Contractor Final Report for the Period October 1, 2016 through April 30, 2018 Project/Contract Title: REE Identification and Characterization of Coal and Coal Byproducts Containing High Rare Earth Element Concentrations

> Robert Uhrin, Ph. D., Principal Investigator President XLight Corporation 65 Galway Drive Mendham, NJ 07945 Phone Number: <u>724-961-1528</u> Email: <u>ruhrin@aol.com</u>

SUBMITTED UNDER DOE/NETL CONTRACT NO. DE-FE-0026527 CONTRACTOR'S DUNS ID: 800428760 CONTRACT PERFORMANCE PERIOD: 10/1/2016 through 4/30/2018

SUBMITTED TO:

U.S. Department of Energy National Energy Technology Laboratory NETL Contracting Officer's Representative: Charles E. Miller

Signature of Principal Investigator/Contract Manager

Robert Uhrin

Table of Contents

Page	Description
4	List of Tables
5	List of Figures
7	List of Attachments
8	I: Executive Summary
9	II: Sampling
9	A. Sources
9	B. Rationale
9	C. Sample Types
	i. Core Samples
9	ii. Refuse Piles
10	iii. Coal Cleaning Sites
10	iv. Open Pit
12	v. Clay Deposits
13	vi. Casts
13	vii. Reclaimed Refuse Piles
14	viii. Settling Ponds and Acid Mine Drainage (AMD) Sludge
14	III: Handheld XRF
16	IV: Sample Selection and Preparation
16	i. Cores
16	ii. Refuse Piles
16	iii. Coal Cleaning Sites
16	iv. Open Pit
17	v. Clay Deposits
17	vi. Casts
17	vii. Reclaimed Refuse Piles
18	viii. Settling Ponds and Acid Mine Drainage (AMD) Sludge
18	V: Sample Characterization

18	A. XRF
19	B. ICP-MS
20	C. Selection of a Tracer Element
22	D. Scanning Electron Microscope (SEM) Analysis
34	VI: Summary of the Project
35	Attachments
35	1: Semi-quantitative Laboratory Analysis of Selected REEs Using Portable XRF
43	2: ICP-MS Analyses of Selected Samples (ppm)
51	3: Compiled Properties of Samples Subjected to ICP-MS Analysis

List of Tables

Page	Description
23	Table I: Wavelength (WDX) REE Peak Positions
24	Table II. Wavelength (WDX) Setting
25	Table III. Possible Phosphate Compound Formed Under Magma Conditions
25	Table IV. Different Minerals Detected in Sample JE-15
31	Table V. Rare-Earth Ortho Phosphate Structure Compared to Ionic Radius
34	Table VI. Comparison of the Valence, Coordination and Ionic Radii of Some Elements

List of Figures

Page	Description
9	Figure 1. Section of a typical 2-inch diameter exploratory core.
9	Figure 2. Typical appearance of inactive spoil pile sites that were surveyed.
10	Figure 3. Typical coal cleaning site with breaker, wash plant, and cleaned coal.
11	Figure 4. Example of the geological features referred to as syncline and anticline.
11	Figure 5. Typical terrain for above ground mines in western Pennsylvania.
11	Figure 6. Western Pennsylvania mine site showing rock outcrop, overburden, and coal strata.
12	Figure 7. Example of anticline (a) and syncline (b) features encountered in eastern PA.
12	Figure 8. Typical rock deposits sampled for containing REEs.
13	Figure 9. The base of this location actually contains fire clay concealed by the coloration.
13	Figure 10. A selection of casts obtained during the course of mining the "Mammoth" seam.
14	Figure 11. View of a "cogen" plant from the site of a refined mining waste product.
15	Figure 12. Typical XRF spectrum showing the scattering between 21 keV and 43 keV.
19	Figure 13. Mobile characterization stand with spectrometer and sample ready for insertion.
20	Figure 14(a). Correlation of total HREE concentration with Y as measured using ICP-MS.
21	Figure 14(b). Correlation of total Y (ICP) concentration with Y (XRF).
22	Figure 15. Optical microscopy view of five samples (a-e) selected for SEM analysis.
26	Figure 16. Elemental scans of JE-15 surface for P (b), Ce (c), La (c), and P-Ce-La (e).
27	Figure 17. EDX scan of JE-15 for O, Si, Al, K, Ce, and La, establishing the presence and absence of specific mineral species.
28	Figure 18. EDX scan of a 50 μ m-size particle believed to be zircon.
29	Figure 19. EDX scan of JE-15, indicating two phases containing LREEs.

29	Figure 20. Spectrometer scans (TAP) of standard samples for P (a) and Y (b).
30	Figure 21. Spectrometer scans (TAP) of the monazite standard (a) and a selected particle (b).
31	Figure 22. Demonstration of xenotime (a) and monazite (b) presence in JE-27.
32	Figure 23. WDX (LiF) scans of the "heavy" phase (a) within the monazite standard and particle 1 (b) contained within sample JE-27.
33	Figure 24. WDX (LiF) scans of the bulk monazite standard (a) and JE-27 particle 2 (b), showing that the particle 2 REE concentration is markedly different from particle 1.

List of Attachments

Page	Description
37	1. Semi-quantitative Laboratory Analysis of Selected REEs Using Portable XRF [#]
47	2. ICP-MS Analyses of Selected Samples (ppm) [*] 2. ICP-MS Analyses of Selected Samples (ppm) [*]
51	3: Compiled Properties of Samples Subjected to ICP-MS Analysis

I: Executive Summary

Rare earth elements (REEs) have become strategically important due to their use in many applications, such as consumer electronics, optical applications, and national defense to mention just a few. This importance is increased by the lack of a stable US supply and market control by foreign entities. Thus, the present project is important for identifying potential sites of high rare earth element (REE) concentrations, particularly those that might contain a higher ratio of heavy rare earth elements (HREEs; Eu-Lu and Y) to light rare earth elements (LREEs; La-Gd, and Sc). There is an abundance of data obtained from coal by-products, but it's impractical to just incinerate the coal to obtain the REEs. Nevertheless, the REE concentration in coal samples can provide a direct indication of the REE concentrations in strata lying just above and just below the coal seam in question. Consequently, the roof rock, floor rock, and underclay are even more important potential sources of REEs.

Sampling of coal resources was conducted during the period October 1, 2016 through April 30, 2018. The objective was to locate potential sources of coal and coal-related materials containing >300 parts per million (ppm) of rare earth elements (REEs). The survey focused upon a wide geographical area within the Northern Appalachian Coal Basin, including both the bituminous and anthracite regions. However, the study was extended to the Southern Appalachian Coal Basin and to eastern Ohio. In order to accomplish this project samples from locations in western PA, eastern PA, eastern Ohio, and central Alabama were selected for analysis of REE content. Sampling sites included a selection of anthracite coal producers in the eastern portion of Pennsylvania encompassing Luzerne, Schuylkill, and Columbia Counties, as well as bituminous producers located in western Pennsylvania that included Blair, Cambria, Fayette, Indiana, Clearfield, Carbon, Centre, Armstrong, Somerset, and Westmoreland Counties. Harrison County in Ohio and Shelby County in Alabama were also sampled. Sample types included core samples, coal samples, coal -associated samples from surface mines, refuse samples, coal cleaning samples, sludge samples, and clay samples.

A handheld x-ray fluorescence (XRF) unit was chosen as a tool for scanning field samples. The unit was modified to have the capability of detecting LREEs that included lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). It was also hoped that the unit could serve as a characterization tool for use in the laboratory. While it was determined that the detection sensitivity for the LREEs was not satisfactory for either application, it was with the total rare earth element (REE) concentration. This concept is discussed later in the report demonstrated that this unit could be used to detect a tracer element as a means of associating the tracer concentration

The complete collection included 231 samples of the previously mentioned types. This collection included 78 samples that were viewed as possibly containing a sufficient concentration of REEs and these were submitted to ICP-MS analysis. Of those samples, 11 samples contained concentrations of >300 ppm REEs. The two highest REE concentrations (491 ppm and 492 ppm) were detected in fire clay samples from western PA. The sample characteristics are displayed in attachments at the end of the report.

II: Sampling

(A) Sources

The geographic accessibility of sampling sites within Pennsylvania was a major factor in choosing various locations for sampling. This was aided by the opening of new mining activities that increased the number of potential sites. Relationships developed with numerous operators during the sampling period improved cooperation that was mutually beneficial to the project and the operators. Sampling sources included inactive refuse sites, exploratory mining cores, active and inactive surface mining sites, coal preparation sites, and sludge retention sites. Coal ash was specifically excluded from sampling.

(B) Rationale

The origin of REEs is primarily volcanic, so these elements show up in sedimentary, igneous, and metamorphic rocks. Prior to the formation of coal deposits, what is now the eastern United States was covered by an ocean. Offshore volcanism moved steadily westward as ash and magma were simultaneously deposited and settled. Plate tectonics subsequently created the Appalachian Mountains which eroded into the Appalachian Basin, leading to the formation of bogs and the subsequent creation of coal deposits. The Appalachian Mountains run northeast to southwest, so western and north central Pennsylvania are choice locations for finding REEs in coal-associated strata.

The sedimentary quality of anthracite fields to the east is favored by weathering of the mineral species (igneous and metamorphic) known to contain the REEs. Coincidentally, igneous and metamorphic rocks are found nearer to the surface in eastern Pennsylvania and particularly south-eastern Pennsylvania as compared to western Pennsylvania.⁽¹⁾ Consequently, the strata above and below the anthracite seams are postulated to contain, as a result of weathering, higher REE concentrations that are nearer to the surface and, therefore, more accessible than western Pennsylvania seams.

The geology of western Pennsylvania is dominated by kaolinite, mica, and ionexchangeable clays (including fire clays). Those species are notorious for containing REEs, which presents a good opportunity for sampling. The dominant minerals in shale from the anthracite region are illite, kaolinite, Fe-rich chlorite, pyrophyllite, and quartz-associated minerals. These are also prime sources of REEs, which offers an exceptional opportunity. Additionally, the anthracite region was susceptible to and contains many thrust faults known to be a major source of REEs.

(C) Sample Types

i. Core Samples:

During the course of mining exploration, cores are usually taken to identify the methane content of the desired coals as well as the presence and location of various seams. Less often entire cores from surface to the coal seam are obtained, but more often the core section

containing the coal seam and strata just above and below are retained. A selection of core samples from potential mining locations was made, and these were characterized at the Mount Pleasant facility. Figure 1 illustrates a boxed section of retained cores.

Figure 1. Section of a typical 2-inch diameter exploratory core.

Numerous cores were examined, primarily in the vicinity of the specific coal seam that had been extracted. Interesting core features, when present, were also examined. Eight different locations were surveyed using the XRF device, but only interesting samples were characterized using ICP-MS.

ii. Refuse Piles:

During the mining process the rejected material was discarded in a convenient location. This sample type offered the opportunity to examine both inactive and active spoil pile sites from which numerous samples were selected. A large amount of accessible material was available in those locations, of which a typical spoil pile is shown in Figure 2. A grab sample weighing approximately one kilo was collected at each site. These sites also contain coal residue mixed with waste products, primarily rock.

Figure 2. Typical appearance of inactive spoil pile sites that were surveyed.

iii. Coal Cleaning Sites:

In ongoing mining operations, the extracted coal is transported to a single site that contains a breaker unit for crushing the coal lumps and downsizing the pieces into uniform sizes, depending upon the application. These sites are located at a central location in the case of multiple mining sites or at the current mining sites. At those locations the bulk material is floated to separate the coal from waste products and washed to remove fine particulate matter. Consequently, such locations provide an opportunity to collect samples of coal, rock, coal tailings, and sludge from settlement ponds. One sampling location that contained all the above products is shown in Figure 3.

Figure 3. Typical coal cleaning site with breaker, wash plant, and cleaned coal.

iv. Open Pit:

Numerous above ground mining sites were surveyed. These included both active mining sites and inactive mining sites with substantial coal reserves. Typical samples included run-ofmine coal, rock samples from outcrops, top and bottom rocks, underclay, interburden between adjacent seams and splits, and waste products. The spoil from breaker units is usually transported back to active mining sites for storage. Grab samples included at least one kilo of material comprised of coal, individual rocks typical of the site, and samples removed from outcrops, top-of-coal strata and bottom rock, where available. Sludge from settling ponds was often available.

The geologies of western and eastern Pennsylvania are substantially different. In the western and north-central portion of the state the strata lie roughly parallel to the ground, Numerous above ground mining sites were surveyed. These included both active mining sites and inactive mining sites with substantial coal reserves. Typical samples included run-of-mine coal, rock samples from outcrops, top and bottom rocks, underclay, interburden between adjacent seams and splits, and waste products. The spoil from breaker units is usually transported

whereas in the anthracite region the strata are severely buckled and lie nearly vertical in most cases. In one area of eastern Pennsylvania an entire valley can be composed of a syncline with another area characterized by an anticline. The former is represented as a concave feature as viewed head-on, while the latter forms a convex or domed shape. An example is provided in Figure 4.

Figure 4. Example of the geological features referred to as syncline and anticline.

Features of the terrain and strata encountered in western and eastern Pennsylvania are provided in Figures 5-10.

Figure 5. Typical terrain for above ground mines in western Pennsylvania.

Figure 6. Western Pennsylvania mine site showing rock outcrop, overburden, and coal strata.

(a) (b) Figure 7. Example of anticline (a) and syncline (b) features encountered in eastern PA.

Figure 8. Typical rock deposits sampled for containing REEs.

v. Clay Deposits:

Erosion of the igneous materials formed during volcanic activity led to the sedimentation process whereby individual mineral particles and clays were deposited. The strata lying just below a coal seam starts as a clay that hardens during the metamorphism. Conditions in western Pennsylvania led to pliable clay formation directly below the coal seam. This clay is usually referred to as underclay. Clays and micaceous materials are notorious for containing REEs as a result of direct substitution or by way of ion-exchange. All clays do not contain REEs, however, since this is dependent upon the erosion source. In particular, fire clay offers an excellent source of REEs, because the physical structure can incorporate large ions such as REE-ions. Figure 9 displays a site in western Pennsylvania where fire clay was extracted from beneath the mined coal.

Figure 9. The base of this location actually contains fire clay concealed by the coloration.

vi. Casts:

An unusual feature encountered in eastern Pennsylvania is referred to as a cast. The artifacts depicted in Figure 10 are actually fossils that originated from the intrusion of sediment into the space originally occupied by a portion of tree that became trapped in a bog. The indicated objects are found lying atop the "Mammoth" coal seam in the southern anthracite region of Pennsylvania. They are composed of the same materials as their immediate environment, so they often contain high concentrations of REEs and can be harvested while removing the overburden from the coal seam, but they often weigh several hundred kilos each.

Figure 10. A selection of casts obtained during the course of mining the "Mammoth" seam.

vii. Reclaimed Refuse Piles:

While Refuse piles can serve as a direct source of coal byproducts, these sites usually contain a large amount of coal missed during the separation process. Many refuse piles are currently being reclaimed to refine and extract the amount of coal contained therein. The refined product can be used as a low-quality product to fuel cogeneration plants designed to

simultaneously produce both electricity and steam. The waste material obtained during refinement contains a higher portion of waste (less coal) than typical refuse piles. Figure 11 illustrates a "cogen" plant located in Cambria County, Pennsylvania fired by an extensive, local refuse source.

Figure 11. View of a "cogen" plant from the site of a refined mining waste product.

viii. Settling Ponds and Acid Mine Drainage (AMD) Sludge:

Material passed through a breaker and cleaning unit is washed and floated to separate the coal from the waste material. The runoff is screened to remove the larger sediment while the waste water usually goes to a settlement pond where the smaller particles eventually settle to the bottom. Similarly, AMD locations produce sludge along the course of the waterway. Both types of material offer a prime opportunity, since the REEs are concentrated in the sludge and the fine particle size is conducive to processes such as solvent extraction. Several typical locations were examined during the project.

III: Handheld XRF

The XRF technique relies upon a high-energy x-ray source that interacts with a material and excites the electronic structure of contained elements with the subsequent release of energy in the form of fluorescence. Each element has a characteristic spectrum associated with the electron binding energy, whereby outer electrons emit different energies when excited. Consequently, it becomes possible to differentiate between and quantify different elements within a given sample. The sample characteristics, such as particle size, affect the count rate so sample texture must be taken into consideration.

