 µg/L g 700 µg/L 

Phenol 0 <0.003 µg/L f 0.003 µg/L g 10,000 µg/L h 
(a) Based on Carroll et al. (2009)  
(b) Geometric mean except for pH 
(c) 95%-confidence, 95%-coverage tolerance limit based on log values except for pH 
(d) Rounded to two significant digits 
(e) Threshold value exceeds regulatory standard; using the regulatory standard may result in widespread false positives 

under field conditions 
(f)  As 4-Chloro-2-methylphenol 
(g) Detection limit for the 2010 U.S. Geologic Survey National Water-Quality Assessment Program (NAWQA) 
           sample data 
(h)  Recommended Water Quality Criteria for Human Health, consumption of Water + Organism (74 FR 27535); 

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm#hhtable 

http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm#hhtable
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3. DEVELOPMENT OF THE HYDROLOGY ROM 
The hydrology ROM focused on variable wellbore leakage rates, mitigation times and arsenic, 
barium, cadmium, chromium, iron, lead, manganese, benzene, naphthalene, and phenol 
concentrations in the leaking brine, as well as uncertainty in the hydrologic properties of the 
protected groundwater. This section describes the reactive transport models, parameter 
variability, and leakage profiles used to build the ROM, as well as the fidelity of the resulting 
threshold-specific ROMs. PSUADE, an uncertainty quantification code (Tong, 2005, 2010) was 
used to establish sampling points for the reactive transport simulations, to conduct parameter 
sensitivity analysis, and to develop ROMs from the simulated results. The overall work flow is 
shown in Figure 1. Tables 2–4 list parameter ranges for development of the aquifer model, 
hydrologic flow, leakage flux, and brine concentrations. Note that flux is recalculated as 
cumulative CO2 and brine mass to drive the hydrology ROM. The polynomial-based ROMs 
should be able to emulate the outcome of the numerical model but with less complexity, more 
thorough sampling of the parameter space, and significantly faster simulation times to generate 
risk-based profiles that can be used in decision making processes.  

 

 

Figure 1: Flow chart of the third-generation of groundwater impacts modeling. 
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3.1 REACTIVE - TRANSPORT SIMULATIONS 
The simulation of the protected groundwater response to leakage used the same protocol as was 
used in the development of the second aquifer ROMs, and is only briefly described here (Carroll 
et al., 2014).   

The first step to developing the hydrology ROM is to build statistical models of the aquifer that 
account for the variability and uncertainty in the lithology. The natural system studied here was 
an alluvium aquifer consisting of layers of permeable sand interbedded with layers of clay with 
low permeability, and was based on the lithology of the High Plains aquifer. Material-volume 
fraction and correlation lengths derived from well log data were used to build 1,000 geostatistical 
models that contain 3-D distributions of high and low permeability zones for use in the reactive-
transport simulations. PSUADE and TPROGS software were used to build the 3-D geological 
models (Tong, 2005, 2010; Carle, 1999). Each simulation uses a different geostatistical 
realization combined with other variable input to assess the impact of leakage on groundwater 
quality. Ranges over which the aquifer characteristics and brine chemistry were sampled are 
listed in Tables 2–4.  

This study simulated the geochemical response of a protected groundwater to CO2 and brine 
leakage through wells from a CO2 storage reservoir using a multi-phase and multi-component 
reactive transport code called NUFT (Nitao, 1998; Hao et al., 2011). The numerical model 
domain extended to 10,000 m × 5,000 m × 240 m (x, y, z) with one leakage source placed at a 
depth of 198 m. Regional groundwater flow was maintained by a 0.3% hydraulic gradient, with 
constant-pressure boundary set on ground surface and at the aquifer bottom to maintain saturated 
and unsaturated zones. This model employed a variably spaced mesh with the smallest elements 
located at the injector with a total of 190,350 nodes. The mesh spacing ranged from 50 m to 
152.7 m in the x-direction, 50 m to 154.5 m in the y-direction, and fixed at 4.8 m in the z-
direction. Each simulation was executed for 20–60 hrs each using the high performance 
computing facility at Lawrence Livermore National Laboratory (LLNL).  

A limited amount of chemistry was included to account for changes in groundwater pH due to 
CO2 dissolution, dissolved sodium, and chloride as indicators of TDS, and total dissolved trace 
metal and organic concentrations from the leaking brine. The dissolution of CO2 in groundwater 
promotes the following sets of reactions: 

 

            (1) 

     (2) 

          (3) 

 

These reactions promote the acidification of the system, which is then buffered by calcite 
dissolution. The resulting trace metal and organic plumes will be corrected by the scaling factor 
to account for relevant geochemical reactions (see Section 4). Background pH, TDS, and trace 
metal and organic concentrations in the aquifer are listed in Table 1 and are based on mean 
values reported for the regional aquifer in 2010, new analysis, and previous literature values 
(Last et al., 2013; Carroll et al., 2009).  
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Table 2: Parameter definition and ranges for hydrologic simulations and emulations 

 Parameter Minimum Maximum Unit 

1 Sand volume fraction 0.35 0.65 - 

2 Correlation length in X-direction 200 2500 [m] 

3 Correlation length in Z-direction 0.5 25 [m] 

4 Permeability in sand -14 -10 Log10[m2] 

5 Permeability in clay -18 -15 Log10[m2] 

6 Sodium molality -3 1 Log10[mol kg-1] 

7 Trace metal molality   See Table 3 

8 Organic molality   See Table 3 

9 CO2 and brine flux   See Table 4 

 

 
Table 3: Trace metals and organics concentrations considered in the protected groundwater simulations and 

ROM. Trace metals are based on experiments by Karamilidis et al. (2013) and organic concentrations are 
based on Zheng et al. (2010) 

 Trace Metal Minimum Maximum Unit 

7 Arsenic -7.98 -5.87 Log10[mol kg-1] 

7 Barium   Log10[mol kg-1] 

7 Cadmium -8.87 -6.43 Log10[mol kg-1] 

7 Chromium -6.42 -4.02 Log10[mol kg-1] 

7 Iron -6.07 -2.79 Log10[mol kg-1] 

7 Lead -8.12 -4.74 Log10[mol kg-1] 

7 Manganese -5.13 -2.10 Log10[mol kg-1] 

8 Benzene -10 -3.2 Log10[mol kg-1] 

8 Naphthalene  -10 -3.7 Log10[mol kg-1] 

8 Phenol -10 -4.1 Log10[mol kg-1] 
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3.2 CO2 AND BRINE LEAKAGE 
A generalized flux model was used to span a large range of CO2 and brine input fluxes that could 
be transported from a pressurized reservoir and through a borehole and into the protected 
groundwater. The generalized model is not site specific and considers a range of CO2 injection 
periods, wellbore permeability, and wellbore mitigation times. As such, the resulting 
groundwater ROMs should be transferable to other sites with similar water quality thresholds. 
The generalized CO2 and brine leakage models were based on the results of 48,000 numerical 
wellbore simulations driven by reservoir pressure and saturation profiles coupled with wellbore 
permeability to yield CO2 and complimentary brine leakage functions. The resulting leakages 
models and variable parameters are illustrated in Figure 2. Conceptually, CO2 fluxes increase to 
a plateau during the onset of CO2 injection into the storage reservoir, maintain a constant flux 
during injection, and then decrease overtime to some minimal level. Variability in the CO2 
leakage profile was generated using four parameters:  

• qCO2 – the peak flux 

• T1C – the time needed to reach peak flux 

• dT2C – the duration of the peak flux 

• dT3C – the duration of the transition to zero flux after injection has stopped 

Brine leakage profiles are different from that of CO2. Brine leakage was characterized with a 
maximum and constant flux during injection, which falls off to a final flux after injection stops. 
Uncertainty in the brine leakage profile was generated using four parameters: 

• qBRN – the initial and maximum flux  

• λqBRN – the final flux 

• T1B – the injection time 

• dT2B – the duration of the transition between the maximum and final flux 

An additional parameter, TM, was included to represent wellbore mitigation time. This parameter 
was introduced to investigate the ability of natural recharge to restore groundwater quality of the 
protected resource and will be discussed in Section 6. The generalized flux is recast into two 
parameters that capture variations in cumulative CO2 and brine leaked into the protected 
groundwater.  
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Figure 2: Schematic of the CO2 and brine leakage model parameters and profiles in the generalized model.  

 
Table 4: Proposed parameter ranges for generalized CO2 and brine leakage models 

Parameter Min Max Notes 

qCO2 -3.000 -0.301 Log10 (0.001 – 0.5) kg s-1 

qBRN -2.301 -1.125 Log10 (0.005 – 0.075) kg s-1 

λ 0.200 0.300 Ratio for brine-leakage tail 

T1c 5.000 50.000 yr 

dT2c 0 100.000 yr 

dT3c 5.000 50.000 yr 

T1b 1.000 50.000 yr 

dT2b 1.000 10.000 yr 

Tm 50.000 200.000 Mitigation time, yr 

 

3.3 RESULTS – HYDROLOGY ROM  
The ability of the emulations to reproduce the simulated results for specific thresholds for pH, 
TDS, As, Ba, Cd, Cr, Fe, Mn, Pb, benzene, naphthalene, and phenol was evaluated using global 
and time-based correlation coefficients (Table 5). The global correlations directly compare ROM 
and simulation output of all output times. Globally, the third-generation ROMs for pH, trace 
metals, and organics are robust and yield R2 between 0.9 and 0.99. This is not the case for TDS 
with global R2 ≈ 0.74. At the time of writing this report it is not clear why the TDS ROM was 
less accurate than the simulations. Incorporation of the TDS ROM as part of the larger systems 
analysis should include the uncertainty in its overall performance. 
Likewise, utilization of the ROMs over short time periods should be done with caution. Figure 3 
shows emulation performance as a function of time. The emulations do not reproduce the 
simulated pH result to within 90% at times less than about 40 years. A similar time-dependent 
trend is observed for the TDS ROMs, but with a greater overall uncertainty. Trace metal and 
organic ROMs appear to be more robust and capture the simulated results after 2 to 5 years.  
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As was the case in the first and second-generation results, there is strong correlation between 
CO2 mass and pH plume volume, with a secondary dependence on mitigation time, which also 
correlates with cumulative mass of the leak. Correlations for the TDS, trace metal, and organic 
plume volumes on brine mass are more variable than pH volume because they are also dependent 
on brine concentration. 

 
Table 5: Global correlation coefficients for the comparison of emulated and simulated plume volumes for pH, 

TDS, As, Ba, Cd, Cr, Fe, Mn, Pb, benzene, naphthalene, and phenol for impact thresholds. 

Parameter 

U.S. EPA 
Regulatory 
Standard R2 

Impact 
Threshold R2 

pH 6.5 0.925 7.0 0.901 

TDS 500 mg/le NA 1,300 mg/l 0.747 

Arsenic 10 μg/l 0.986 9.300 μg/l 0.983 

Barium 2000 μg/l 0.986 140.000 μg/l 0.946 

Cadmium 5 μg/l 0.995 0.250 μg/l 0.962 

Chromium 100 μg/l 0.922 3.900 μg/l 0.857 

Iron 300 µg/l 0.987 43.000 µg/l 0.972 

Lead 15 μg/l 0.991 0.630 μg/l 0.924 

Manganese 50 µg/l 0.991 7.000 µg/l 0.986 

Benzene 5 µg/l 0.974 0.030 µg/l 0.983 

Naphthalene 700 µg/l 0.977 0.200 µg/l 0.980 

Phenol 10,000 µg/l 0.972 0.003 µg/l 0.985 
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Figure 3: Fidelity of pH, TDS, trace metal (lead as an example), and organic (benzene – Bz – as an example) 

ROMs to reproduce simulated data as a function of time. 
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4. DEVELOPMENT OF THE CHEMICAL SCALING FUNCTION 
This section describes the development of the chemical scaling function that is used together 
with the hydrology ROM to estimate impact of leakage for trace metals and organics in the 
protected groundwater. The chemical scaling function includes chemical processes that account 
for distribution of trace metals between groundwater and aquifer minerals and the degradation of 
organic contaminants, all of which depend on changes in pH, salt concentrations, and redox 
potential associated with the leaking CO2 and brine. 