Field observation of samples is not the best way to select representative samples, so one of the objectives of this project was to provide a means of taking data in the field that confirmed the presence of REEs within a given sample. In order to detect and measure the heavier elements, the instrument should have a voltage source of at least 50 keV. The portable XRF

instrument selected was a 50 keV Niton XL3t 500 model with a silver (Ag) x-ray source that was modified to detect REEs. Even in that case, the unit was limited to detecting the LREEs La, Ce, Pr, and Nd., since the fluorescence of heavier REEs requires an excitation voltage higher than 50 keV. A typical XRF spectrum is illustrated in Figure 12. Typically, XRF takes the shape of a whale, where the hump originates from the scattering of emitted photons. Coincidentally, the K_a and K_β emissions provide the most information, and heavier elements, such as REEs, have their emissions overlapped by the humped portion of the spectrum.

Figure 12. Typical XRF spectrum showing the scattering between 17 keV and 35 keV.

A feature of the XRF spectrometer is that the exposure time is adjustable. The detection capability increases with the exposure time, so increasing the exposure by 4 times improves the detection limit to ¹/₂. However, an exposure time beyond two minutes does not improve the detection capability much. It will be shown later that using a tracer element associated with REEs can reduce the field time to an exposure of 30 seconds. The instrument contains filters that improve the sensitivity for certain elements. The "High Range" filter is used to optimize sensitivity for elements barium (Ba) through silver (Ag). The "Main Range" optimizes sensitivity for elements manganese (Mn) through bismuth (Bi). The "Low Range" optimizes sensitivity for elements titanium (Ti) through chromium (Cr). The amount of time spent in each

range is also adjustable, so most of the exposure time should be allocated to the "High" range for detecting the REEs.

IV: Sample Selection and Preparation

i. Cores: The coal seam had been removed from each of the 6.35-cm diameter cores. Therefore, at least two samples were selected from each core, one adjoining the top of the coal seam and one adjoining the bottom. In some cases, multiple samples were selected from sections that exhibited interesting features. The core location was recorded and measured (for reference) by contact of the XRF unit with the core surface. Approximately 2-cm of core length was chiseled from the selected location and secured in one-gallon Ziplok bags. The core section was then initially crushed using a sledge hammer and steel plate. Smaller samples were then passed through a 911 Metallurgy Corp. laboratory crusher. Following the crushing procedure, the material was heated in air within a convection oven at 150 °C for a sufficient period to remove any adsorbed water. The dried material was then passed through a series of stainless-steel sieves measuring 4000 μ m, 500 μ m, and 125 μ m, while each component was segregated in its own bag. The finest material was coned and quartered prior to XRF and potential chemical analyses.

ii. Refuse Piles: Numerous refuse piles, active and inactive, were surveyed during the project. The piles usually encompassed a large area, so samples were selected at multiple locations to observe any sample variations. Grab samples weighing approximately 2 kg were selected from a level approximately one foot below the surface in order to avoid surfaces exposed to the weather. Samples were secured in one-gallon Ziplok bags prior to transport from the field to the laboratory. If the samples were moist, the material was heated in air within a convection oven at 150 °C for a sufficient period to remove any adsorbed water. The entire sample was then crushed using a sledge and steel plate, with the smaller pieces being passed through a 911 Metallurgy Corp. laboratory crusher. The crushed material was subsequently passed through a series of stainless-steel sieves measuring 4000 μ m, 500 μ m, and 125 μ m with each component segregated in its own bag. The finest material was coned, quartered, and retained for XRF and potential chemical analyses.

iii. Coal Cleaning Sites: Each coal producer maintained a central breaker and cleaning site from which various samples were selected. These included run-of-mine coal, cleaned coal, and coal refuse. Grab samples weighing approximately 2 kg were selected from the input run-of-mine coal, clean coal exiting the washer, refuse separated from the input coal, washing debris, and pond sediment if it was available locally. Samples were secured in one-gallon Ziplok bags prior to transport from the field to the laboratory. If the samples were moist, the material was heated in air within a convection oven at 150 °C to remove adsorbed water. Each sample was then crushed using a sledge hammer and steel plate. crushed using a 911 Metallurgy Corp. laboratory crusher. The dried material was subsequently passed through a series of stainless-steel sieves measuring 4000 μ m, 500 μ m, and 125 μ m, while each component was segregated in its own bag. The finest material was coned, quartered, and retained for XRF and potential chemical analyses.

iv. Open Pit: Above ground mine locations included both active and inactive sites. The operators controlled at least several mining sites, some of which were vast in area (several square miles). Samples selected from these sites included coal taken directly from the seam, top and/or bottom rock, random rocks located adjacent to seams being mined, and rocks that had characteristics believed to be associated with REEs. Grab samples weighing approximately 2 kg were removed from coal seams and top and/or bottom rock strata using a hammer and chisel. Grab samples of individual rocks that shared the same appearance were also obtained. Samples were secured in one-gallon Ziplok bags prior to transport from the field to the laboratory. If the samples were moist, the material was heated in air within a convection oven at 150 °C for a sufficient period to ensure adsorbed water was driven off. Each sample was then crushed using a sledge hammer and steel plate prior to further processing in a 911 Metallurgy Corp. laboratory crusher. The entire sample was subsequently passed through a series of stainless-steel sieves measuring 4000 μ m, 500 μ m, and 125 μ m, with each component segregated in its own bag. The finest material was coned, quartered, and retained for XRF and potential chemical analyses.

v. Clay Deposits: Clay deposits were encountered at a few active mining sites. Clays were found both at intervening spots in the excavation as well as deposits lying under the coal seam being mined. These locations were found in western Pennsylvania, although similar deposits might be expected at all mining sites. Approximately 2 kg of sample was removed using a shovel or trowel. As with the sample types above, the clays were secured in one-gallon Ziplok bags prior to transport from the field to the laboratory. Clay samples were in a wet state, so the material was heated in air within a convection oven at 150 °C for a sufficient period to ensure adsorbed water was driven off. Each sample was then crushed using a sledge hammer and steel plate prior to further processing in a 911 Metallurgy Corp. laboratory crusher. The entire sample was subsequently passed through a series of stainless-steel sieves measuring 4000 μ m, 500 μ m, and 125 μ m, with each component segregated in its own bag. The finest material was coned, quartered, and retained for XRF and potential chemical analyses.

vi. Casts: It should be mentioned at this point that the nomenclature for individual coal seams in the northern and southern anthracite regions depends upon the local terminology. As indicated earlier in the report, casts were encountered lying atop the "Mammoth" coal seam in the southern anthracite region. The "Mammoth" seam is different in the northern and southern anthracite regions. Depending upon the size of the tree that formed the cast, these objects can weigh more than several hundred kg. The stone is extremely hard and resistant to crushing. Approximately 2 kg of sample was removed from the cast using a sledge hammer and chisel. The samples were secured in one-gallon Ziplok bags prior to transport from the field to the laboratory. The material was first dried in air within a convection oven at 150 °C. Each sample was then crushed using a sledge hammer and steel plate prior to further processing in a 911 Metallurgy Corp. laboratory crusher. The entire sample was subsequently passed through a series of stainless-steel sieves measuring 4000 μ m, 500 μ m, and 125 μ m, with each component segregated in its own bag. The finest material was coned, quartered, and retained for XRF and potential chemical analyses.

vii. Reclaimed Refuse Piles: The procedure used to secure samples from the reclaimed refuse piles was identical to that applied to refuse piles. The only difference was that the waste product was more concentrated with rock and had less coal.

viii. Settling Ponds and AMD Sludge: Several samples were obtained from settling ponds located on the site of breaker units. In one case sludge from the effluent of an active AMD site was collected downstream of the mine opening. Approximately 2 kg of sample was removed from the stream sediment using a trowel. The samples were secured in one-gallon Ziplok bags prior to transport from the field to the laboratory. The material was obviously wet, so it was first dried in air within a convection oven at 150 °C. Each sample was then crushed using a sledge hammer and steel plate prior to further processing in a 911 Metallurgy Corp. laboratory crusher. The entire sample was subsequently passed through a series of stainless-steel sieves measuring 4000 μ m, 500 μ m, and 125 μ m, with each component segregated in its own bag. The finest - material was coned, quartered, and retained for XRF and potential chemical analyses.

V: Sample Characterization

A. XRF

All field samples were exposed to laboratory characterization using XRF. One feature of the handheld unit is that it can be placed in direct contact with a sample, so that provides an opportunity to select specific samples in the field for later characterization. The sensitivity is dependent upon exposure time and sample properties such as particle size, so field use is confined to interpreting whether a particular sample is expected to contain a significant concentration of REEs. Although the XRF device was modified to detect the LREEs, the sensitivity for those elements is low for short exposure times (<30 sec). Consequently, the best way to make field determinations is to identify and use a tracer element tied to REE concentration. A useful method is described later.

In the laboratory, selected sections of core were first characterized with the XRF unit in contact with the core surface. Sections selected for removal were determined by the LREE concentration, 1500-2000 ppm; surface measurements were always at least 2 times greater than later small particle measurements. Experience has shown that the texture of the REE-containing rocks is not coarse. Those materials are formed by sedimentation, so an early decision was made to reduce the field samples to the smallest particle size. Subsequently, all laboratory XRF characterization was limited to a particle size <38 μ m.

The selected core sample was then crushed and sized as described earlier. Having been coned and quartered, each powder sample was loaded into a 32 mm diameter sample cup fitted with a 3 μ m thick mylar film. The powder was backed with polyethylene fiber and then sealed into the sample cup with a plastic cap. The sample was then placed within a mobile test stand to which the XRF analyzer had been attached. The analyzer communicated directly with a PC from which operation parameters were established and output data was monitored.

Prior to each characterization period, a standard sample (NIST 2709a) was measured to confirm that the instrument was in calibration. This particular standard reference material was chosen, because it contained all the usual elements encountered in coal mining. Experience gained during XRF characterization resulted in changed operating parameters, such as exposure time and the relative amount of time devoted to the three filter regions. Ultimately, the best sensitivity was obtained for an exposure time of 600 sec and filter sequences of 5%, 5%, and 90% time in the low, main, and high element regions, respectively.

There are three characterization modes in the Niton XL3t 500 unit: a soil mode, two mining modes, and a geology mode. There are two mining modes, because the spectral peaks of copper (Cu) and tantalum (Ta) overlap as do those of zinc (Zn) and hafnium (Hf). The measurement can be optimized by selection of Cu/Zn or Ta/Hf. It was decided that the measurements would be standardized by using the mining (Cu/Zn) mode for all measurements. Following characterization, each sample's data was downloaded and saved.

The XRF characterization for all other samples followed that of core samples with the exception that surface measurements were not taken. The characteristics of all samples selected during the project are included in Attachment 1. XRF data are not included, since it was determined that chemical analysis would be done using ICP-MS. However, the XRF data was used to choose samples suitable for ICP-MS analysis and it was used to find a tracer element tied to REEs. There were 239 samples that were subjected to XRF analysis. An illustration of the spectrometer connected to the remote stand is provided in Figure 13.

Figure 13. Mobile characterization stands with spectrometer and sample ready for insertion.

B. ICP-MS

The preferred method for determination of REE concentration is ICP-MS. The XRF data was used as a guideline in deciding upon which samples to submit for ICP-MS chemical analysis. A concentration of 1000 ppm LREEs was chosen as a suitable standard, since it became clear that the XRF data was usually about 5 times the ICP-MS data and was dominated by the total of La, Ce, Pr, and Nd. Ultimately, 78 samples were selected for ICP-MS analysis. It is not surprising that no coal samples had a sufficient concentration for ICP-MS analysis. Attachment 2 outlines the REE concentration of all samples submitted for analysis.

The analytical work was performed by Huffman-Hazen Labs in Golden, CO. The ground samples were dissolved in a nitric/perchloric acid solution and then heated in HF acid contained in a PTFE cup to evaporate water and volatilize SiF₄. It can be observed in the attachment that 11 samples contained >300 ppm total REEs and that the highest concentrations were found in two samples of fire clay from western Pennsylvania associated with the Pittsburgh coal seam. The majority of the samples, however, were associated with anthracite seams in eastern Pennsylvania.

C. Selection of a Tracer Element

In order to use a handheld XRF spectrometer in the field to select potential samples, one project objective was to find an element associated with REEs that could be used to estimate the REE. Laboratory XRF characterization indicated that the mining mode detected Y, when present, within the first few elements detected and reported in any sample. Depending upon the exposure time the sensitivity for Y increased with increasing exposure time, but the final result was always close to the value detected after 30 seconds and had a 2σ of about 5%. Since Y is associated with the HREEs and the fraction of HREEs compared to total REEs was approximately 0.2, it was decided that Y could be used to estimate the total REE concentration.

Excel analysis was used to correlate the Y concentration obtained using ICP-MS with that obtained for total HREE, as shown in Figure 14(a).

Figure 14(a). Correlation of total HREE concentration with Y as measured using ICP-MS.

The Y concentration obtained using ICP-MS was then compared to the Y concentration obtained with XRF as indicated in Figure 14(b).

Figure 14(b). Correlation of total Y (ICP) concentration with Y (XRF).

Substitution of the Y_{XRF} correlation with Y_{ICP} in Figure 13(b) into the correlation of Y_{ICP} with Here_{toga} in Figure 13(a), followed by substitution of the Y_{XRF} correlation with the Y_{ICP} correlation in Figure 13(b) results in the following:

 $(\text{HREE})_{\text{Total}} = h_{\text{ere}} = 5.4358 (\text{Y}_{\text{ICP}}) - 9.9715,$ $\text{Y}_{\text{ICP}} = [0.3977 (\text{Y}_{\text{XRF}}) + 10.979],$ $\text{HREE}_{\text{Total}} = (5.4358) [0.3977 (\text{Y}_{\text{XRF}}) + 10.979] - 9.9715,$ $\text{HREE}_{\text{Total}} = 2.1618 (\text{Y}_{\text{XRF}}) + 59.6796 - 9.9715$ $\text{HREE}_{\text{Total}} = 2.1618 (\text{Y}_{\text{XRF}}) + 49.7081$

Knowing that the total REE concentration is 5 times the HREE concentration allows one to determine the estimated total REE concentration as:

$$REE_{Total} = 5 (HREE)_{Total}$$
$$REE_{Total} = 5 [2.1618 (Y_{XRF}) + 49.7081] = 10.81 (Y_{XRF}) + 248.54$$

It turns out that this is not a good predictor of expected REE concentration due to the relatively poor correlation of Y(ICP) with Y(XRF). The most important point to take away is that the Y(ICP) concentration correlates closely with the total REE concentration, indicating that a specific inorganic source is responsible for the HREE concentration. Since the relative abundance of REEs is much greater for the LREEs and Th is detectable when the LREE concentration reaches a significant level, it may be more practical to use either Th or Ba as a tracer. This was explored using XRF measurements, but the results were similar to what was

obtained for Y. The association was made with all ICP samples, so it's possible that some sample types should be excluded from the analysis.

D. Scanning Electron Microscope (SEM) Analysis

The texture of the best samples was smooth with a fine particle structure. The particle size was on the order of $<50 \,\mu\text{m}$, which made SEM a desirable tool to determine the inorganic source of the REE concentration. Nearly all samples examined were metamorphized from sedimentary deposits, so all samples contained numerous inorganic species, some of which could not be identified with either energy dispersive or wavelength dispersive x-ray analysis (EDX or WDX).

(c)

(e)

Five samples known to contain >300 ppm REEs were selected for SEM observation. The samples were designated FC-1, JE-8, JE15, JE-23, and JE-27. The sample sizes were on the

order of >1 cm, with the exception of one sample (FC-1) of fire clay with a $<38 \mu$ m particle size. The samples were first examined using optical microscopy to determine general features, such as surface characteristics and particle size, with the expectation of finding interesting inclusions for analysis. The samples are displayed in Figure 15 (a-e), respectively, at low magnification.

SEM/EDX analysis was performed on a JEOL 840 SEM at 20kV and 100 nm beam current, and it was equipped with windowless Evex EDX detector as well as J. Geller WDX analysis systems. For the WDX examination, a number of rare earth element standards (REEx) were examined to establish peak positions and relative intensities for the REEs listed in Table I.

Element	Transition	Crystal Analyzer	Measured Peak Position (mm)
La	La1	PET	85.10
Ce	La1	PET	81.71
Pr	La1	PET	78.48
Nd	La1	PET	75.57
Sm	La1	PET	70.01
Eu	La1	PET	67.26
Gd	La1	PET	64.80
Tb	La1	PET	62.49
Dy	La1	LiF	132.90
Но	Lal	LiF	128.50
Er	La1	LiF	124.20
Tm	La1	LiF	120.20
Yb	Lal	LiF	116.30
Lu	Lal	LiF	112.65

Table I. 'Wavelength (WDX) REE Peak Positions

P and Y were recorded using a thallium acid phthalate (TAP) crystal analyzer. Using two spectrometers simultaneously with the TAP crystal at the P spectrometer position and the pentaerythritol (PET) crystal analyzer at the Ce spectrometer position, areas of interest were searched for by manually moving through the grain boundary phase of the examined sample until an elevated signal was detected. Settings used during analysis are recorded in Table II. WDX scans were generally 0.05 mm step size at 1 second intervals.

Spectrometer dSpec Settings									
Spectrometer Crystal Bias Gain Baseline Window									
1	TAP	1715	10	20	80				
3	PET	1780	14	45	80				

Table II. Wavelength (WDX) Settings

Preparation of the solid samples consisted of embedding them in epoxy and then polishing the surface to display particles lying at the surface of the specimen. Sample FC-1 (a powder) was applied directly to carbon (C) tape, while JE-8 and JE-15 were coated with a thin film of Au/Pd prior to analysis. Samples JE-23 and JE-27 were also coated prior to analysis but with a thin film of C. An appropriate rare earth element standard (REE3) was examined as a first step to establish peak positions and relative intensities for La, Ce, and Pr using a PET crystal analyzer along with a GaP standard for P using a TAP crystal analyzer. SEM/EDX analysis was performed on a JEOL 840 SEM at 20kV and 100 nm beam current, and equipped with a windowless Evex EDX detector, and J. Geller WDX analysis systems.

SEM/EDX analysis and SEM/WDX analysis revealed that it is possible to detect µmsized particles containing rare earth elements in the samples. In Sample JE-15 Ce, La, and Pr were detected. The areas containing these elements also contained P, which aided in further analysis for separating mineral species. It was found that phosphorus was present in higher concentrations than the rare earth elements. Varying levels of Al and Si were also present in these areas, most likely arising from the underlying substrate. However, it's also possible in some cases that the REEs were present as impurities in various Al-silicates that are difficult to ascertain without further analysis or they may be major components of mixed phosphates. As an example, Table III lists possible RE phosphate compounds and mixed alkali-RE phosphate compounds formed at high temperatures.

SEM/EDX analysis and SEM/WDX analysis also revealed that two distinct types of REE-containing minerals were present: (1) the lighter REEs containing PO_x were identified as monazite; and (2) the heavier REEs were present in xenotime particles demonstrated to contain both PO_x and Y_xO_y . The RE elemental distributions are presented in Table III. Most of the mineral particles observed were very small, on the order of 1 µm to 5 µm in diameter.

REPO ₄	RE ₃ PO ₇	RE(PO ₃) ₃	REP ₅ O ₁₂	RE4(P4O12)3	RE7P3O18
REP ₂ O ₇	RE ₂ P ₄ O ₁₃	$RE_{12}P_{2}O_{23}$	RE4(P2O7)3	RE ₈ P ₂ O ₁₇	APO ₃
AREP ₂ O ₇	$A_2RE(PO_3)_5$	$A_4RE_2P_4O_{15}$	$A_3RE_4(PO_4)_5$	ARE(PO ₃) ₄	$A_3RE(PO_4)_2$

 Table III. Possible Phosphate Compound Formed Under Magma Conditions

These sedimentary rock samples contain a number of common minerals. The mineral identification was accomplished by looking at different particles and construing the relative element abundance from the peak heights. Some of the potential minerals identified so far are listed in Table IV.

Elements Detected	Possible Mineral	Formula
Si, Zr, O	zircon	ZrSiO ₄
Si, O	quartz,	SiO ₂
Ti, O	rutile	TiO ₂
Fe, O	hematite, magnetite	Fe ₂ O ₃ , Fe ₃ O ₄
Al, Si, K, O	feldspar	KAlSi ₃ O ₈
Al, Si, K, O	mica	KAl ₂ (Si ₃ AlO ₁₀)(OH) ₂
Ti, Fe, O	ilmenite	FeTiO ₃
Al, Si, K, Mg, Fe, Ti, O	Fireclay	Al-silicate base
P, Ce, La, Pr, O	Monazite	(Ce, La)PO ₄
P, Y, Lu, Er, Ho, Dy, O	Xenotime	YPO ₄

Table IV. Different Minerals Detected in Sample JE-15

At this point all the REEs detected primarily in JE-15 appear to be consistent with monazite, a phosphate-based RE mineral containing primarily LREEs. Figure 16 illustrates the EDX map of a portion of the surface of JE-15. First, it will be noticed that the particle sizes are very small, and this is consistent with all reports associated with the particle size encountered in current coal-associated REE studies. The average particle size is about 5 μ m as seen in Figure 16(a). Scans for P (b), Ce (c), La (d), and P-Ce-La (e) are seen to overlap, confirming that the P-

phase is likely monazite containing the LREEs. Also, the broad area content of the matrix seems to be an Al-Si compound but not an aluminum silicate. Meanwhile, a scan for Ce and La indicates that those elements are not contained within the SiO_2 particle or the broad area shown in Figure 17(a-g).

Figure 16. Elemental scans of JE-15 surface for P (b), Ce (c), La (c), and P-Ce-La (e).

(a)

(b)

Figure 17. EDX scan of JE-15 for O, Si, Al, K, Ce, and La, establishing the presence and absence of specific mineral species.

The EDX scan of a different particle within JE-15 is shown in Figure 18. This figure enables one to distinguish that zircon is one of the included species, but this particle does not contain any REEs as a major component. However, it should be pointed out that natural zircon normally contains a concentration of REEs as well as Th. One would expect that the LREEs would be the major RE impurity in zircon. Furthermore, Figure 19 indicates that LREEs are present not only

in the monazite phase but to a degree in what proves to be the xenotime phase that has been detected in the other samples.

This phase appears to be zircon without REE impurities based upon the EDX spectrum, which shows a prevalence of Zr, Si, and O and an absence of La, Ce, and Pr within the 50 µm-size particle.

Figure 18. EDX scan of a 50 µm-size particle believed to be zircon.

Figure 19. EDX scan of JE-15, indicating two phases containing LREEs.

In order to separately identify the monazite and xenotime phases, a GaP standard, a Y standard, and a monazite standard were utilized. The monazite standard was shown (scans not included) to contain both a light and a heavy phase like the phases observed in the various samples. The samples were scanned between 65 mm and 71 mm for which peaks of both P and Y exist. Figure 20 illustrates the peaks observed for the respective scans using the GaP and Y standards.

Figure 20. Spectrometer scans (TAP) of standard samples for P (a) and Y (b).

A bulk scan was then made of the monazite standard that showed the definite presence of P, as expected (Figure 21(a). Subsequently, a specific particle within the monazite standard was

scanned (Figure 21(b). Since this scan contained both P and Y peaks, the definite presence of xenotime within the monazite standard was established.

Figure 21. Spectrometer scans (TAP) of the monazite standard (a) and a selected particle (b).

Finally, two separate particles found within JE-27 and known to contain REEs were each scanned, and these scans showed a conclusive difference between the two particles, as demonstrated in Figure 22.

Figure 22. Demonstration of xenotime (a) and monazite (b) presence in JE-27.

This was strong, but inconclusive, evidence of two separate RE-containing phases. Historically, monazite contains primarily the LREEs, while xenotime contains primarily the HREEs. One would like to demonstrate that separate particles contain primarily either LREEs or HREEs. Consequently, WDX (LiF) scans of the so-called "heavy" phase within the monazite standard and particle 1 within JE-27 were conducted between 90 mm and 150 mm, a segment that contains the HREE peaks. Figure 23 includes the result of those scans, which show that, not only does particle 1 contain Y, but also it contains primarily the HREEs. This is conclusive evidence that particle 1 of JE-27 is the xenotime phase

A comparison of the preceding result was made with particle 2 of JE-27. WDX (LiF) scans were made of the bulk monazite standard and particle 2 of JE-27 within the range of 90-150 mm. The result of those scans is shown in Figure 24, which undoubtedly indicates the presence of LREEs within the same range as particle 1, which contains primarily HREEs. These results indicate that, at least in the case of JE-27, the samples may be expected to contain both monazite and xenotime phases. Samples JE-8, JE-15, and JE-27 conclusively contain the monazite phase.

One property that complicates a conclusive identity of many of the mineral species associated with coal-related samples is the size of the RE-ion. The lanthanide series (La-Lu) decreases linearly in ionic radii from La through Lu; this is referred to as the lanthanide contraction. However, more complex phosphates are complicated by the coordination number, which can vary dependent upon the mineral species. It's noticed that the samples contain both monazite (La,Ce)PO₄ and xenotime (YPO₄), but the orthophosphates (REPO₄) change their physical structure at room temperature from monoclinic to tetragonal at about midpoint in the series at Gd. Table V illustrates this change in atomic radii within the lanthanide series.

RE	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ionic Radius (Å)	1.14	1.07	1.06	1.04	1.00	0.98	0.97	0.93	0.92	0.91	0.89	0.87	0.86	0.85
REPO ₄	М	М	М	М	М	М	М	Х	X	Х	X	X	X	X

 Table V. Rare-Earth Ortho Phosphate Structure Compared to Ionic Radius

M = monazite, X = xenotime

Figure 23. WDX (LiF) scans of the "heavy" phase (a) within the monazite standard and particle 1 (b) contained within sample JE-27

Figure 24. WDX (LiF) scans of the bulk monazite standard (a) and JE-27 particle 2 (b), showing that the particle 2 REE concentration is markedly different from particle 1.

Table VI outlines some of the elements commonly encountered in this project along with their ionic radii and preferred coordination. Each element has a preferred coordination when

Element	Valence	Coordination	Ionic Radius
			Å
К	1+	4	1.38
Ca	2+	6	1.00
		8	1.07
		12	1.35
Si	4+	4	0.26
Р	5+	4	0.17
Al	3+	6	0.53
Ce	3+	6	1.03
		12	1.29
	4+	6	0.8
La	3+	6	1.06
		8	1.18
		12	1.32
Pr	3+	6	1.01
		8	1.14
	4+	6	0.78
		8	0.99
Fe	2+	4	0.63
		6	0.61
	3+	4	0.9
		6	0.55
Th	4+	6	1.00
		8	1.06
		12	>1.01
Sc	3+	6	0.73
		8	0.87
Y	3+	6	0.89
		8	1.02
		12	>1.1

Table VI. Comparison of the Valence, Coordination and Ionic Radii of Some Elements

confined to a particular physical structure, but it's possible for one element to have more than one coordination site within the same mineral structure. For instance, Fe has both a tetrahedral and octahedral coordination in magnetite (Fe₂O₄), where the valence state can be either 3+ or 4+. A similar occurrence can occur for the other elements as well, so by examining the elements commonly encountered in this project one can understand how difficult it may be to determine specifically which minerals are involved and which ones can be expected to contain REEs. Interestingly, Sc is assumed to be associated with the LREEs, whereas its ionic radius is quite small compared to the LREEs. More than likely, scandium occupies an octahedral site in some of the minerals encountered in this project. Notably, it can readily substitute for Y in xenotime.

VI. Summary of the Project

Going into the project it was not clear what type of coal-associated by-product would be most desirable for field sampling. Considerable guidelines emerge after conducting a random sampling approach. Coal samples provide a background only after ashing and examination of the ash, and it's concluded that neither bituminous nor anthracite coal contain >300 ppm REEs. Both top rock and bottom rock are likely sample sources to contain >300 ppm REEs. At least in western Pennsylvania, reddog and underclay may be expected to contain >300 ppm REEs, and, in particular, fire clay should be examined. SEM analysis shows that coal related by-products contain numerous mineral species, some of which need to be studied further. However, SEM/EDX/WDX shows that at least two minerals are the source of REEs. These are both phosphate compounds, monazite and xenotime. Monazite is expected to be the source of the LREEs, which dominate the lanthanides, and xenotime is expected to be the source of HREEs observed. It's not clear how this breaks out with respect to western and eastern Pennsylvania, but the majority of samples containing>300 ppm REEs came from eastern Pennsylvania. The other likely source in eastern Pennsylvania is either fireclay or feldspar. Finally, the study of exploratory cores would serve as a good source for determining the concentration and the linear extent of high REE concentrations.

VII. References

(1) Barnes, J. H., 2004, "Rocks and Minerals of Pennsylvania," (4th ed.): Pennsylvania Geological Survey, 4th ser., Educational Series 1, 30 pp.

VII: Attachments

1. Semi-quantitative Laboratory Analysis of Selected REEs Using Portable $\mathbf{XRF}^{\#}$

Sample	Sample		Concer	tration	(ppm)		Location
Number	Туре	La	Ce	Pr	Nd	Y	
WPFACO04	Shale	119	183	232	513	30	Georges Twp., Fayette, PA
WPFACO05	Spoil	N/A	N/A	N/A	N/A	N/A	Georges Twp., Fayette, PA
WPFACO07	Spoil	BDL	BDL	BDL	BDL	19	Georges Twp., Fayette, PA
WPFACO10	Coal	N/A	N/A	N/A	N/A	N/A	Georges Twp., Fayette, PA
WPFAFA05	Coal	N/A	N/A	N/A	N/A	N/A	Georges Twp., Fayette,, PA
WPWEMA02	Spoil	BDL	BDL	BDL	BDL	16	Mt. Pleasant Twp., Westmoreland, PA
WPWEMA04	Spoil	BDL	BDL	BDL	BDL	20	Mt. Pleasant Twp., Westmoreland, PA
WPWEMA10	Coal	N/A	N/A	N/A	N/A	N/A	Mt. Pleasant Twp., Westmoreland, PA
OHHA01-01	Core*	N/A	N/A	N/A	N/A	N/A	Monroe Township, Harrison, OH
OHHA01-02	Core*	N/A	N/A	N/A	N/A	N/A	Monroe Township, Harrison, OH
OHHA01-03	Core*	N/A	N/A	N/A	N/A	N/A	Monroe Township, Harrison, OH
OHHA01-04	Core*	N/A	N/A	N/A	N/A	N/A	Monroe Township, Harrison, OH
OHHA01-05	Core*	N/A	N/A	N/A	N/A	N/A	Monroe Township, Harrison, OH
WPWE01-01	Core*	N/A	N/A	N/A	N/A	N/A	Derry Twp., Westmoreland, PA
WPWE01-02	Core*	N/A	N/A	N/A	N/A	N/A	Derry Twp., Westmoreland, PA
WPWE01-03	Core*	N/A	N/A	N/A	N/A	N/A	Derry Twp., Westmoreland, PA
WPIN01-01	Core*	N/A	N/A	N/A	N/A	N/A	Burrell Township, Indiana, PA
WPIN01-02	Core*	N/A	N/A	N/A	N/A	N/A	Burrell Township, Indiana, PA
WPIN01-03	Core*	N/A	N/A	N/A	N/A	N/A	Burrell Township, Indiana, PA
WPIN01-04	Core*	N/A	N/A	N/A	N/A	N/A	Burrell Township, Indiana, PA
WPIN01-05	Core*	N/A	N/A	N/A	N/A	N/A	Burrell Township, Indiana, PA
WPIN02-01	Core*	N/A	N/A	N/A	N/A	N/A	Black Lick Twp., Indiana, PA
WPIN02-02	Core*	N/A	N/A	N/A	N/A	N/A	Black Lick Twp., Indiana, PA
WPIN02-03	Core*	N/A	N/A	N/A	N/A	N/A	Black Lick Twp., Indiana, PA