The chemical scaling function is used to correct response of the hydrology ROM to more 
accurately estimate the impact of leakage on groundwater trace metal and organic 
concentrations. Scaling functions are derived by comparing the output of models with variable-
fidelity and are used to better emulate the response of an original high-fidelity model. The 
approach is known as “variable-fidelity” or “multi-fidelity” modeling. Scaling functions can 
assume different functional forms including polynomials (e.g., Madsen and Langthjem, 2001; 
Viana et al., 2009; Sun et al., 2010), as well as of more flexible relationships such as kriging 
(Huang et al., 2006; Forrester et al., 2007) and neural networks (Kim et al., 2007). In contrast to 
traditional response surface ROMs, variable-fidelity ROMs are expected to better extrapolate the 
complex model response in unexplored regions of the input parameter space (Razavi et al., 
2012). The second advantage, which is fundamental for this work, is that scaling functions are 
only minimally affected by the problem of dimensionality which limits the application of 
response surface surrogates to problems with a large number of input parameters (e.g., Koch et 
al., 1999). This is because their response is physically based and therefore their development 
requires a lower number runs of the original complex model.  

Scaling functions can be multiplicative or additive depending on if the ratio rather than the 
difference between the responses from the lower and high-fidelity models is considered. This 
study found that the multiplicative approach provided the best accuracy when the scaling 
function g(x) was defined as: 

 

           (4) 

 

where VHFM is the output volume calculated with the high-fidelity model with x input parameters 
and VLFM is the corresponding volume obtained with a lower-fidelity model with x* input 
parameters. To ensure the correspondence between the two models outputs, VLFM and VHFM, x* 
must be a subset of x. The exact form of the scaling function g(x) is typically unknown, 
especially for complex responses that depend on several physical and chemical processes such as 
those considered in this work. However, if an approximation of the scaling function based on a 
relatively limited number of runs of the high- and low-fidelity models can be found, VHFM can 

then be approximated as: 

 

𝑉𝑉�(𝐱𝐱) =  𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿(𝐱𝐱∗) ∙  𝑔𝑔�(𝐱𝐱)     (5) 
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Where 𝑉𝑉�(𝑥𝑥) is the emulated volume, and 𝑔𝑔�(𝑥𝑥) is the approximated scaling function designed to 
correct the value VLFM. In this work, VLFM(x*) is the output from a simulation that does not 
consider geochemistry (i.e., the hydrology ROM) and 𝑉𝑉�(𝑥𝑥) is the corresponding output when all 
the relevant geochemical processes are taken into account. To estimate the latter output, reactive 
transport simulations were performed based on the geochemical model described in Section 4.2. 
The process of developing the approximate scaling function is analogous to the development of a 
traditional response surface ROM. However, scaling functions are generally less complex than 
typical response surface ROMs because their only purpose is to scale output derived from a 
similar model (Razavi et al., 2012). 

Scaling functions for As, Ba, Cd, Pb, benzene, naphthalene, and phenol were developed using 
the thresholds listed in Table 1. Scaling functions for pH and TDS were not necessary because 
carbonate geochemistry, included in the hydrology ROM, accounts for the dominate changes in 
pH; and because mineral dissolution does not significantly alter the TDS estimated from brine 
leakage. To generate a scaling function for each of these outputs, a two-step procedure was 
followed and a GNU Octave v.3.6.4 script was written for this purpose. The first step designed a 
numerical experiment to perform multiple runs of a model with no chemistry (so-called low-
fidelity model, and is similar to the physics-based process models that are used to generate 
hydrology ROM) and a model with chemistry (so-called high-fidelity model) with the hydrology 
and geochemical input. The input parameter space of the numerical models was sampled with a 
quasi-random sequence (LPτ) to generate 1,024 sample points assuming a uniform distribution 
for all the input parameters. The simulated time period (0–200 years) was sampled at 10-year 
intervals. Details on parameter ranges are given in Table 6. Note that the distribution and ranges 
of the hydraulic parameters are similar to those used in previous generations of the hydrology 
ROMs (Carroll et al., 2014). In step two, an approximation of the true scaling function (Equation 
1) was estimated for each of the considered outputs. These approximated scaling functions 
g�(𝐱𝐱) are polynomical and are used to correct the output from the model without chemistry 
(Equation 2). In this step, least-square fitting was applied to calculate the coefficients of the 
polynomials representing the scaling functions. In general, a third-order polynomial provided the 
best match between the numerical and emulated ratios for metals, while second-order polynomial 
provided more accurate fitting for organic compounds.  

Scaling functions for trace metals were developed from ratios of VTM-HFM to VpH-LFM because of 
observed correlations between trace metal and pH plume volumes. Correlations were observed 
not only for As, Cd and Pb whose uptake reactions are known to be pH-dependent, but also for 
Ba, whose release is driven by Ca exchange at mineral surfaces (Zheng et al., 2012). The indirect 
correlation for Ba with pH is caused by the pH-dependence of calcite dissolution. Figure 4 
compares the spatial distribution of pH and Pb plumes from one particular simulation, which 
considers all chemical reactions. The two plumes have similar distributions because pH and Pb 
concentrations are controlled by changes in acidity from CO2 solubility. In the absence of 
geochemical reactions, the Pb volume is smaller in this example, because the Pb plume volume 
depends only on the transport of the amount of lead leaked from the reservoir and does not 
account for the amount of lead released from the aquifer sediments (Figure 5). Robust scaling 
parameters must be tied to pH to account for the chemical processes that ultimately control their 
concentrations from both leakage sources.  
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Scaling functions for organic compounds were developed from ratios of VOrg-HFM to Vorg-LFM 
because the brine is the only source of organic compounds, and adsorption and oxidation 
reactions occur within the brine.  