Sample	Sample	Concentration (ppm)					Location
Number	Туре	La	Ce	Pr	Nd	Y	
WPIN02-04	Core*	N/A	N/A	N/A	N/A	N/A	Black Lick Twp., Indiana, PA
WPAR01-01	Core*	224	217	286	499	33	Kittanning Twp., Armstrong, PA
WPAR01-02	Core*	<106	<140	<122	270	11	Kittanning Twp., Armstrong, PA
WPAR01-03	Core*	N/A	N/A	N/A	N/A	N/A	Kittanning Twp., Armstrong, PA
WPAR01-04	Core*	N/A	N/A	N/A	N/A	N/A	Kittanning Twp., Armstrong, PA
WPAR01-05	Core*	N/A	N/A	N/A	N/A	N/A	Kittanning Twp., Armstrong, PA
WPAR01-06	Core*	N/A	N/A	N/A	N/A	N/A	Kittanning Twp., Armstrong, PA
WPAR01-07	Core*	N/A	N/A	N/A	N/A	N/A	Kittanning Twp., Armstrong, PA
WPFA03-01	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-02	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-03	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-04	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-05	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-06	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-07	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-08	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-09	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-10	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-11	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPFA03-12	Core*	N/A	N/A	N/A	N/A	N/A	Parks Township, Fayette, PA
WPCA01-01	Core*	N/A	N/A	N/A	N/A	N/A	Croyle Township, Cambria, PA
WPCA01-02	Core*	N/A	N/A	N/A	N/A	N/A	Croyle Township, Cambria, PA
WPCA01-03	Core*	N/A	N/A	N/A	N/A	N/A	Croyle Township, Cambria, PA
WPCA01-04	Core*	N/A	N/A	N/A	N/A	N/A	Croyle Township, Cambria, PA
WPCA01-05	Core*	N/A	N/A	N/A	N/A	N/A	Croyle Township, Cambria, PA
WPIN03-01	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA
WPIN03-02	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA
WPIN03-04	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA

Sample	Sample	e Concentration (ppm)		Location						
Number	Туре	La	Ce	Pr	Nd	Y				
WPIN03-05	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-06	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-07	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-08	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-09	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-10	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-11	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-12	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPIN03-03	Core*	N/A	N/A	N/A	N/A	N/A	Green Township, Indiana, PA			
WPFACO07	Spoil	<73	<74	<101	<133	19	Georges Twp., Fayette, PA			
WPCARE01-10	Refuse	BDL	BDL	BDL	BDL	15	Cambria Twp., Cambria, PA			
WPCLRE02-01	Filt. Cake	BDL	BDL	BDL	BDL	14	Karthaus Twp., Clearfield, PA			
WPCLRE02-06	Coal	<55	<56	<77	<102	3	Karthaus Twp., Clearfield, PA			
WPCLRE02-04	Roof rock	255	327	521	701	30	Karthaus Twp., Clearfield, PA			
WPCLRE02-09	Refuse	BDL	BDL	BDL	BDL	16	Karthaus Twp., Clearfield, PA			
WPCLRE04-02	Coal	BDL	BDL	BDL	BDL	5	Burnside Twp., Clearfield, PA			
WPCLRE04-03	Coal	BDL	BDL	BDL	BDL	15	Burnside Twp., Clearfield, PA			
WPCLRE02-14	Refuse	BDL	BDL	BDL	BDL	18	Karthaus Twp., Clearfield, PA			
WPCLRE02-11	Refuse	BDL	BDL	BDL	BDL	14	Karthaus Twp., Clearfield, PA			
WPFACO09	Spoil	BDL	BDL	BDL	BDL	17	Georges Twp., Fayette, PA			
WPCLRE04-01	Coal	BDL	BDL	BDL	BDL	9	Burnside Twp., Clearfield, PA			
WPCLRE05-01	Coal	BDL	BDL	BDL	BDL	18	Decatur Twp., Clearfield, PA			
EPSCLA23	Coal	BDL	BDL	BDL	BDL	3.9	Rush Twp., Schuylkill, PA			
EPSCLA18	Spoil	BDL	113	158	205	20	Rush Twp., Schuylkill, PA			
WPCLRE04-04	Coal	BDL	BDL	BDL	BDL	11	Burnside Twp., Clearfield, PA			
EPSCLA03	Mam Coal	BDL	BDL	BDL	BDL	10	Tamaqua, Schuylkill, PA			
EPCALA16	Orch Bot Rock	97	110	154	223	30	Lansford, Carbon, PA			
EPSCLA15	Mam Coal	BDL	BDL	BDL	BDL	9	Coaldale, Schuylkill, PA			

Sample	Sample	ele Concentration (ppm)				Location	
Number	Туре	La	Ce	Pr	Nd	Y	
EPSCLA14	Mam Bot Rock	103	134	122	228	36	Coaldale, Schuylkill, PA
EPCALA22	Holmes Coal	BDL	BDL	BDL	BDL	10	Nesquehoning, Carbon, PA
EPCALA17	Orch. OB	116	129	194	253	20	Lansford, Carbon, PA
EPCALA19	Unk. Spoil	82	97	113	181	27	Nesquehoning, Carbon, PA
EPSCLA13	Drilling Sand	113	120	170	267	10	Coaldale, Schuylkill, PA
EPSCLA05	Prep. Rej.	BDL	55	BDL	94	16	Tamaqua, Schuylkill, PA
EPSCLA01	AMD Sludge	120	91	151	253	12	Tamaqua, Schuylkill, PA
EPSCLA02	Orchard Coal	BDL	BDL	BDL	BDL	12	Tamaqua, Schuylkill, PA
EPSCLA10	Drilling Sand	108	130	185	253	16	Tamaqua, Schuylkill, PA
EPSCLA04	Casting over Mam	72	116	110	232	33	Tamaqua, Schuylkill, PA
EPSCLA06	Old Spoil	BDL	BDL	BDL	235	27	Tamaqua, Schuylkill, PA
WPCLRE02-01	Filt. Cake	BDL	BDL	BDL	BDL	14	Karthaus Twp., Clearfield, PA
WPCLRE03-01	Coal	<55	<56	<76	<101	13	Girard Twp., Clearfield, PA
WPCLRE03-03	Coal	<56	<57	<77	<103	11	Girard Twp., Clearfield, PA
WPCLRE02-02	Wsh Fines	175	187	335	378	19	Karthaus Twp., Clearfield, PA
WPCERE01-02	OB Rock	<81	<90	<113	<153	20	Rush Twp., Centre, PA
WPCLRE01-12	UKB FL	BDL	BDL	BDL	BDL	42	Girard Twp., Clearfield, PA
WPCARE01-12	Refuse	BDL	BDL	BDL	BDL	15	Cambria Twp., Cambria, PA
WPCARE01-13	Refuse	BDL	BDL	BDL	BDL	14	Cambria Twp., Cambria, PA
WPWEMA08	Spoil	BDL	BDL	BDL	BDL	20	Mt. Pleasant Twp., Westmoreland, PA
WPCARE01-08	Refuse	BDL	BDL	BDL	BDL	18	Cambria Twp., Cambria, PA
WPFACO02	Spoil	<80	<82	<111	<149	19	Georges Twp., Fayette, PA
WPWEMA03	Spoil	<79	<119	<109	<146	18	Mt. Pleasant Twp., Westmoreland, PA

Sample	Sample	Concentration (ppm)					Location
Number	Туре	La	Ce	Pr	Nd	Y	
WPFAFA03	Spoil	<78	<80	<108	<145	13	Georges Twp., Fayette, PA
WPFAFA04	Spoil	<138	<94	<115	<154	20	Georges Twp., Fayette, PA
WPFAFA02	Spoil	<78	<88	<110	<147	16	Georges Twp., Fayette, PA
WPWEMA06	Spoil	161	225	268	398	41	Mt. Pleasant Twp., Westmoreland, PA
WPCLRE01-15	Clean	<71	<72	<99	<131	13	Girard Twp., Clearfield, PA
***WPFANU05	Wild Coal	<44	<43	<61	<79	11	N. Union Twp., Fayette, PA
WPFANU04	Rk TOC	144	208	203	304	43	N. Union Twp., Fayette. PA
WPFANU01	Wild Coal Top	<47	<45	<63	<83	10	N. Union Twp., Fayette. PA
WPFANU03	Rk TOC	<164	110	<142	233	31	N. Union Twp., Fayette. PA
WPSORE01-04	Refuse	<98	<139	<114	<243	27	Jenner Twp., Somerset, PA
WPWEMA02	Refuse	<69	<70	<94	<124	16	Mt. Pleasant Twp., Westmoreland, PA
WPWEMA04	Refuse	<101	<113	<110	<145	20	Mt. Pleasant Twp., Westmoreland, PA
WPFANU02	Rk BOC Above FC	<102	<104	<142	<187	29	N. Union Twp., Fayette, PA
WPFANU06	Wild Coal Parting	172	188	<140	238	25	N. Union Twp., Fayette, PA
WPFANU07	Pbgh Coal Bot	<52	<50	<70	<92	4	N. Union Twp., Fayette, PA
WPFANU08	Wild Coal	<58	<58	<79	<103	10	N. Union Twp., Fayette, PA
ALJCMC01-03	Wash Ref	<74	<76	<102	<136	20	Twp. 21 South, Shelby, AL
WPFANU09	Parting Pbgh Coal	<62	<62	<86	<112	13	N. Union Twp., Fayette, PA
WPCARO01-02	UK Floor	<98	130	<138	228	24	Cambria Twp., Cambria, PA
WPARRO01-06	LK Bony	164	326	<110	<146	46	Kittanning Twp., Armstrong, PA
WPINRO02-02	Floor	198	282	267	515	31	Burrell Twp., Indiana, PA
WPINRO03-03	Floor	122	158	141	246	33	Burrell Twp., Indiana, PA
WPINRO03-02	Floor	<89	<143	<121	<163	37	Burrell Twp., Indiana, PA

Sample	Sample	Concentration (ppm)				Location	
Number	Туре	La	Ce	Pr	Nd	Y	
WPCARO01-01	Floor	201	259	336	629	20	Cambria Twp., Cambria, PA
WPCARO01-03	UK Floor	324	278	466	749	22	Cambria Twp., Cambria, PA
OHHA01-01	BOC Floor	169	205	206	443	42	Nottingham Twp., Harrison, OH
WPINRO03-07	TOC Roof	162	253	421	729	62	Burrell Twp., Indiana, PA
WPINRO03-04	BOC Floor	220	202	263	494	31	Burrell Twp., Indiana, PA
WPARRO01-03	MAH Roof	144	165	241	355	38	Kittanning Twp., Armstrong, PA
WPARRO01-07	Bony/Shal e	208	234	319	676	43	Kittanning Twp., Armstrong, PA
WPFARO03-14	TOC Gr Rk	<104	166	242	423	34	Parks Twp. Fayette, PA
WPWERO01-02	TOC Gr Rk	119	117	<137	<247	28	Derry Twp., Westmoreland, PA
WPINRO02-01	Roof	206	225	324	587	32	Burrell Twp., Indiana, PA
WPFARO03-15	Gr Roof Rk	118	123	187	368	38	Parks Twp. Fayette, PA
WPFARO03-16	Roof	166	211	233	468	37	Parks Twp. Fayette, PA
WPFARO03-17	Roof	198	233	186	440	37	Parks Twp. Fayette, PA
ALJCMC01-02	Coal	<42	<41	<56	<73	9	Twp 21 South, Shelby, AL
ALJCMC01-01	Raw Feed	<65	<64	<89	<118	12	Twp. 21 South, Shelby, AL
WPFANU11	Fireclay	182	183	214	431	113	N. Union Twp., Fayette, PA
ALSCMC01-02	Coal	<45	<45	<62	<81	11	Twp. 21 South, Shelby, AL
ALSCMC01-03	Feed Coal	<66	<66	<91	<119	18	Twp. 21 South, Shelby, AL
ALSCMC01-04	Coarse Ref	114	<97	<133	<174	26	Twp. 21 South, Shelby, AL
EPSCBL04	Mid Spoil	<48	<48	<65	<86	12	Mahanoy Twp., Schuylkill, PA
EPSCBL01	Drill Sand	149	162	250	428	17	Mahanoy Twp., Schuylkill, PA
EPSCBL05	IB T-M	163	135	248	465	36	Mahanoy Twp., Schuylkill, PA
EPSCBL06	IB M-B	254	269	367	676	38	Mahanoy Twp., Schuylkill, PA

Sample	Sample	Concentration (ppm)					Location
Number	Туре	La	Ce	Pr	Nd	Y	
EPSCBL07	Prim Bot	<45	<45	<61	<79	8	Mahanoy Twp., Schuylkill, PA
EPCOBL08	Buck OB	283	352	559	845	16	Conyngham Twp., Columbia, PA
EPSCBL15	Brk Fines	<47	<47	<64	<84	13	Mahanoy Twp., Schuylkill, PA
EPSCBL18	Bot Rk Buck	122	169	226	398	30	Mahanoy Twp., Schuylkill, PA
EPSCBL13	Brk Middl	<67	<81	<92	<122	25	Mahanoy Twp., Schuylkill, PA
EPSCBL17	Refuse	<76	<89	<106	<195	21	Mahanoy Twp., Schuylkill, PA
EPCOBL09	OB Cong	138	100	190	232	10	Conyngham Twp., Columbia, PA
EPLUBL23	Hol T Spl	<93	<133	<113	<159	14	Hazle Twp., Luzerne, PA
EPLUBL20	Mam Coal	<44	<43	<58	<78	10	Hazle Twp., Luzerne, PA
EPLUBL22	Mam T Rk	181	247	297	562	36	Hazle Twp., Luzerne, PA
EPLUBL24	Hol B Spl	225	255	327	502	48	Hazle Twp., Luzerne, PA
EPLUBL21	Mam B Rk	166	258	354	515	36	Hazle Twp., Luzerne, PA
EPSCBL02	Mam B Rk	<91	170	165	228	25	Mahanoy Twp., Schuylkill, PA
EPSCBL12	Brk Ref	137	137	<130	319	27	Mahanoy Twp., Schuylkill, PA
EPSCBL03	Mam T Rk	305	251	383	583	16	Mahanoy Twp., Schuylkill, PA
EPSCBL16	Silt Ref	<80	<80	<110	<146	22	Mahanoy Twp., Schuylkill, PA
EPSCBL14	Brk Sludg	<69	<68	<94	<124	18	Mahanoy Twp., Schuylkill, PA
EPLUBL25	Brk Ref	210	235	230	506	38	Hazle Twp., Luzerne, PA
ALSCMC01-05	Fine Ref	<69	<68	<95	<124	21	Twp. 21 South, Shelby, AL
EPCOBL10	Shiny OB	216	192	211	522	32	Conyngham Twp., Columbia, PA
WPFACO05	Shale	<104	<106	<116	<160	22	Georges Twp., Fayette, PA
EPLUJE01-10	Surf Shale	118	174	229	379	32	Hazle Twp., Luzerne, PA
EPLUJE01-25	Bot Rock	117	120	169	295	7	Hazle Twp., Luzerne, PA
EPLUJE02-15	Mudstone	220	229	179	427	45	Hazle Twp., Luzerne, PA
EPLUJE02-17	Bot Rock	129	146	<137	245	33	Hazle Twp., Luzerne, PA

Sample	Sample	Concentration (ppm)				Location	
Number	Туре	La	Ce	Pr	Nd	Y	
EPLUJE02-18	Bot Rock	<103	<147	<205	<173	39	Hazle Twp., Luzerne, PA
EPLUJE02-20	Sandstone Cong	203	204	314	548	10	Hazle Twp., Luzerne, PA
EPLUJE01-12	Shale	249	348	411	733	41	Hazle Twp., Luzerne, PA
EPLUJE03-07	Mudstone	209	203	244	355	36	Hazle Twp., Luzerne, PA
EPLUJE01-11	Or-Gr Sandstone	156	215	194	454	34	Hazle Twp., Luzerne, PA
EPLUJE03-08	Bot Rock	181	232	281	515	49	Hazle Twp., Luzerne, PA
EPLUJE04-04	ROM	<54	<54	<74	<97	17	Paint Twp., Luzerne, PA
EPLUJE01-13	Cong	155	204	248	375	16	Hazle Twp., Luzerne, PA
EPLUJE03-06	Top Rock	<100	180	152	310	22	Hazle Twp., Luzerne, PA
EPLUJE02-14	Mam Part	<51	<50	<69	<90	4	Hazle Twp., Luzerne, PA
EPLUJE04-01	Refuse	148	209	221	456	28	Paint Twp., Luzerne, PA
EPLUJE01-09	Drill Sand	206	204	285	564	25	Hazle Twp. Luzerne, PA
EPLUJE04-23	Fine Gr Rock	207	253	307	642	51	Foster Twp., Luzerne, PA
EPLUJE02-19	Surf Gr Rk	154	155	230	347	37	Hazle T3wp., Luzerne, PA
EPLUJE04-03	Cogen Rej	<66	<67	<91	<120	18	Paint Twp., Luzerne, PA
EPSCJE01-59	Coal Part	<55	<54	<74	<99	13	Norwegian Twp., Schuylkill, PA
EPLUJE04-22	Mudstone	<55	149	<124	268	13	Foster Twp., Luzerne, PA
EPSCJE01-56	Bot Rock	133	187	133	321	40	Norwegian Twp., Schuylkill, PA
EPSCJE01-58	Fine Gr Sandst	272	293	333	688	37	Norwegian Twp., Schuylkill, PA
EPSCJE01-57	Coarse Gr Sand	106	152	219	353	25	Norwegian Twp., Schuylkill, PA
EPSCJE01-60	Red Sand	92	109	211	316	13	Norwegian Twp., Schuylkill, PA
EPCOJE02-54	Wild Coal OB	178	175	199	432	43	Conyngham Township, Columbia, PA
EPCOJE02-53	Wild Coal	<48	<47	<66	<86	19	Conyngham Township, Columbia, PA

Sample	Sample	e Concentration (ppm)					Location
Number	Туре	La	Ce	Pr	Nd	Y	
EPLUJE04-02	Refuse	188	226	274	534	26	Paint Twp., Luzerne, PA
WPWER001- 07	BOC Gray Stone	293	292	389	616	31	Derry Twp., Westmoreland, PA
EPCOJE02-52	Blk Stone Wh Qtz	105	116	144	241	13	Conyngham Township, Columbia, PA
EPSCJE02-50	Shale	182	211	247	357	42	Frailey Twp., Schuylkill, PA
EPSCJE01-61	Bot Rk Shale	<81	<114	<109	<191	17	Norwegian Twp., Schuylkill, PA
EPSCJE02-51	Weathered Sediment	168	173	260	452	45	Frailey Twp., Schuylkill, PA
EPLUJE05-21	Shale	<62	<62	<84	<110	22	Foster Twp., Luzerne, PA
EPLUJE05-26	Gr Sand	<92	<94	155	333	8	Foster Twp., Luzerne, PA
EPSCJE04-44	Surf Cong	116	134	163	324	12	Mahanoy Twp. Schuylkill, PA
EPSCJE04-45	Coal	<56	<55	<76	<100	20	Mahanoy Twp. Schuylkill, PA
EPSCJE02-49	Wild Coal	<57	<56	<78	<102	23	Frailey Twp., Schuylkill, PA
EPCOJE01-47	Shale	154	198	232	410	50	Conyngham Twp., Columbia, PA
EPSCJE04-43	Shale	111	169	158	301	23	Mahanoy Twp. Schuylkill, PA
EPSCJE04-42	Gr Sand	131	<89	151	286	11	Mahanoy Twp. Schuylkill, PA
EPCOJE01-48	Bot Rk Gr Sandstone	98	139	177	222	11	Conyngham Twp., Columbia, PA
EPLUJE05-33	Bot rock	155	114	178	262	14	Foster Twp., Luzerne, PA
EPLUJE05-37	Top Rock	150	172	<130	345	32	Foster Twp., Luzerne, PA
EPLUJE05-36	Midl Coal	<105	<82	<127	<144	46	Foster Twp., Luzerne, PA
EPLUJE05-41	Refuse	<115	<75	<112	<136	24	Foster Twp., Luzerne, PA
EPSCJE05-55	AMD Sludge	311	315	700	1082	24	Frailey Twp., Schuylkill, PA
EPLUJE05-40	Pott Cong	107	95	<123	<163	6	Foster Twp., Luzerne, PA
EPLUJE05-38	Gr Surf Rk	<67	<68	<93	<122	43	Foster Twp., Luzerne, PA
EPLUJE05-34	B Mud Rk	150	148	191	391	29	Foster Twp., Luzerne, PA
EPLUJE05-35	Gr B Rk	167	186	221	373	28	Foster Twp., Luzerne, PA

Sample	Sample		Concen	tration	(ppm)		Location
Number	Туре	La	Ce	Pr	Nd	Y	
	Banded					23	Foster Twp., Luzerne, PA
EPLUJE05-29	Sandstone	117	165	207	359		-
EPLUJE05-31	Bot Coal	<70	<71	<97	<128	15	Foster Twp., Luzerne, PA
	Red					39	Foster Twp., Luzerne, PA
EPLUJE05-27	Sandstone	117	193	243	356		
EPLUJE05-39	Potts Clay	116	186	172	321	22	Foster Twp., Luzerne, PA
EPLUJE05-30	Top Coal	<66	<67	<91	<120	24	Foster Twp., Luzerne, PA
EPLUJE05-32	Mica Sand	188	159	207	393	22	Foster Twp., Luzerne, PA
	Orange					34	Foster Twp., Luzerne, PA
EPLUJE05-28	Sandstone	175	216	291	407		-
EPLUJE02-16	Mica Sand	189	220	300	501	21	Hazle Twp., Luzerne, PA
	Very Hard					10	Foster Twp., Luzerne, PA
EPLUJE04-24	Sandstone	96	109	163	224		
	Fine Grain					35	Norwegian Twp., Schuylkill, PA
EPSCJE01-62	Sandstone	118	134	224	471		

*Core samples were measured in-situ with the "test all geo" mode and prior to revision of the XRF unit to contain the REE library.

**Beginning 300 sec exposure (earlier at 180 sec)

****Beginning 600 sec exposure (earlier at 300 sec)

[#] Sc not available in "mining" mode

2.	ICP-MS	Analyses	of Selected	Samples	(ppm) [*]	*
----	---------------	----------	-------------	---------	--------------------	---

Sample	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Sc	Y	Total
EPSCLA 10	18	38	4.6	17	3.3	0.8	3.0	0.5	2.4	0.5	1.4	0.2	1.5	0.2	7.6	15	114
EPSCLA 19	40	83	9.9	37	6.9	1.4	6.2	0.9	4.6	0.9	2.7	0.4	2.7	0.4	17	22	236
EPSCLA 20	33	72	8.6	34	6.2	1.3	5.7	0.8	4.2	0.9	2.4	0.4	2.3	0.4	16	15	203.2
WPCLRE 02-04	33	75	8.9	31	6.6	1.4	6.2	0.9	4.9	1.0	2.7	0.4	2.7	0.4	18	19	212.1
EPSCLA 14	44	102	12	43	8.0	1.6	7.1	1.1	5.0	1.0	2.6	0.4	2.6	0.4	20	19	269.8
WPCLRE 02-02	32	70	8.2	32	6.2	1.4	6.0	0.9	4.6	0.9	2.4	0.4	2.3	0.3	12	25	204.6
EPSCLA 01	24	43	4.9	19	3.4	0.7	3.6	0.5	2.5	0.5	1.4	0.2	1.2	0.2	17	17	139.1
EPCALA 21	38	82	9.7	36	6.7	1.3	6.2	0.9	4.5	0.9	2.4	0.4	2.5	0.4	17	22	230.9
WPCLRE 01-13	35	76	9.1	34	6.4	1.3	5.7	0.8	4.2	0.8	2.4	0.4	2.4	0.4	16	14	208.9
EPCALA 16	30	65	7.4	27	4.9	1.0	4.3	0.6	3.0	0.7	1.9	0.3	2.2	0.4	23	14	185.7
WPWEM A06	57	122	15	54	10	2.1	9.8	1.4	7.3	1.4	3.9	0.6	3.8	0.6	36	29	353.9
EPCALA	_															_	
17	28	60	7.2	27	4.9	1.0	4.3	0.6	3.1	0.6	1.8	0.3	1.8	0.3	13	20	173.9
01-12	22	47	5.6	21	3.9	0.9	3.6	0.5	2.6	0.5	1.5	0.2	1.6	0.2	8.8	16	135.9
EPSCLA 09	37	80	9.7	37	7.2	1.5	6.3	1.0	4.7	0.9	2.5	0.4	2.6	0.4	18	22	231.2
EPSCLA 13	14	29	3.6	13	2.4	0.6	2.2	0.3	1.8	0.4	1.0	0.2	1.1	0.2	6.4	15	91.2
EPSCLA 04	45	101	11	42	8.1	1.7	7.4	1.1	5.2	1.0	2.8	0.4	2.8	0.4	18	22	269.9
WPCARE 01-16	36	75	8.5	32	6.0	1.2	5.5	0.8	4.2	0.8	2.3	0.4	2.2	0.3	13	21	209.2
WPCARO 02-01	21	46	5.2	20	3.7	0.8	3.5	0.5	3.2	0.6	1.9	0.3	1.9	0.2	13	18	139.8
WPCARO 03	17	35	4.1	16	3.3	0.8	3.5	0.5	2.7	0.6	1.5	0.2	1.4	0.1	6.6	19	112.3
WPCLRE 05-02	18	50	4.9	18	3.6	0.8	3.3	0.5	2.9	0.6	1.8	0.3	1.9	0.2	14	16	136.8
WPCLRE 06-04	20	45	5.5	21	4.2	0.8	4.0	0.6	3.3	0.7	2.0	0.3	2.1	0.2	16	15	140.7
WPSORE	19	41	5.0	20	3.8	0.7	3.5	0.5	2.7	0.5	1.5	0.2	1.5	0.1	5.0	20	125.0

Sample	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Sc	Y	Total
WPFARO 03-17	23	58	6.1	23	4.4	0.9	4.2	0.6	3.4	0.7	2.0	0.3	2.1	0.2	16	16	160.9
WPCARE 02-03	17	35	4.1	16	3.3	0.8	3.5	0.5	2.7	0.6	1.5	0.2	1.4	0.1	6.6	19	112.3
WPSORE	28	70	7.8	29	6.0	1.3	5.9	0.9	4.6	1.0	2.6	0.4	2.6	0.3	19	20	199.4
01-03 WPFANU 04	41	98	11	43	7.6	1.6	7.0	1.0	5.0	1.0	2.5	0.4	2.5	0.2	18	22	261.8
WPSORE 01-08	21	46	5.2	20	3.7	0.8	3.5	0.5	3.2	0.6	1.9	0.3	1.9	0.2	13	18	169.4
WPFANU 06	22	50	5.4	19	3.6	0.8	3.3	0.5	2.9	0.6	1.8	0.3	1.9	0.2	14	15	141.3
WPSORE 01-01	23	54	6.4	24	4.7	1.0	4.3	0.7	3.5	0.8	2.1	0.4	2.2	0.3	16	16	159.4
WPINRO 02-01	30	70	7.8	29	5.5	1.2	5.0	0.7	3.8	0.7	2.1	0.3	2.1	0.2	16	17	191.4
WPFANU 03	41	87	10	38	7.0	1.4	6.5	0.9	4.8	1.0	2.7	0.4	2.8	0.3	19	22	244.8
EPLUJE 05-32	29	63	7.4	28	5.1	0.9	4.2	0.7	3.2	0.6	1.7	0.3	1.8	0.3	7.6	24	177.8
EPLUJE 05-28	40	88	11	41	8.1	1.7	6.8	1.0	4.8	0.9	2.4	0.4	2.5	0.4	11	26	246
EPLUJE 05-35	31	63	7.3	27	4.7	0.8	3.8	0.6	3.1	0.7	2.1	0.3	2.4	0.4	9.3	23	179.5
EPLUJE 05-39	26	62	6.5	24	4.5	0.9	4.1	0.7	3.5	0.7	2.0	0.3	2.0	0.3	7.9	22	167.4
EPSCJE 05-55	25	50	6.1	24	4.7	1.0	5.5	0.9	4.8	1.0	2.7	0.4	2.3	0.4	4.4	30	163.2
EPLUJE 05-37	36	74	8.6	32	5.5	1.0	4.5	0.7	3.6	0.7	2.3	0.4	2.7	0.5	10	24	206.5
EPLUJE 04-23	58	124	16	62	13	2.7	12	1.8	9.7	1.9	5.5	0.8	5.4	0.8	19	47	379.6
EPLUJE 05-29	22	47	5.5	21	3.9	0.9	3.3	0.5	2.3	0.4	1.3	0.2	1.4	0.2	5.6	20	135.5
EPSCJE 02-51	40	82	9.8	37	7.1	1.3	7.0	1.1	6.2	1.3	3.7	0.6	3.7	0.6	13	34	248.4
EPLUJE 03-07	44	95	11	41	7.7	1.6	7.3	1.1	5.9	1.1	3.3	0.5	3.2	0.5	15	28	266.2
EPSCJE 01-56	51	109	13	49	9.0	1.6	7.9	1.2	5.8	1.2	3.2	0.5	3.4	0.5	17	27	300.3
EPLUJE 01-12	54	115	14	52	10	2.2	9.5	1.4	7.0	1.3	3.8	0.6	3.9	0.6	15	35	325.3
EPLUJE 05-27	57	121	15	56	10	2.4	9.2	1.3	6.4	1.2	3.3	0.5	3.3	0.5	13	30	330.1
EPLUJE 05-33	19	71	4.9	19	3.5	0.5	2.9	0.4	1.9	0.4	1.1	0.2	1.1	0.2	1.1	24	151.2

Sample	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Sc	Y	Total
EPLUJE 01-13	17	40	4.2	16	2.8	0.7	2.5	0.4	2.0	0.4	1.1	0.2	1.2	0.2	4.2	20	112.9
EPSCBL 10	43	95	11	43	8.4	1.5	7.2	1.1	5.8	1.2	3.2	0.5	3.2	0.5	8.4	32	272.6
EPSCBL 22	41	91	10	40	7.8	1.6	7.4	1.1	6.0	1.2	3.3	0.5	3.1	0.5	14	30	258.5
EPLUJE 03-08	58	125	15	56	11	2.3	9.7	1.4	7.1	1.4	3.9	0.6	3.9	0.6	20	35	350.9
EPLUJE 02-20	16	39	3.9	14	2.6	0.6	2.2	0.3	1.8	0.4	1.0	0.2	1.1	0.2	3.8	16	103.1
EPCOJE 01-48	17	39	4.1	16	2.9	0.7	2.7	0.4	2.1	0.4	1.2	0.2	1.1	0.2	2.6	28	118.6
EPLUJE 04-01	35	73	8.5	32	6.1	1.3	5.5	0.8	4.3	0.9	2.5	0.4	2.5	0.4	13	23	209.2
EPSCBL 25	37	79	9.4	35	7.0	1.4	6.3	0.9	4.9	1.0	2.8	0.4	2.8	0.4	14	26	228.3
EPLUJE 01-09	27	60	6.6	25	4.9	1.0	4.3	0.7	3.2	0.7	1.8	0.3	2.0	0.3	9.2	20	167
EPCOBL 08	15	34	3.9	15	3.1	0.8	3.0	0.5	2.4	0.5	1.4	0.2	1.5	0.2	4.7	19	105.2
EPCOJE 01-47	40	77	9.4	35	7.7	1.6	6.8	1.0	5.3	1.1	3.4	0.5	3.8	0.6	14	31	238.2
EPCOJE 01-50	55	117	20	73	8.1	1.2	7.2	1.2	7.0	1.4	4.2	0.6	4.2	0.6	19	35	325.7
EPSCBL 18	39	84	9.9	36	6.7	1.3	5.9	0.9	2.7	0.4	4.5	0.9	2.9	0.4	14	23	232.5
WPWER O01-07	67	130	14	47	8.1	1.8	7.7	1.1	5.1	1.0	2.9	0.5	3.0	0.5	21	26	336.7
EPLUBL 21	41	88	10	40	7.9	1.7	7.7	1.1	5.8	1.1	3.2	0.5	3.2	0.5	14	32	257.7
EPLUBL 24	39	90	10	38	7.3	1.6	6.9	1.1	5.6	1.1	3.1	0.4	3.1	0.5	15	27	249.7
EPSCBL 03	22	48	5.5	21	3.9	1.0	3.3	0.5	2.4	0.5	1.4	0.3	1.4	0.3	5.6	16	133.1
EPLUJE 02-15	87	176	20	73	14	3	13	1.8	8.5	1.6	4.2	0.6	4.0	0.6	16	38	461.3
EPCOJE 02-54	39	83	9.7	37	7.3	2.0	7.1	1.0	5.4	1.1	3.0	0.4	3.0	0.5	14	27	240.5
EPLUJE 05-34	28	59	6.8	25	4.2	0.7	3.5	0.6	3.0	0.6	2.0	0.3	2.3	0.4	10	17	163.4
EPSCJE 01-58	38	83	9.8	37	6.8	1.4	6.2	0.9	4.6	0.9	2.8	0.4	2.8	0.4	10	24	229
EPLUJE 05-21	40	83	9.4	35	6.4	1.3	5.9	0.9	4.9	1.0	2.8	0.4	2.8	0.5	14	23	231.3
EPSCJE 01-62	44	93	11	43	7.6	1.3	6.6	0.9	4.8	0.9	2.7	0.4	2.9	0.5	8.6	28	256.2