 

   
Figure 4: Plumes for thresholds pH < 7 and Pb > 3.04×10-9 mol/L (0.63 µg/L) from one particular simulation, 

which considered all the chemical reactions. 

 

 

 

 
Figure 5: Spatial distribution of Pb > 3.04×10-9 mol/L (0.63 µg/L) plume in the simulation, which is the same 

as the simulation shown in Figure 4 except that no chemical reaction is considered. 
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Table 6: Input parameters of the development of the scaling functions 

Parameter Range 

Porosity  0.25 to 0.50 

Rock density (kg/m3) 1500 to 2500 

Sand permeability (m2) -14 to -10* 

Van Genuchten parameter (m ) 0.52 to 0.79 

Van Genuchten parameter alpha (m-1) -4.69 to -3.81* 

Pb concentration in the leaking brine (mol/L) -8.5 to -5.0* 

Cd concentration in the leaking brine (mol/L) -9.0 to -6.0* 

As concentration in the leaking brine (mol/L) -9.0 to -5.0* 

Ba concentration in the leaking brine (mol/L) -5.1 to -2.3* 

Cl concentration in the leaking brine (mol/L) -2.0 to -0.73* 

Calcite volume fraction  0.0 to 0.2 

Goethite volume fraction  0.0 to 0.2 

Illite volume fraction  0.0 to 0.3 

Kaolinite volume fraction  0.0 to 0.2 

Montmorillonite volume fraction  0.0 to 0.5 

Cation exchange capacity (CEC meq/100) 0.1 to 40.0 

Benzene concentration in the leaking brine (mol/L) -10.0 to -3.2* 

Phenol concentration in the leaking brine (mol/L) -10.0 to -3.7* 

Naphtalene concentration in the leaking brine (mol/L) -10.0 to -4.1* 

Benzene distribution coefficient (L/kg) -4.5 to 0.69* 

Phenol distribution coefficient (L/kg) -6.0 to 0.15* 

Naphtalene distribution coefficient (L/kg) -3.1 to 1.98* 

Benzene degradation constant (1/s) 0 to -6.1 * 

Phenol degradation constant (1/s) 0 to -5.63 * 

Naphtalene degradation constant (1/s) 0 to -6.45* 

Time (years) 0 to 200 
*indicates log10 values 
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4.1 REACTIVE TRANSPORT SIMULATIONS 
A single geostatistical realization of the aquifer lithology originally derived for the hydrology 
simulations (see Section 3.1) and a single CO2 and brine leakage profile was used for reactive 
transport simulations. This is a reasonable approach because plume volumes are most sensitive to 
the cumulative mass of CO2 and brine. There are four classes of parameters listed in Table 6 
representing variability in hydrology, the concentration of leaking brine, the volume fraction of 
specific minerals included in the geochemical reactions, and degradation constants for the 
organics. Variability in hydrology and leak concentrations was required to correct the hydrology 
ROM for geochemical reactions (see Section 4.2). Geochemical variability was represented by 
adjustment of the amount of specific minerals, a key uncertainty. Mineral equilibrium and kinetic 
constants were fixed using published values (see Section 4.2). Note that the chemical ROM was 
developed for As, Ba, Cd, Pb, benzene, naphthalene, and phenol to demonstrate the processes on 
a reasonable number of key constituents. 

Reactive-transport simulations were conducted with TOUGHREACT (Xu et al., 2011) and used 
the same domain size, boundary conditions, and hydrological gradient described in Section 3.1 
with a refined mesh near the leakage source and a courser mesh in the far field for a total of 
31,321 grid blocks. Leakage occurred at a single point (x = 2,000 m, y = 2,500 m, z = 250 m) 
with representative CO2 and brine leakage profiles for a deep well that connects a geologic 
storage reservoir to a protected groundwater (Figure 6). These profiles represent median fluxes 
and allow the pH and salt dependence of geochemical reactions to be assessed and then scaled to 
the hydrology ROM. About 500 simulations were conducted to account for the uncertainties of 
both flow and chemical parameters.  

The initial solution chemistry used in the model is listed in Table 7 and represents the arithmetic 
average of major and trace inorganic elements data collected in two surveys in 1999 and 2010 as 
part of the High Plains Regional Ground-Water Study conducted by the USGS’s National Water-
Quality Assessment Program (Becker et al., 2002). The surveys represent analyses of 30 to 74 
randomly selected wells. A very small value was assigned to the initial concentration of benzene, 
phenol, and naphthalene because their concentrations were all below the detection limits in the 
2010 survey. 
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Figure 6: The leakage rate of CO2 and brine as a function of time from Carroll et al. (2014). 

 
Table 7: Initial chemical composition of groundwater in the model. Note that the concentration of Cl was 

somewhat modified from the original data to maintain charge balance. The Fe+3 concentration is calculated 
by assuming equilibrium with goethite. 

Primary 
Species 

Total 
Concentration 

(molal) 
Primary 
Species 

Total 
Concentration 

(molal) 

Ca+2 1.37E-03 Sb(OH)3(aq) 5.59E-10 

Mg+2 8.74E-04 H3AsO3(aq) 2.33E-08 

Na+ 1.60E-03 Ba+2 8.10E-07 

K+ 1.13E-04 Cd+2 6.91E-10 

Cl- 1.85E-03 Pb+2 1.57E-09 

HS- 6.48E-04 Benzene 1E-15 

SO4
-2 5.77E-05 Phenol 1E-15 

HCO3
- 3.95E-03 Naphthalene 1E-15 

H4SiO4(aq) 5.33E-04 HSe- 5.34E-08 

Fe+2 1.01E-06 Eh -0.26 volts 

Fe+3 8.97E-16 pH 7.4 

AlO2
- 1.57E-07   
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4.2 GEOCHEMICAL MODEL 
The geochemical model is extensive and includes over 70 aqueous species, dissolution and 
precipitation kinetics for 14 minerals, 5 cation exchange reactions, 36 sorption reactions, and 
oxidation kinetics for 3 organics. Kinetic constants, mineral, cation exchange, and sorption mass 
balance reactions and constants are summarized in Tables 8–11. Equilibrium constants for 
aqueous complexes and minerals are taken primarily from THERMODDEM database (Blanc et 
al., 2012) which can be downloaded from the website: 
http://THERMODDEM.brgm.fr/index.asp. For those reactions that are not listed in 
THERMODDEM, thermodynamic data are taken from data0.ymp.r5 in the EQ3/6 V8.1 
geochemical modeling package (Wolery, 1993) and Birkholzer et al., (2008). Cation exchange 
reactions are included for Na, K, Ca, Mg, and Ba as are surface complexation reactions for As, 
Cd and Pb on goethite, illite, kaolinite and montmorillonite. Surface complexation reactions on 
calcite are not considered in the model because calcite is a much weaker adsorbent in 
comparison with goethite, illite, kaolinite and montmorillonite and thus unlikely has significant 
impact on the adsorption of metals.  Kinetic rate parameters for most rock-forming minerals 
were taken from Palandri and Kharaka (2004), which are based mainly on experimental studies 
conducted under far-from-equilibrium conditions. The overall rate equation is tied to mineral 
equilibria through Q/K with a pH dependent rate consisting of acid, neutral, and base 
mechanisms as indicated below: 

𝑟𝑟 =  ±𝑘𝑘 𝐴𝐴 �1 − �
𝑄𝑄
𝐾𝐾�

𝜃𝜃

�
𝜂𝜂

 

and  

 

where r is the kinetic rate, k is the rate constant, A is the specific reactive surface area, K is the 
equilibrium constant for the mineral–water reaction, and Q is the reaction quotient. Superscripts 
nu, H, and OH stand for the neutral, acid, and base mechanisms; Ea is activation energy that 
accounts for the dependence of the rate on temperature; T is absolute temperature, aH and aOH are 
hydrogen and hydroxyl ion activity; and n is an empirical constant. The parameters θ and η are 
assumed equal to unity. The mineral reactive-surface areas were taken from Xu et al. (2006), 
based on the work of Sonnenthal et al. (2005). A thorough review and discussion of the kinetic 
rates for arsenian pyrite, pyrite, and galena was given in Zheng et al. (2009). Oxidation of the 
organics was calculated with the first-order degradation kinetics: 
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Where C is the concentration of the organic compound, K is the first-order rate constant which 
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Table 8: Kinetic properties for minerals considered in the model (see text for data sources), “Primary” 
minerals are initially present in the aquifer. “Secondary” minerals are formed by precipitation. 

Mineral 
A 

(cm2/g) 

Parameters for Kinetic Rate Law 

Neutral 
Mechanism Acid Mechanism Base Mechanism 

k25 
mol/m2/s 

Ea 
KJ 

/mol k25 Ea n(H+) k25 Ea n(OH-) 

Primary:          

Calcite 3.05 1.6×10-6 62.76       

Illite 151.60 1.66×10-13 35.00 1.05×10-11 23.60 0.34 3.02×10-17 58.9 -0.40 

Kaolinite 151.60 6.91×10-14 22.20 4.89×10-12 65.90 0.78 8.91×10-18 17.9 -0.47 

Smectite  151.60 1.66×10-13 35.00 1.05×10-11 23.60 0.34 3.02×10-17 58.9 -0.4 

Goethite 12.90 2.51×10-15 66.20 4.07×10-10 66.20 1.00    

Albite  9.80 3.89×10-13 38.00 8.71×10-11 51.70 0.50 6.31×10-12 94.1 -0.82 

Quartz 9.80 3.98×10-14 87.7       

K-feldspar 9.80 3.89×10-13 38.00 8.71×10-11 51.70 0.50 6.31×10-12 94.1 -0.82 

Secondary:          

Dolomite  12.90 2.95×10-8 62.76 2.34×10-7 43.54 1.00    

Magnesite 9.80 4.57×10-10 23.50 4.17×10-7 14.40 1.00    

Dawsonite 9.80 3.89×10-13 38.00 8.71×10-11 51.70 0.50 6.31×10-12 94.1 -0.82 

Muscovite  9.80 3.89×10-13 38.00 8.71×10-11 51.70 0.50 6.31×10-12 94.1 -0.82 

Gibbsite  9.80 3.89×10-13 38.00 8.71×10-11 51.70 0.50 6.31×10-12 94.1 -0.82 

Pyrite 12.90 2.52×10-12 62.76       
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Table 9: Equilibrium constants of the major rock forming minerals. Chemical reactions for the minerals in 
the first column are written as the chemical species in the first row with stoichiometric coefficients listed 

under each species. 

Minerals 
logK 

(25 °C) 

Calcite + H+ = Ca+2 + HCO3
-  1.853 

Illite + 6.3 H2O = H+ + 0.25Mg+2 + 0.85K+ +3.4 H4SiO4(aq)+ 2.35AlO2
- -43.490 

Kaolinite +3H2O = 2H+ +2H4SiO4(aq)+ 2AlO2
- -39.262 

Smectite + 7.32 H2O = 0.68H+ + 0.17Ca+2 + 0.335Mg+2 + 3.99 H4SiO4(aq)+ 1.68AlO2
- -32.834 

goethite + 3H+ = 2H2O + Fe+3 0.363 

Albite + 6H2O = Na+ + 3H4SiO4(aq)+ AlO2
-  -20.126 

Quartz +2H2O = H4SiO4(aq) -3.740 

K-Feldspar + 6H2O = K+ + 3H4SiO4(aq)+ AlO2
- -22.394 

Dolomite + 2H+ = Ca+2 + Mg+2 + HCO3
-  3.545 

Magnesite + H+ = Mg+2 + HCO3
-  1.420 

Dawsonite = H+ + Na+ + HCO3
- + 2.35AlO2

- -18.535 

Muscovite + 6H2O =2H+ + K+ + 3H4SiO4(aq)+ 3AlO2
- -57.264 

Ferrihydrite + 3H+ = 3H2O + Fe+3 3.404 

Gibbsite = H2O + H+ + AlO2
- -15.129 

 
Table 10: Cation exchange reactions and selectivity coefficients, using the Gaines-Thomas convention (Appelo 

and Postma, 1994) 
 