Sample	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Sc	Y	Total
EPLUJE 02-16	18	42	4.7	18	3.4	0.7	3.1	0.4	2.2	0.4	1.2	0.2	1.4	0.2	8.1	12	116
EPSCBL0 6	39	94	9.6	36	7.0	1.6	6.9	1.0	5.2	1.1	3.2	0.5	3.1	0.5	20	27	256
EPSCBL0 5	22	42	5.5	21	4.1	1.0	4.2	0.6	3.6	0.7	2.2	0.4	2.4	0.4	25	19	154
EPSCBL1 2	18	42	4.5	17	3.2	0.7	2.9	0.4	2.4	0.5	1.5	0.3	1.8	0.3	14	16	126
EPSCBL0 1	16	36	3.9	15	2.8	0.7	2.6	0.4	2.0	0.4	1.2	0.2	1.3	0.2	7.7	16	106
EPLUJE0 1-11	20	44	4.9	18	3.3	0.7	2.9	0.4	2.2	0.5	1.4	0.2	1.5	0.3	8.1	17	125
EPLUJE0 2-18	20	46	5.6	22	4.8	1.1	4.8	0.8	4.6	0.9	2.8	0.4	3.0	0.5	22	20	159
WPSORE 01-12	20	43	4.7	18	3.3	0.7	3.0	0.5	2.4	0.5	1.4	0.2	1.4	0.2	10	13	122
WPFAN U11	58	128	18	79	18	4.2	22	3.2	18	3.6	9.6	1.3	7.8	1.1	22	97	491
WPFAN U13	35	97	16	81	26	6.6	34	4.9	25	4.3	10	1.2	6.8	1.0	34	109	492

*Samples containing >300 ppm REEs are in bold type.

Furthest Upstream Sample #	BCALA19	EPSCIA10	EPCALA20	WPCLRE02-04	EPSCLA14	WPCLRE02-02	EPSCLA01	IPCALA21	WPCLRE01-13	BPCALA16	WPWEMA06	BCALA17	WPCLRE01-14	EPSCLA09	EPSCIA13	EPSCLA04	WPCARE01-16	WPCLRE05-02	WPCLRE06-04	WPFAR003-17	WPCAR002-03	WPSORE01-09	WPSORE01-03	WPFANJ04	WPSORE01-08	WPFANU06	WPSORE01-01	WPINR002-01	WPFANU03	EPLUJE05-32	EPLUJE05-28	EPLUJE05-35	EPLUJE05-39	IPSCJE05-55	EPLUJE05-37	EPLUJE04-23	EPLUJE05-29	BPSCJE02-51
Description	Spoil from unknown location	Residue from core drill at 32 feet depth	Rock with a grey sheen	Grey colored rock	Grey colored rock	Particulate waste with coal	Relocated from mine effluent	Brown colored rock	Grey colored rock	Grey colored rock	Refuse	Grey colored rock	Grev colored rock	Grey colored rock	Various colored particulate	Tree-shaped geological remnant	Mixed rock	Grey colored rock	Grey colored rock	Grey colored rock	Grey colored rock	Grey colored rock	Shale	Grey colored rock	Mixed rock	Rock	Mixed rock	Grey colored rock	Grey colored rock	Condomerate mix	Orange colored rock	Grey mudstone	Pottsville conglomerate	AMD	Grey colored rock	Brown fine-grained rock	Banded	Grainy soil
Sample Type	Random Spoil	Drilling Sand	Interburden	Roofrock	Bottom Rock	Washplant Fines	AMD Sludge	Bottom Rock	Overburden	Bottom Rock	Reddog	Overburden	Interburden	Interburden	Drilling Sand	Casting	Refuse	Hoor rock	Overburden	Top of Coal	Hoor rock	Sandstone	Refuse	Top of Coal	Screen Reject	Parting	Screen Reject	Roofrock	Roofrock	Micaceous sandstone	Sandstone	Bottom Rock	Gav	Sludge	Top Rock	Rock	Sandstone	Weathered sediment
Sample Reference Number	HDCAI A19	HPSCI A10	IPCALA20	WPC1 RE02-04	HPSCI A14	WPCI RE02-02	HPSCI A01	EPCA A21	WPCI RE01-13	EPCALA16	WPWEMA06	EPCALA17	WPCLRE01-14	EPSCLA09	EPSCLA13	EPSCLA04	WPCARE01-16	WPCLRE05-02	WPCLRE06-04	WPFAR003-17	WPCAR002-03	WPSORE01-09	WPSORE01-03	WPFANU04	WPSORE01-08	WPFANU06	WPSORE01-01	WPINR002-01	WPFANU03	EPLUJE05-32	EPLUJE05-28	EPLUJE05-35	EPLUJE05-39	EPSCJE05-55	EPLUJE05-37	EPLUJE04-23	EPLUJE05-29	EPSCIE02-51

3. Compiled properties of Samples Subjected to ICP-MS Analysis

Geological Group	Eastern Pennsylvania	Eastern Pennsylvania	Eastern Pennsylvania	Western Pennsylvania	Eastern Pennsylvania	Western Pennsylvania	Eastern Pennsylvania-South	Eastern Pennsylvani a-South	Western PA	Eastern Pennsylvani a-South	Western Pernsylvania	Eastern Pennsylvani a-South	Western Pernsylvania	Eastern PA - Southern	Eastern PA - Southern	Eastern PA - Southern	Western Pernsylvania	Western Pennsylvania	Western Pennsylvania	Western Pennsylvania	Western Pennsylvania	Western Pennsylvania	Western Pennsylvania	Western Pennsylvania	Eastern Pennsylvania - north	Eastern Pennsvlvania - north												
Coal Basin	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia	Northern Appalachia
Level 2 Attribute	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Separations	other	Coal Mining	Coal Mining	Coal Mining	Coal Reserve	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	other	Coal Mining	Coal Mining	Coal Mining	Coal Mining
Level 1 Attribute	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Utilization	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production												
Sample Reference Number	EPCALA19	EPSCLA10	EPCALA20	WPCLRE02-04	EPSCLA14	WPCLRE02-02	EPSCLA01	EPCALA21	WPCLRE01-13	EPCALA16	WPWEMA06	EPCALA17	WPCLRE01-14	EPSCLA09	EPSCLA13	EPSCLA04	WPCARE01-16	WPCLRE05-02	WPCLRE06-04	WPFAR003-17	WPCAR002-03	WPSORE01-09	WPSORE01-03	WPFANU04	WPSORE01-08	WPFANU06	WPSORE01-01	WPINR002-01	WPFANU03	EPLUJE05-32	EPLUJE05-28	EPLUJE05-35	EPLUJE05-39	EPSCJE05-55	EPLUJE05-37	EPLUJE04-23	EPLUJE05-29	EPSCJE02-51

Site	Nesquehoning Township	Tamaqua Township	Nesquehoning Township	Karthaus Township	Coaldale Township	Karthaus Township	Tamaqua Township	Nesquehoning Township	Goshen Township	Lansford Township	Mount Pleasant Township	Lansford Township	Goshen Township	Tamaqua Township	Coaldale Township	Tamaqua Township	Cambria Township	Decatur Township	Decatur Township	Parks Township	Cambria Township	Jenner Township	Jenner Township	North Union Tpwnship	Jenner Township	North Union Tpwnship	Jenner Township	Burrell Township	North Union Tpwnship	Foster Township	Foster Township	Foster Township	Foster Township	Frailey Township	Foster Township	Foster Township	Foster Township	Frailey Township
County	Carbon	Schuylkill	Carbon	Gearfield	Schuylkill	Gearfield	Schuylkill	Carbon	Gearfield	Carbon	Westmoreland	Carbon	Gearfield	Schuylkill	Schuylkill	Schuylkill	Cambria	Gearfield	Gearfield	Fayette	Cambria	Somerset	Somerset	Fayette	Somerset	Fayette	Somerset	Indiana	Fayette	Luzeme	Luzeme	Luzeme	Luzeme	Schuylkill	Luzeme	Luzeme	Luzeme	Schuvlkill
State	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	bA	ΡA	ΡA	ΡA	bم	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA	ΡA
Associated Coal Seam	Unknown	"Mammoth"	"Primrose/Orchard"	Upper Freeport	'Mammoth'	Mixed production	Mixed Anthracite	"Holmes"	Upper Kittanning	"Orchard"	Pittsburgh	"Orchard"	Lower Freeport-Upper Kittanning Split	'Mammoth'	'Mammoth'	'Mammoth''	Upper Kittanning	Middle Kittanning	Lower Kittanning	Upper Kittanning	Upper Kittanning	Middle Kittanning	Middle Kittanning	Wild coal	Middle Kittanning	Wild coal	Middle Kittanning	Upper Freeport	Wild coal	'Mammoth'	'Mammoth'	'Mammoth'	'Mammoth'	'Mammoth'	'Mammoth'	'Mammoth'	"Mammoth"	"Mammoth"
Sample Reference Number	BCALA19	EPSCLA10	BPCALA20	WPCLRE02-04	EPSCLA14	WPCLRE02-02	EPSCLA01	EPCALA21	WPCLRE01-13	EPCALA16	WPWEMA06	EPCALA17	WPCLRE01-14	EPSCLA09	EPSCLA13	EPSCLA04	WPCARE01-16	WPCLRE05-02	WPCLRE06-04	WPFAR003-17	WPCAR002-03	WPSORE01-09	WPSORE01-03	WPFANU04	WPSORE01-08	WPFANU06	WPSORE01-01	WPINR002-01	WPFANU03	EPLUJE05-32	EPLUJE05-28	EPLUJE05-35	EPLUJE05-39	EPSCJE05-55	EPLUJE05-37	EPLUJE04-23	EPLUJE05-29	EPSCJE02-51

Sample Reference Number

Size Fraction Analyzed (um)

Location

Digestion Method

BCALA19	Disposal Site	<40	HE plus nitric/perchloric acid
EPSCLA10	Core Drilling	<40	HF plus nitric/perchloric acid
EPCALA20	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCLRE02-04	Active Mining Site	<40	HF plus nitric/perchloric acid
EPSCLA14	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCLRE02-02	Disposal Site	<40	HF plus nitric/perchloric acid
EPSCLA01	Disposal Site	<40	HF plus nitric/perchloric acid
EPCALA21	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCLRE01-13	Active Mining Site	<40	HF plus nitric/perchloric acid
EPCALA16	Active Mining Site	<40	HF plus nitric/perchloric acid
WPWEMA06	Reserve	<40	HF plus nitric/perchloric acid
EPCALA17	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCLRE01-14	Active Mining Site	<40	HF plus nitric/perchloric acid
EPSCLA09	Active Mining Site	<40	HF plus nitric/perchloric acid
EPSCLA13	Active Mining Site	<40	HF plus nitric/perchloric acid
EPSCLA04	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCARE01-16	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCLRE05-02	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCLRE06-04	Active Mining Site	<40	HF plus nitric/perchloric acid
WPFAR003-17	Active Mining Site	<40	HF plus nitric/perchloric acid
WPCAR002-03	Active Mining Site	<40	HF plus nitric/perchloric acid
WPSORE01-09	Active Mining Site	<40	HF plus nitric/perchloric acid
WPSORE01-03	Active Mining Site	<40	HF plus nitric/perchloric acid
WPFANU04	Active Mining Site	<40	HF plus nitric/perchloric acid
WPSORE01-08	Active Mining Site	<40	HF plus nitric/perchloric acid
WPFANU06	Active Mining Site	<40	HF plus nitric/perchloric acid
WPSORE01-01	Active Mining Site	<40	HF plus nitric/perchloric acid
WPINR002-01	Active Mining Site	<40	HF plus nitric/perchloric acid
WPFANU03	Active Mining Site	<40	HF plus nitric/perchloric acid
EPLUJE05-32	Active Mining Site	<40	HF plus nitric/perchloric acid
EPLUJE05-28	Active Mining Site	<40	HF plus nitric/perchloric acid
EPLUJE05-35	Active Mining Site	<40	HF plus nitric/perchloric acid
EPLUJE05-39	Active Mining Site	<40	HF plus ni tric/perchloric acid
EPSCJE05-55	Inactive Mining Site	<40	HF plus ni tric/perchloric acid
EPLUJE05-37	Active Mining Site	<40	HF plus ni tric/perchloric acid
EPLUJE04-23	Active Mining Site	<40	HF plus nitric/perchloric acid
EPLUJE05-29	Active Mining Site	<40	HF plus ni tric/perchloric acid
EPSCJE02-51	Active Mining Site	<40	HF plus nitric/perchloric acid