Cation Exchange Reaction KNa/M 

Na+ + X-H = X-Na + H+ 1 

Na+ + X-K = X-Na + K+ 0.2 

Na+ + 0.5X-Ca = X-Na + 0.5Ca+2 0.4 

Na+ + 0.5X-Mg = X-Na + 0.5Mg+2 0.6 

Na+ + 0.5X-Ba = X-Na + 0.5Ba+2 0.2 
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Table 11: Surface sorption reactions for As, Cd, and Pb on goethite, illite, kaolinite, and montmorillonite 
(DLM = double layer model, CCM = constant capacitance model) 

Reactions Log kint 

Site 
Density 
mol/m2 

Surface 
Area 
m2/g 

Type of 
SCM Model Reference 

Goethite 

goe1_OH2
+ = goe1_OH + H+ -7.38 3.9-e8 80 DLM 1 

goe1_O- + H+ = goe1_OH  10.74 3.9-e8 80 DLM 

goe2_OH2
+ = goe2_OH + H+ -7.38 3.8e-6 80 DLM 1 

goe2_O- + H+ = goe2_OH  10.74 3.8e-6 80 DLM 

goe1_OCd+ + H+ = goe1_OH + Cd+2 -1.29 3.9-8 80 DLM 1 

goe2_OCd+ +H+ = goe2_OH + Cd+2 1.83 3.8e-6 80 DLM 

goe1_OPb+ + H+ = goe1_OH + Pb+2 -4.78 3.9-e8 80 DLM 1 

goe2_OPb+ + H+ = goe2_OH + Pb+2 -1.52 3.8e-6 80 DLM 

goe2_H2AsO4 + H2O = goe2_OH + 
AsO4

+3 + 3H+ 
-31.0 3.32e-6 80 DLM 2 

goe2_HAsO4
- + H2O = goe2_OH + 

AsO4
+3 + 2H+ 

-26.81 3.32e-6 80 DLM 

Illite 

ill_OH2
+ = ill_OH + H+ -8.02 2.27e-6 66.8 CCM, 

=2.0 F/m2 
3 

ill_O- + H+ = ill_OH  8.93 2.27e-6 66.8 CCM, 
=2.0 F/m2 

ill_OCd+ + H+ = ill_OH + Cd+2 3.62 2.27e-6 66.8 CCM, 
=2.0 F/m2 

3 

(ill_)2Cd + 2H+ = 2ill_H + Cd+2 -0.63 1.3e-6 66.8 CCM, 
=2.0 F/m2 

ill_CdOH + 2H+ = ill_H + Cd+2 + H2O 6.49 1.3e-6 66.8 CCM, 
=2.0 F/m2 

ill_OPb+ + H+
 = ill_OH + Pb+2 0.70 2.27e-6 66.8 CCM, 

=2.0 F/m2 
3 

(ill_)2Pb + 2H+ = 2ill_H + Pb+2 -1.37 1.3e-6 66.8 CCM, 
=2.0 F/m2 

ill_PbOH + 2H+ = ill_H + Pb+2 + H2O 3.65 1.3e-6 66.8 CCM, 
=2.0 F/m2 

ill _H2AsO3 + H2O = ill_OH + H3AsO3 -2.12 3.83e-6 66.8 CCM, 
=1.06 F/m2 

4 

ill _HAsO3
- + H2O + H+ = ill_OH + 

H3AsO3 
5.66 3.83e-6 66.8 CCM, 

=1.06 F/m2 

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ
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Table 11: Surface sorption reactions for As, Cd, and Pb on goethite, illite, kaolinite, and montmorillonite 
(DLM = double layer model, CCM = constant capacitance model) (cont.) 

Reactions Log kint 
Site Density 

mol/m2 
Surface Area 

m2/g 
Type of SCM 

Model Reference 

Kaolinite 

kao_OH2
+ = kao_OH + H+ -4.63 2.24e-6 22.42 CCM, 

=1.2 
F/m2 

5 

kao_O- + H+ = kao_OH  7.54 2.24e-6 22.42 CCM, 
=1.2 

F/m2 

Kao_OCd+ + H+ = Kao_OH + Cd+2 3.23 2.24e-6 22.42 CCM, 
=1.2 

F/m2 

5 

(Kao_)2Cd + 2H+ = 2Kao_H + Cd+2 -1.22 3.57e-7 22.42 CCM, 
=1.2 

F/m2 

Kao_OPb+ + H+ = Kao_OH + Pb+2 0.64 2.24e-6 22.42 CCM, 
=1.2 

F/m2 

5 

(Kao_)2Pb + 2H+ = 2Kao_H + Pb+2 -2.36 3.57e-7 22.42 CCM, 
=1.2 

F/m2 

kao_HAsO3
- + H2O + H+ = kao_OH + 

H3AsO3 
5.43 3.83e-6 22.42 CCM, 

=1.06 F/m2 
4 

kao_AsO4
-2 + H2O + 2H+ = kao_OH + 

H3AsO4 
4.69 3.83e-6 22.42 CCM, 

=1.06 F/m2 
4 

Montmorillonite 

mon_OH2
+ = mon_OH + H+ -6.04 4.41e-6 46 CCM, 

=3.2 
F/m2 

6 

mon_O- + H+ = mon_OH  6.63 4.41e-6 46 CCM, 
=3.2 

F/m2 

mon_Na+ + H+ = mon_H + Na+ -0.18 1.53e-5 46 CCM, 
=3.2 

F/m2 

mon_OCd+ + H+ = mon_OH + Cd+2 2.93 4.41e-6 46 6 6 

(mon_)2Cd + 2H+ = 2mon_H + Cd+2 -2.37 1.53e-5 46 CCM, 
=3.2 

F/m2 

 

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ

κ
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Table 11: Surface sorption reactions for As, Cd, and Pb on goethite, illite, kaolinite, and montmorillonite 
(DLM = double layer model, CCM = constant capacitance model) (cont.) 

Reactions Log kint 

Site 
Density 
mol/m2 

Surface 
Area 
m2/g 

Type of 
SCM Model Reference 

Montmorillonite 

mon_OPb+ + H+ = mon_OH + Pb+2 -0.49 4.41e-6 46 CCM, 
=3.2 

F/m2 

6 

(mon_)2Pb + 2H+ = 2mon_H + Pb+2 -2.56 1.53e-5 46 CCM, 
=3.2 

F/m2 

mon_H2AsO3 + H2O = mon _OH + 
H3AsO3 

-1.19 3.83e-6 46 CCM, 
=1.06 F/m2 

4 

mon_HAsO3
- + H2O + H+ = mon _OH + 

H3AsO3 
3.92 3.83e-6 46 CCM, 

=1.06 F/m2 
4 

1. Swedlund et al. 2009 
2. Dixit and Hering, 2003 
3. Gu and Evans, 2007 
4. Gu and Evans, 2008 
5. Gu et al., 2010 
6. Goldberg, 2002 

4.3 CHEMICAL SCALING FACTOR RESULTS 
Goodness of fit was evaluated by comparing scaling factors estimated from the numerical 
simulations (Equation 4) and the emulations (Equation 5). Correlation coefficients range between 
R2 = 0.76 to 0.86 for trace metals and R2 = 0.52 to 0.66 for the organics (Figures 7 and 8). 
Improvements in the accuracy of the scaling functions may be achieved by using different 
mathematical forms for the scaling functions. 

 
Table 12: Correlation coefficients from linear correlations of scaling functions calculated from the 

simulations and emulations shown in Figures 7 and 8 

Parameter R2 

As 0.795 

Ba 0.862 

Cd 0.851 

Pb 0.757 

Benzene 0.662 

Naphtalene 0.521 

Phenol 0.619 

κ

κ

κ

κ
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Figure 7: Comparison between the values from numerical simulations and those emulated with the developed 

scaling functions: As (a), Ba (b), Cd (c), and Pb (d). 
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Figure 8: Comparison between the values from numerical simulations and those emulated with the developed 

scaling functions: benzene(a), naphthalene (b), and phenol (c). 
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5. RESULTS FROM THE INTEGRATED ROM FOR GROUNDWATER CHEMISTY 
Figures 9 and 10 compare plume volumes estimated from the hydrology ROM, which considered 
the reservoir source term for trace metals and organics, with plume volumes estimated with the 
scaling function that accounts for the full suite of geochemical reactions. Recall that the 
hydrology ROM considers variability and uncertainty in the geostatistical model and in CO2 and 
brine leakage rates. Inclusion of trace metal chemistry using the scaling function tends to 
increase plume volumes by about 10 times for As and Ba and 100 times for Cd and Pb, as can be 
seen by comparing the green and dashed-red cumulative distribution profiles in Figure 9. The 
results suggest that release of As, Ba, Cd, and Pb from the shallow aquifer sediments as the pH 
plume advances has a greater footprint than trace metal contamination from the storage reservoir. 
There are three possible outcomes from this analysis. One is that trace metal leakage sources 
need not be considered for risk assessments, because their input will be small relative to 
geochemical reactions within the protected aquifer. The second outcome is that the pH plume 
volumes derived from the hydrology ROM could be used as proxies for Ba, Cd, and Pb, because 
their plume volumes are about the same as the pH plume volume, as can be seen by comparing 
the solid and dashed red lines in Figure 9. This is not the case for As, whose plume was about 10 
times smaller than the pH plume. The third outcome is that direct assessment of trace metal 
release from the aquifer sediment could lower the uncertainty. This can easily be achieved 
through experiment (Little and Jackson, 2010). It is important to conduct the experiment because 
of the complexity of the geochemical reactions and uncertainty associated with assessable 
surface area available for reaction. Direct knowledge of the bulk sediment response to CO2 
saturated waters might allow the trace metal thresholds to be directly correlated to variable pH 
thresholds.  

In contrast to the trace metals, application of the scaling factor g’(x) (see Equation 2) yields large 
decreases in the organic plume volumes that are attributed to strong bio degradation. Plume sizes 
are reduced by 10 times for benzene, 100 times for phenol, and 1,000 times for naphthalene. 
Strong degradation of organics suggests minimal long-term impact of organic constituents. 

As mentioned above, scaling functions were not applied to pH and TDS plume volumes, their 
results from hydrology ROM are shown in Figure 11. 
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Figure 9: Application of the scaling factors for arsenic, barium, cadmium, and lead (left column) to the 

hydrology ROM (right column) where the solid green line represents trace metal output from the hydrology 
ROM, the dashed red line represents the hydrology ROM corrected for geochemical reactions, and the solid 

red line represents the pH plume volume. 
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Figure 10: Application of the scaling factors g’(x) (left column) to the hydrology ROM (right column) where 
the solid and dashed lines represent the uncorrected and corrected plume volumes for benzene, naphthalene, 

and phenol. 
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Figure 11: Range of pH and TDS plume volumes estimated from the hydrology ROM. 
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6. EFFECTS OF WELLBORE MITIGATION ON PLUME VOLUME AND 
MIGRATION 

This project explored the ability of the protected groundwater to return to ambient conditions 
through natural recharge once leakage source terms have been fixed, because the previous work 
indicated that CO2 buoyancy continued to drive leakage and plume growth even after injection 
stopped and the storage reservoir returned to pre-injection pressures. In these simulations well 
remediation is implemented by tuning the CO2 and brine flux to zero. Figure 12 shows the 
correlations between pH and TDS plume volume and mitigation time for thresholds pH = 7 and 
TDS = 1,300 mg/l. As was the case in the second-generation results, there is strong correlation 
between CO2 mass and pH plume volume with a secondary dependence on mitigation time 
which also correlates with cumulative leak mass. The correlation for the TDS plume volume on 
brine mass is more variable than pH volume because the TDS volume is also dependent on brine 
concentration.  