	E	0,4	0.2	0,4	0,4	0,4	0.3	0.2	0,4	0.4	0.4	0'0	0.3	0.2	0.4	0.2	0.4	0.3	0.2	0.2	0.2	0.2	0.1	0.3	0.2	0.3	0.2	0.3	0.2	0.3	0.3	0.4	0.4	0.3	0.4	0.5	0.8	0.2	0'0
	वे	2.7	1.5	2.3	2.7	2.6	2.3	1.2	2.5	2.4	2.2	3,8	1.8	1.6	2.6	1.1	28	2.2	0'0	2.1	2.1	1.8	1.5	2.6	2.5	2.3	1.9	2.2	2.1	2.8	1.8	2.5	2.4	2	2.3	2.7	5.4	1.4	3.7
	E	0.4	0.2	0.4	0.4	0.4	4.0	0.2	0.4	0.4	0.3	0.6	0.3	0.2	0.4	0.2	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.4	4.0	0.4	0.3	4.0	ю.3	0.4	0.3	4.0	4.0	0.3	0.4	0.4	0.8	0.2	0.6
	ت	2.7	1.4	2.4	2.7	2.6	2.4	1.4	2.4	2.4	- 6'1	3,9	- 1.8	1.5	2.5	1.0	28	2.3	1.8	2	2.0	2.3	1.5	2.6	2.5	2.4	1.8	2.1	5.1	2.7	1.7	2.4	2.1	5	2.7	2.3	5.5	- 81	3.7
	위	. 6'0	5.0	. 6'0	1	-		0.5	. 6'(8.0	2.7	4		0.5	6.0	9.4	1.0	8.0	0.6	2.7	0.7	. 6'0	50	1	 		. 9'0	8.	2	1		. 6'0	27	7.0		2.7	6	4	n
(md	ž	1.6	4	1.2	6'1	5	9'1	0.5	۱.5 0	12	0 ო	.3	0 1	2.6 0	t.7 () 8.1	23	1.2 (6.9	330	3.4 (12	270	9''	S	1.2	0 6'	ů. S	8	1.8	0 27	8.1	.1.	<u>5.5</u>	8	°,6 0	1.7	0 ന	20
es (p	٩	4 6	5	6.8	5 6'		<u>م</u>	5	4 6'	4 8	9	4	9'0	5 2	7 01	с. С.	-	7 89	5	.6 3	 9.	1	5	7 6'	1	17 4	.5 2	5	5	6,0	5	1	9	17 8	7 6'	7.3	8	ŝ	10
anid	5	0 ק	0	7 0	2 0	.1	0 0	9 9	0 ਨ	7 0	0 0	8	0 ന	6 0	ς. Γ	.2	4	s.	0 8	4	.2	م ا	ы О	0 6	~	7 0	30	0 0	о Ю	50	0 א	œ	e e	1.0	5 O	5 0	2 1	0 0	7 1
anth	ຍ 	46	8	3 5	4 6	6 7	4	7 3	3 6	3 5	4	19	4	9 3	S S	6 2	-	0 0	8	7 8	9	46	7 3	3 5	9	4	83	4	2	4 6	9	7 6	с 100	9	2	4	7 1	ი ი	m
-	ш с	9 1.	0 8	2 1.	6 1.	-	 	4 0	7 1.	41.	6	5	6	0	2	4	1	-	0 9	0 2	4 0.	8	0 8	H.	6 1.	8	60.		5	1.	0 0	1.	7 0	5 0.	- 2	5	3 2	0 0	1.
	ა p	7 6.	7 3.	46.	1 6,	33	5 5	ю 6	6.6	4 6,	7 4.	4 1(7 4	1 3.	7 7.	3	2 8	2 6.	в 3	14.	3.4,	14.	0 3	9	3 7.	6 4.	9 3,	4	ς δ	8 7	9 5	18.	7	4,	4	2.5	2 13	- 1 1	7 7.
	Z	ю 0	6	6 3	9 3	2	3	-1 -1	7 3	1 3	4	5	5	6 2	.7 3	.6	1	ы. С	1 6	5	.1	3	л о	5	1	8	4 1	4	N Q	0 3	4	1 4	3	5	5	6 3	6 6	N N	8 8
	е 0	3	8	2	5 8	1	8	8	2	6 9	5 7	2 1	~ 0	7 5	6 0	е 6		രം	0	5	9	5		2 0	8	5 6	0 5	4	~ 0	7 1	3 7	8	33	2 6	0	4	24 1	2	5
	o e	80	8 8	3 7	3 7	4 10	2	4 4	8	5	0 0	7 12	9 8	2 4	8	4	5	2 9	8	4	ы С	14	9	8	1 0	6 5	2 5	й Ю	ہم 0	1 8	9 6	80 0	10	6 6	2	6 7	8 12	<u>9</u>	8
üt		22 4	15 1	15 3	19 3	19 4	25 3	17 2	22 3	14 3	14 3	29 5	20 2	16 2	22 3	15 1	22 4	21 3	16 1	15 2	16 2	25 2	20 1	20 2	22 4	19 2	15 2	16 2	17 3	22 4	34 2	26 4	23 3	22 2	30 2	24 3	47 5	202	34 4
lem	ဖ	17	7.6	16	18	20	12	17	17	16	23	36	13	8.8	1 8	6.4	2	13	14	16	16	8.2	S	19	18	15	14	16	16	19	7.6	11	9.3	7.9	4.4	10	19	5.6	13
Dry Mass Basis E		Dry Mass Basis																																					
Analytical	Technique	ICP-MS																																					
Sample Reference Number		EPCALA19	EPSCLA10	EPCALA20	WPCLRE02-04	EPSCLA14	WPCLRE02-02	EPSCLA01	EPCALA21	WPCLRE01-13	EPCALA16	WPWEMA06	EPCALA17	WPCLRE01-14	EPSCLA09	EPSCLA13	EPSCLA04	WPCARE01-16	WPCLRE05-02	WPCLRE06-04	WPFAR003-17	WPCAR002-03	WPSORE01-09	WPSORE01-03	WPFANU04	WPSORE01-08	WPFANU06	WPSORE01-01	WPINR002-01	WPFANU03	EPLUJE05-32	EPLUJE05-28	EPLUJE05-35	EPLUJE05-39	EPSCJE05-55	EPLUJE05-37	EPLUJE04-23	EPLUJE05-29	EPSCJE02-51

Secondary Digestion Technique	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Secondary Analytical Technique	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF
Total R⊞+Sc+Y	236.0	114.0	203.2	212.1	269.8	204.6	139,1	230,9	208.9	185.7	353.9	173.9	135,9	231.2	91.2	269,9	209.2	135.8	140.7	160.9	149.8	125.0	199,4	261.8	169.4	141.3	159.4	191.4	244.8	189.6	246.0	179.6	167.4	163.2	206.5	379.6	135.5	248.4
Total RÆ (ppm)	197.0	91.4	172.2	175.1	230.8	167.6	105.1	191,9	178,9	148.7	288,9	140.9	111.1	191.2	69.8	229,9	175.2	105.8	109.7	128,9	116.6	100.0	160.4	221.8	135,4	112,3	127.4	158,4	203.8	148.0	209.0	147.3	137.5	128.8	172.5	313.6	109,9	201.4
Sample Reference Number	BCALA19	EPSCLA10	EPCALA20	WPCLRE02-04	EPSCLA14	WPCLRE02-02	EPSCLA01	EPCALA21	WPCLRE01-13	EPCALA16	WPWEMA06	EPCALA17	WPCLRE01-14	EPSCLA09	EPSCLA13	EPSCLA04	WPCARE01-16	WPCLRE05-02	WPCLRE06-04	WPFAR003-17	WPCAR002-03	WPSORE01-09	WPSORE01-03	WPFANU04	WPSORE01-08	WPFANU06	WPSORE01-01	WPINR002-01	WPFANU03	EPLUJE05-32	EPLUJE05-28	EPLUJE05-35	EPLUJE05-39	EPSCJE05-55	EPLUJE05-37	EPLUJE04-23	EPLUJE05-29	EPSCJE02-51

Sample Reference Number		se. Se	condary	Bemei	ntal Ic	dentific	ation	Results	(mdd)		
	S	Fe	¥	Тi	Zr	ß	Ba	Ĵ	ц	D	S2
EPCALA19	1249	31729	15779	4599	261	BDL	367	14.5	8.44	BDL	BDL
EPSCLA10	2509	17277	14624	2735	174	BDL	315	6.22	4.67	BDL	BDL
IPCALA20	1441	63379	21114	4438	234	BDL	587	12.69	10.12	BDL	36561
WPCLRE02-04	1909	35435	7462	3057	86	BDL	73	10.43	5.3	BDL	31952
EPSCLA14	959	26448	20575	6244	279	BDL	840	20.61	11.4	BDL	BDL
WPCLRE02-02	5120	80499	9127	4390	122	BDL	495	8.5	5.45	BDL	62937
EPSCLA01	242651	31984	3616	BDL	78	BDL	104	4.37	BDL	BDL	7643
EPCALA21	1326	14904	19164	6163	372	11.58	430	18,68	8.06	BDL	BDL
WPCLRE01-13	4150	38284	16114	6667	352	BDL	381	17.14	5.62	BDL	6415
EPCALA16	1253	29874	27738	5528	257	14.46	638	17.61	10.97	BDL	BDL
WPWEMA06	1814	68822	12859	5519	290	35.75	526	20.41	11.27	BDL	21924
EPCALA17	3431	28724	18833	4274	277	BDL	381	11.72	7.14	BDL	5841
WPCLRE01-14	2282	20467	15580	2903	214	BDL	386	9.27	BDL	BDL	3702
EPSCLA09	1253	29874	27738	5528	257	14.46	638	17.61	10.97	BDL	BDL
EPSCLA13	1142	67833	16181	6476	243	14.16	502	38.28	16.34	BDL	26089
EPSCLA04	3431	28724	18833	4274	277	BDL	381	11.72	7.14	BDL	5841
WPCARE01-16	128956	27520	4650	2051	127	BDL	240	9.26	4.77	BDL	61569
WPCLRE05-02	4756	45691	16204	4914	300	BDL	429	14.79	5.26	BDL	BDL
WPCI.RE06-04	14814	68919	17397	3380	189	BDL	49 B	12.35	5.37	BDL	BDL
WPFAR003-17	5105	57482	17432	1965	244	BDL	415	6.77	7.75	5.72	BOL
WPCAR002-03	211917	28727	9055	2947	엾	BDL	405	6.77	2.74	BDL	18412
WPSORE01-09	37512	29617	5823	3624	262	BDL	232	6.88	2.35	BDL	5461
WPSORE01-03	16288	53143	19302	4817	150	BDL	500	12.83	888 88	BDL	23503
WPFANU04	6137	25381	10403	5796	227	BDL	589	16,66	12.34	8,08	8072
WPSORE01-08	36081	53185	12734	4594	164	BDL	357	11.84	5.51	BDL	24419
WPFANU06	1830	39462	12553	5616	214	BDL	381	18.84	8 50	BD	10409
WPSORE01-01	4407	31058	12991	4852	185	BDL	207	13.74	8,11	BDL	15765
WPINR002-01	2316	56522	19910	5113	184	BDL	611	`15.13	609	B	ā
WPFANU03	4539	48945	12794	5243	200	BDL	391	16.33	10.78	2.86	8540
EPLUJE05-32	808 808	13879	10509	5002	465	BD	301	1306	6.45	ы В	ខ្ល
EPLUJE05-28	1244	21359	18024	5064	424	BDL	410	13.9	7.08	BDL	BDL
EPLUJE05-35	<u>9</u> 2	11721	17171	6027	651	BD	4	18.74	7.88	B	ឝ
EPLUJE05-39	1124	32038	9887	4123	329	BDL	260	12.57	6,48	BD	BO
EPSCJE05-55	2987	280104	4979	B	153	BDL	394	3.53	BDL	BD	B
EPLUJE05-37	1346	5166	17377	6281	708	BDL	392	19,06	9.24	BDL	BD
EPLUJE04-23	1192	55830	24011	5887	240	BDL	765	16,94	9,18	BD	ā
EPLUJE05-29	1190	10705	12971	3285	213	BDL	266	10.67	4,69	BDL	BD
EPSCJE02-51	1684	24287	12647	5372	482	BDL	363	16.68	8.37	2.81	B

Sample Reference Number

Notes

Sr, Rb, As, Pb, Ta, Hf, Co, Mn detected	Sr, Rb, Pb detected	Mo, Sr, Rb, As, Pb, Co, Mn, Ta, Hf detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Nb, Sr, Rb, As, Pb, Ta, Co, Mn detected	Mo. Sr, Rb, As, Pb, Ta, Hf, Co, Mn detected	Sr, Rb, W, Hf, Ni, Co, Mn detected	Sr, Rb, As, Pb, Co, Mn, Hf detected	Sr, Rb, Mn detected	Sr, Rb, As, Pb, Re, Ta, Hf, Co, Mn deected	Mo, Sr, As, Rb, Pb, N, Co, Mn, Cr, V detected	Sr, Rb, As, Pb, Ta, Hf, Co, Mn detected	Sr, Rb, As, Pb, Co, Mn detected	Sr, Rb, As, Pb, Re, Ta, Hf, Co, Mn present	Sr, Rb, Pb, As, Zn, Qu, Ni, Gr, V, Cs present	Sr, Rb, As, Pb, Ta, Hf, Co, Mn present	Mo, Sr. Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Co, Mn detected	Mo, Sr, Rb, As, Pb, W, Zn, Qu, Ni, Co, Mn detected,	Mo, Sr, Rb, As, Pb, Zn, Qu, Ni, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Ni, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Ni, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, Sas, Pb, Zn, QJ, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Ni, Co, Mn detected	Mo, Sr, Rb, As, Pb, Z, Qu, Ni, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Co, Mn detected	Sr, Rb, As, Pb, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Mn detected	Sr, Rb, As, Pb, Zn, Ni, Mn detected	Mo, Sr, Rb, As, Pb, Co, Mn detected	Sr, Rb, As, Pb, Zn, Cu, Co, Mn detected	Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Cu, Co, Mn detected
EPCALA19	EPSCLA10	EPCALA20	WPCLRE02-04	EPSCLA14	WPCLRE02-02	EPSCLA01	EPCALA21	WPCLRE01-13	EPCALA16	WPWEMA06	EPCALA17	WPCLRE01-14	EPSCLA09	EPSCLA13	EPSCLA04	WPCARE01-16	WPCLRE05-02	WPCI.RE06-04	WPFAR003-17	WPCAR002-03	WPSORE01-09	WPSORE01-03	WPFANU04	WPSORE01-08	WPFANU06	WPSORE01-01	WPINR002-01	WPFANU03	EPLUJE05-32	EPLUJE05-28	EPLUJE05-35	EPLUJE05-39	EPSCJE05-55	EPLUJE05-37	EPLUJE04-23	EPLUJE05-29	EPSCJE02-51

	-	<u> </u>		_		_	-	_		_		_		_		_		_		_	-	_	-	_	-	_		-	-		-	_		_		-		_
Furthest Upstream Sample #	EPLUJE03-07	EPSCJE01-56	EPLUJE01-12	EPLUJE05-27	EPLUJE05-33	EPLUJE01-13	EPSCBL10	EPSCBL22	EPLUJE03-08	EPLUJE02-20	EPCOJE01-48	EPLUJE04-01	EPSCBL25	EPLUJE01-09	EPSCBL08	EPCOJE01-47	EPCOJE01-50	EPSCBL18	WPWER001-07	EPLUBL21	EPLUBL24	EPSCBL03	EPLUJE02-15	EPCOJE07-54	EPLUJE05-34	EPSCJE01-58	EPSCJE05-21	EPSCJE01-62	EPLUJE02-16	EPSCBL06	EPSCBL05	EPSCBL12	EPSCBL01	EPLUJE01-11	EPLUJE02-18	WPSORE01-12	WPFANU11	WPFANU13
Description	Grey colored rock	Grey colored rock	Grey colored rock	Red colored stone	Grey Sandstone	Various colored rock	Shiny Grey colored rock	Grey colored rock	Grey colored rock	Conglomerate mix	Grey Sandstone	Mixed rock	Mixed rock	Fine particulate matter	Grey colored rock	Fine grained with organic fossils	Fine grained with organic fossils	Grey colored rock	Grey colored rock floor	Grey colored rock	Grey colored rock	Grey colored rock	"mudstone"	Grey colored rock	Grey colored rock	Fine grained grey rock	Black colored	Fine grained grey rock	Grey colored rock	Middle-Bottom rock	Top-Middle rock	Mixed rock	Fine particulate matter	Orange-grey color		yellow collored sediment	Grey colored sediment	Grey colored sediment
Sample Type	Mudstone	Bottom Rock	Shale	Sandstone	Bottom Rock	Cong omerate	Overburden	Top Rock	Bottom Rock	Sandstone	Bottom Rock	Refuse	Breaker Refuse	Drilling Sand	Overburden	Shale	Shale	Bottom Rock	Core	Bottom Rock	Bottom Split	Top Rock	Top Rock	Overburden	Bottom Rock	Sandstone	Shale	Sandstone	Micaceous sandstone	Interburden	Interburden	Breaker Refuse	Drilling Sand	Sandstone	Bottom Rock	Pond sludge	Fire Clay	Fire Clay
Sample Reference Number	EPLUJE03-07	EPSCJE01-56	EPLUJE01-12	PPLUJE05-27	EPLUJE05-33	EPLUJE01-13	EPSCBL10	IP SCBL22	EPLUJE03-08	EPLUJE02-20	EPCOJE01-48	EPLUJE04-01	IP SCBL 25	EPLUJE01-09	EPCOBL08	EPC0JE01-47	EPCOJE01-50	EPSCBL18	WPWER001-07	EPLUBL21	EPLUBL24	EP SCBL03	EPLUJE02-15	EPC0JE02-54	EPLUJE05-34	EPSCJE01-58	PPLUJE05-21	EPSCJE01-62	EPLUJE02-16	EPSCBL06	EPSCBL05	EPSCBL12	EPSCBL01	PPLUJE01-11	EPLUJE02-18	WPSORE01-12	WPFANU11	WPFANU13