Natural recharge has the potential to remediate changes to groundwater chemistry, but it may 
take several decades. The effect of well mitigation is illustrated in Figure 13 in plan view for one 
realization of the plume evolution in which the well is fixed after 42 years of leakage. As is 
expected, the pH and TDS plumes increase in size as leakage into the aquifer continues between 
10 and 40 years (red and orange contours). Once the leaking well has been fixed, the pH plume 
increases in size and also migrates in the direction of the plume (yellow contour). The larger 
plume size, in the absence of active leakage, is due to dilution and dispersion of more acid waters 
within the plume between 40 and 90 years (orange and yellow contours). The pH plume 
continues to migrate down gradient with no change in volume between 90 and 135 years (yellow 
and green contours). Eventually natural recharge and dispersion reduce the plume as is evident 
by slightly smaller area at 200 years (cyan contour).  

In contrast to groundwater pH, natural recharge and dispersion have restored groundwater 
quality to TDS values below the no-impact threshold within 50 years of fixing the leaking well. 
The much faster recovery of the TDS-impacted groundwater over the pH-impacted groundwater 
reflects the much higher baseline threshold as well as the modest TDS concentration of the 
leaking brine (~41,500 mg/l). These two factors result in smaller plumes that are more easily 
restored. It would be expected that groundwater exposed to more concentrated TDS leaks would 
exhibit similar plume behavior to that illustrated for pH plumes. 

These images of plume evolution show that natural recharge and dispersion have the potential to 
return groundwater to its pre-leakage condition, but that it can take many years depending on 
size and concentration of the leak and when it was fixed. They also show that plumes are not 
static but move in the direction flow. These two findings are relevant to development of 
groundwater monitoring and remediation plans.  
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Figure 12: Correlation of pH 7 and TDS 1,300 mg/L volumes with cumulative CO2 and brine mass and 

mitigation time. 
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Figure 13: Example of pH (B) and TDS (C) plume evolution in plan view for given simulation (#682) with 

specific parameter input listed in (A). Color contours correspond to red = 10 years, orange = 40 years, yellow 
= 90, green = 135 years, cyan = 200 years. Solid circles show the location of shallow groundwater wells at this 

site. 
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7. CONCLUSIONS 
This study developed ROMs that describe changes in dilute groundwater chemistry if CO2 and 
brine were to leak into an overlying alluvium aquifer similar to the High Plains aquifer, Haskel 
County, Kansas, USA. The protocol allows uncertainty and variability in aquifer heterogeneity, 
fluid transport, and geochemical reactions to be collectively evaluated to assess potential changes 
in groundwater pH, TDS, As, Ba, Cd, Pb, benzene, naphthalene and phenol concentrations by 
developing a scaling function that can be applied to correct the output from hydrology ROM. 
The chemical scaling function is developed by comparing output from 500 reactive-transport 
simulations with and without chemistry for simplified 3-D models based on a single 
representation of aquifer heterogeneity and CO2 and brine leakage profiles. No correction is 
needed for pH because calcite dissolution, the most important pH buffering processes, is 
included in the hydrology ROM. No correction is applied to TDS because calcite dissolution 
does not change the impacted volume above those predicted by the hydrology ROM. Adsorption 
and cation exchange are important for trace metal, but have very limited effect on TDS. 
Inclusion of chemical correction increases trace metal plumes by 10 to 100 times, suggesting that 
CO2 leakage leaches trace metals from the aquifer sediments and should be considered in risk 
assessments. Although more study is needed, as are corrections for other trace metals, such as 
chromium, iron, manganese, and zinc, the strong correlation of trace metal and pH plume 
volumes suggests that trace metal impact maybe approximated by pH plumes, greatly 
simplifying the calculations. In contrast to the observed increases in trace metal plume volumes, 
inclusion of bio-degradation greatly reduces plume volumes for organics.  

Although a general protocol has been established for developing a ROM that can be used to 
assess groundwater impacts by including physical and chemical uncertainty and variability, there 
is room for improvement. The model accuracy is not very high when emulations are compared to 
simulated output. Correlation coefficients range between R2 = 0.75 to 0.85 for trace metals and 
about 0.60 for the organics. These values are lower than the 0.90 or better goal of the NRAP 
program. Improvements may be achieved by increasing the number of simulations to more fully 
sample the parameter space and by applying different mathematical forms for the chemical 
scaling function. 

There is also room for improvement for the hydrology pH and TDS ROMs. Better agreement 
between the ROMs at times less than 50 years are needed to assess near-term risks to leakage 
and to evaluate mitigation and monitoring plans. This will require a much finer mesh size to 
capture changes in groundwater chemistry from small amounts of CO2 and brine leaked into the 
aquifer. Smaller mesh sizes may also be needed to improve the overall performance of the TDS 
ROM. The small TDS plume volumes yield ROMS that are only accurate to about 75% with the 
current mesh structure. 

In order to make ROMs applicable for other alluvium aquifers, this study recommends that 
ROMs be developed for variable thresholds in light of the “no net degradation” requirement in 
the U.S. EPA guidelines (2010), because other aquifers are likely to have different background 
water chemistry. The full chemical and hydrology ROMs developed here are specific to the 
output thresholds that define no net degradation to the High Plains aquifer. Variable threshold 
ROMs could be extracted from the same dataset. 
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