3. Compiled properties of Samples Subjected to ICP-MS Analysis (cont.)

Geological Group	a Eastern Pennsylvania - north	ia Eastern Pennsylvania - north	a Eastern Pennsylvania - south	a Eastern Pennsylvania - south	a Eastern Pennsylvania - north	a Eastern Pennsylvania-South	a Eastern Pennsylvania - north	a Eastern Pennsylvania - south	a Eastern Pennsylvania - north	a Eastern Pennsylvania - north	a Eastern Pennsylvania - south	a Western Pennsylvania	a Eastern Pennsylvania - south	a Eastern Pennsylvania - south	a Eastern Pennsylvania - south	a Eastern Pennsylvania - north	a Eastern Pennsylvania - south	a Eastern Pennsylvania - south	ia Eastern Pennsylvania - south	a Eastern Pennsylvania - south	a Eastern Pennsylvania - north	a Eastern Pennsylvania - north	ia Western Pennsylvania	a Western Pennsylvania	a Western Pennsylvania													
Coal Basin	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalach	Northern Appalachi	Northern Appalach	Northern Appalach						
Level 2 Attribute	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Coal Mining
Level 1 Attribute	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production	Resource Production
Sample Reference Number	EPLUJE03-07	EPSCJE01-56	EPLUJE01-12	EPLUJE05-27	EPLUJE05-33	EPLUJE01-13	EPSCBL10	EPSCBL22	EPLUJE03-08	EPLUJE02-20	EPCOJE01-48	EPLUJE04-01	IP SCBL 25	EPLUJE01-09	EPCOBL08	EPC0JE01-47	EPCOJE01-50	EPSCBL18	WPWER001-07	EPLUBL21	EPLUBL24	EP SCBL03	EPLUJE02-15	EPC0JE02-54	EPLUJE05-34	EPSCJE01-58	BPLUJE05-21	EPSCJE01-62	EPLUJE02-16	EPSCBL06	EPSCBL05	EPSCBL12	EPSCBL01	EPLUJE01-11	EPLUJE02-18	WPSORE01-12	WPFANU11	WPFANU13

Location	
Sample Reference Number	

Size Fraction Analyzed (um)

Digestion Method

Frontion Frontice Frontice	EPCUJE01-09 EPLUJE01-09 EPC0BL08 EPC0BL08 <40 HF plus nitric/perchloric acid EPC0TE01-17 <40 HF plus nitric/perchloric acid
EPSCBL01 EPSCBL01 EPSCBL01 EPLUJE01-11 EPLUJE01-11 <40	Broadcol Constration Cons Cons Constratio

	Ξ	0.5	0.5	0'0	0.5	0.2	0.2	0.5	0.5	0'0	0.2	0.2	0.4	0.4	0.3	0.2	0'0	0'0	0,4	0.5	0.5	0.5	0.3	0'0	0.5	0,4	0.4	0.5	0.5	0.2	0.5	0.4	0.3	0.2	0.3	0.5	0.2	1.1	-
	ę	3.2	3,4	3,9	3,3	1.1	1.2	3.2	3,1	3,9	1.1	1.1	2.5	2.8	2	1.5	3,8	4.2	2,9	e	3,2	3,1	1.4	4	e	2.3	2.8	2.8	2,9	1.4	3,1	2.4	1.8	1.3	1.5	e	1.4	7.8	α Ψ
	Ľ	0.5	0.5	0.6	0.5	0.2	0.2	0.5	0.5	0.6	0.2	0.2	0.4	0.4	0.3	0.2	0.5	0'0	6'0	0.5	0.5	0.4	0.3	0'0	0.4	0.3	0.4	0.4	0.4	0.2	0.5	0.4	0.3	0.2	0.2	0.4	0.2	1.3	с Г
	ъ	3.3	3.3	3.8	3,3	1.1	1.1	3.2	3.3	3,9		1.2	2.5	2.8	1.8	1.4	3.4	4.2	4.5	2.9	3.2	3.1	1.4	4.2	m	N	2.8	2.8	2.7	1.2	3.2	2.2	1.5	1.2	1.4	2.8	1.5	9.6	10
	윈	1.1	1.2	1.3	1.2	0.4	0.4	1.2	1.2	1.4	0.4	0.4	0'0	-	0.7	0.5	1.1	1.4	0.4	F	1.1	1.1	0.5	1.6	1.1	0'0	6'0		6'0	0.4	1.1	0.7	0.5	0.4	0.5	6'0	0.5	3.6	4.8
(mdc	2	5,9	5.8	7	6,4	1.9	2	5.8	9	7.1	1.8	2.1	4.3	4,9	3.2	2.4	5.3	7	2.7	5.1	5.8	5.6	2.4	8.5	5,4	ო	4.6	4,9	4.8 8	2.2	5.2	3.6	2.4	2	2.2	4.6	2.4	18	с С
des (I	₽	1.1	1.2	1.4	1.3	0.4	0.4	1.1	1.1	1.4	0.3	0.4	0.8	6'0	0.7	0.5	-	1.2	6'0	1.1	1.1	1.1	0.5	1.8	-	0.6	6'0	6'0	6'0	0.4		0.6	0.4	0.4	0.4	0.8	0.5	3.2	9.4
hanic	g	7.3	7.9	9.5	9.2	2.9	2.5	7.2	7.4	9.7	2.2	2.7	5.5	6.3	4.3	e	6.8	7.2	5,9	7.7	2.7	6'9	3.3	13	7.1	3.5	6.2	5,9	6.6	3.1	6,9	4.2	2'9	2.6	5'0	4,8	ო	22	34
Lant	æ	. 9'1	1 6	2.2	2.4	0.5	2.7	1.5	1.6	2.3	0.6	0.7	1.3	1.4	1	0.8	1.6	1.2	۳. ۲.	81	. 7.1	1.6		3	N	0.7	1 .4	ς. Π	- ლ	2.7	- 9'1	1	2.7	0.7	2.7	1.1	2.7	4.2	5.6
	Ĕ	7.7	б	10	10	3.5 (2.8	4.8	. 8	11	5'0 (2,9 (5.1	2	1 .9	3.1 (2.7	3.1	2.6	3.1	6.7	7.3	6'8	14	7.3	1 .2	8	4	2.6	<u>%</u> 4	~	4.1	3.2 (2.8 (1.8 1	 	18	8
	Ž	41	49	52	29	19	16 2	43	6	28	4	16 2	32 (35	25 4	15 3	35	73 8	37 (47 8	4	88	21	73	37	52 52	37 (33	8	18	ଞ	21 4	17 3	15 2	18	ะ	18	۶	8
	占	11	13	15	15	4.9	4.2	11	10	15	3,9	4.1	8.5	9.4	6.6	3,9	9.4	20	9'6	14	10	10	5.5	20	9.7	6,8	9.8	9,4	11	4.7	9'6	5.5	4.5	3,9	4,9	5.6	4.7	18	16
	8	95	109	114	121	71	6	95	91	125	ଞ୍ଚ	33	73	5	60	25	4	117	2	130	88	8	岛	176	8	ß	8	8	ន	珨	2	42	4	8	4	46	ಭ	128	97
	Ľ	44	51	54	57	19	17	43	41	58	16	17	35	37	27	15	40	55	39	67	41	39	22	87	39	28	38	6	4	18	39	22	18	16	20	20	20	58	35
nent	≻	28	27	35	30	24	20	32	30	35	16	28	23	26	20	19	31	35	23	26	32	27	16	38	27	17	24	23	28	12	27	19	16	16	17	20	13	97	109
Ben	လိ	15	17	15	13	1.1	4.2	8.4	14	20	3,8	2.6	13	14	9.2	4.7	14	19	14	21	14	15	5.6	16	14	10	10	14	8.6	8,1	20	25	14	7.7	8.1	22	10	22	34 8
/ Mass Basis		/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis	/ Mass Basis																								
ð		Dr	ą	Dr	D	Dr	ŋ	ą	D	ą	ą	ŋ	Dr	ą	Dr	D,	ą	Dr	ą	ď	ą	ą	ā	Dr	ā	ą	ų	á	ą	ą	ą	Dr	ď	Dr	ą	D	ą	ą	ā
Analytical	Technique	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	IOP-MS																								
Sample Reference Number		EPLUJE03-07	EPSCJE01-56	EPLUJE01-12	EPLUJE05-27	EPLUJE05-33	EPLUJE01-13	EPSCBL10	EPSCBL22	EPLUJE03-08	EPLUJE02-20	EPCOJE01-48	EPLUJE04-01	EPSCBL25	EPLUJE01-09	EPCOBL08	EPCOJE01-47	EPCOJE01-50	EPSCBL18	WPWER001-07	EPLUBL21	EPLUBL24	EP SCBL03	EPLUJE02-15	EPC0JE02-54	EPLUJE05-34	EPSCJE01-58	EPLUJE05-21	EPSCJE01-62	EPLUJE02-16	EPSCBL06	EP SCBL05	EPSCBL12	EPSCBL01	EPLUJE01-11	EPLUJE02-18	WPSORE01-12	WPFANU11	WPFANU13

Secondary Digestion Technique	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
secondary Analytical Technique	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	N/A	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF	XRF
lotal K⊞+Sc+Y	266.2	300.4	325.3	330.1	151.2	112.9	265.0	258.5	350.9	103.1	118.6	209.2	228.3	167.0	105.2	238.2	354.7	233.4	336.7	257.7	249.7	133.1	461.3	240.5	163.4	229.0	231.3	256.2	116.0	255.7	154.1	125.5	106.4	125.4	159.3	122,4	490.8	491.8
lotal K⊞ (ppm)	223.2	256.4	275.3	287.1	126.1	88.7	224.6	214.5	295.9	83,3	88.0	173.2	188.3	137.8	81.5	193.2	300.7	196.4	289.7	211.7	207.7	111.5	407.3	199.5	136.4	195.0	194.3	219.6	95,9	208.7	110.1	95.5	82.7	100.3	117.3	99,4	371.8	348.8
Sample Keterence Number	EPLUJE03-07	EPSCJE01-56	EPLUJE01-12	EPLUJE05-27	EPLUJE05-33	EPLUJE01-13	EPSCBL10	IPSCBL 22	EPLUJE03-08	EPLUJE02-20	EPCOJE01-48	EPLUJE04-01	EPSCBL 25	EPLUJE01-09	EPCOBL08	EPCOJE01-47	EPCOJE01-50	EPSCBL 18	WPWER001-07	EPLUBL21	EPLUBL24	EPSCBL03	EPLUJE02-15	EPC0JE02-54	EPLUJE05-34	EPSCJE01-58	EPLUJE05-21	EPSCJE01-62	EPLUJE02-16	EPSCBL06	EPSCBL05	EPSCBL12	EPSCBL 01	PLUJE01-11	EPLUJE02-18	WPSORE01-12	WPFANU11	WPFANU13

.

S	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	34934	BDL	BDL	BDL	BDL	BDL	BDL	BDL	A/A	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	26538	8475
_ = _	3,12	BDL	BDL	BDL	BDL	BDL	BDL	BDL	3.03	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	15.53	BDL	4,64	BDL	2.72	BDL	BDL	BDL	A/A	BDL	BDL	BDL	BDL	BDL	BDL	BDL	2.72	BDL	6,96
is (ppm Th	12.02	10.76	8.85	6.88	2.95	3.03	8.79	7.74	10.15	2.58	2	8.85	7.97	6.86	1.86	12.64	11.05	11.22	16.48	5.95	11.62	4.1	16.04	11.36	6	6.84	A/A	6.89	4.33	8.76	11.88	9.3	3.47	7.42	16.04	4.27	5.97
n Result Nb	15.65	18,13	19.25	17.14	7.9	4.25	15.26	16.84	19.45	7.25	5.21	15.45	17.02	10.76	7.28	30,01	18.77	18.76	21.22	15.36	19.76	7.73	22.82	16.04	18.83	13.87	A/A	13,98	16.59	18.24	18.49	16.28	7.5	13.23	22.82	5.59	11.19
ficatio Ba	583	458	773	442	126	283	567	579	625	319	230	542	613	478	334	543	578	439	435	561	758	477	811	496	454	629	₹/Z	390	503	1036	847	416	467	445	811	172	360
ldenti Sn	BDF	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	ā	₹/Z	ā	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BO
intal J Zr	242	339	441	489	400	244	292	359	386	162	127	277	309	296	181	573	414	454	277	339	384	157	488	415	439	377	₹ Z	605	224	246	244	322	146	325	297	88	134
r ⊟eme ⊤i	5376	5866	5853	5489	2259	1700	4982	5125	6202	2396	1798	5888	5674	4450	BDL	10212	5972	6142	7343	4286	5247	2908	6059	5389	5835	5037	A/A	4633	5280	5267	5582	5479	2637	4889	8604	2981	4299
condary K	21205	17661	30638	20744	4612	15281	19197	16356	22030	11363	10997	19108	19564	18563	7608	20171	18566	15670	7644	16254	23487	15657	1203	15892	19830	17614	A/A	14426	18848	21016	21594	17364	15560	21855	22945	11572	12408
Fe Se	27735	11386	51166	22434	6836	16654	20241	60893	49132	32159	10461	31074	35499	29561	69976	10313	22143	23884	50651	75684	31824	26892	7424	24583	7521	50401	A/A	13298	53686	40876	42102	19085	20421	19126	13169	93768	84995
පී	1473	1237	2052	1395	1252	1423	1299	2186	1297	1226	805	2648	1760	1452	12183	1370	1218	1276	2434	3191	1513	6754	1053	1438	1306	1827	A/A	964	1298	3702	1263	1264	1887	1247	1316	1617	20602
Sample Reference Number	EPLUJE03-07	EPSCJE01-56	EPLUJE01-12	EPLUJE05-27	EPLUJE05-33	EPLUJE01-13	EPSCBL10	EPSCBL22	EPLUJE03-08	EPLUJE02-20	EPCOJE01-48	EPLUJE04-01	EPSCBL25	EPLUJE01-09	EPCOBL08	EPCOJE01-47	EPCOJE01-50	EPSCBL18	WPWER001-07	EPLUBL21	BPLUBL24	EPSCBL03	EPLUJE02-15	EPC0JE02-54	EPLUJE05-34	EPSCJE01-58	EPLUJE05-21	EPSCJE01-62	EPLUJE02-16	EPSCBL06	EPSCBL05	EPSCBL12	EPSCBL01	EPLUJE01-11	EPLUJE02-18	WPSORE01-12	WPFANU11

⊑
ź
S
eret
Ref
ē
E E
ğ

Sample Reference Number

Notes

11- 0- DL DL 3- 0- 0- 14- 1-1-1-1	Mo, Sr, Kb, Pb, Zh, Cu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Sr, Rb, As, Pb, Zn, Qu, Ni, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Co, Mn detected	Mo, Sr, Rb, As, Pb, Co, Mn detected	Sr, Rb, As, Pb, Zn, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Zn, Pb, Cu, N, Co, Mn detected	Sr, Rb, As, Pb, Zn, Qu, Ni, Co, Mn detected	Sr, Rb, As, Pb, Zn, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Co, Mn detected	Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Cu, N, Co, Mn detected	Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn Cu, Ni, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Sr, Rb, As, Pb, Zn, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Cu, N, Co, Mn detected	N/A	Mo, Sr, Rb, As, Pb, Zn, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Gu, N, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, N, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Cou, Ni, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Sr, Rb, As, Pb, Zn, Co, Mn detected	Sr, Rb, As, Pb, Zn, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Qu, Co, Mn detected	Mo, Sr, Rb, As, Pb, Zn, Cu, N, Co, Mn detected	Sr, Rb, As, Pb, Zn, Qu, Ni, Mn detected
	HPLUJEU3-U/	EPSCJE01-56	EPLUJE01-12	EPLUJE05-27	EPLUJE05-33	EPLUJE01-13	EPSCBL10	EPSCBL22	EPLUJE03-08	EPLUJE02-20	EPCOJE01-48	EPLUJE04-01	EPSCBL25	EPLUJE01-09	EPCOBL08	EPCOJE01-47	EPCOJE01-50	EPSCBL18	WPWER001-07	EPLUBL21	EPLUBL24	EP SCBL03	EPLUJE02-15	EPC0JE02-54	EPLUJE05-34	EPSCJE01-58	EPLUJE05-21	EPSCJE01-62	EPLUJE02-16	EPSCBL06	EPSCBL05	HPSCBL12	EPSCBL01	EPLUJE01-11	EPLUJE02-18	WPSORE01-12	WPFANU11	WPFANU13