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ABSTRACT

The solutions of an MHD dispersion relationship have been 
examined to analyze the magnetogasdynamic effects on the acoustic 
and entropy waves in an MHD generator, with emphasis on both the 
raagnetoacoustic phase velocities, and wave amplitudes. The 
analysis was facilitated by the introduction of a new nondimen- 
sional frequency which incorporates the effects of frequency and 
the magnetic interaction parameter in one variable. To measure the 
relatively small effects predicted for laboratory-scale MHD gener­
ators, special experimental methods were developed, based on the 
use of a low frequency acoustic excitation and the analysis of the 
phase difference between pressure signals measured at different 
locations in the MHD generator. Preliminary results from experi­
ments performed using the Stanford M-2 MHD generator facility 
demonstrate good agreement between the experimental data and 
solutions of the MHD dispersion relationship.

INTRODUCTION

Fluctuations and nonuniformities are inherent in combustion-driven MHD 
generators. These fluctuations and nonuniformities may result, for example, 
from combustor generated noise, nonuniform mixing in the combustion process, 
and turbulent fluctuations in the flow field. These inherent fluctuations can 
be measured as fluctuations in the plasma pressure, temperature, density, and 
velocity. The fluctuating quantities may be viewed as consisting of two parts, 
wave-like disturbances, and background noise. The wave-like disturbances are 
of two types; upstream- and downstream-traveling magnetoacoustic waves, and a 
magnetoentropic wave that travels with a speed approximately equal to that of 
the gas. The wave-like part demonstrates a strong propagational character, 
while the noise portion tends to be dissipative with only a weak propagational 
character. The magnetoacoustic fluctuations are of particular interest because 
they involve a transport of energy which can experience a significant magneto­
acoustic interaction while propagating back and forth through an MHD 
generator.

Fluctuations are important in MHD generators because of the strong depen­
dence of the electrical conductivity and Hall parameter on the flow condi-
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tions. Relatively small fluctuations in the plasma temperature and pressure, 
for instance, can induce large nonuniformities in the plasma electrical 
conductivity. This dependence of the plasma properties on the wave-type dis­
turbances provides a mechanism through which energy in the wave modes can be 
coupled, by means of the external circuitry, to the energy in the high 
enthalpy gas. Fluctuations in fluid properties serve as sources of acoustic­
like disturbances which in turn, via the electric circuits, generate further 
fluctuations. The existence of such a mechanism for the exchange of acoustic 
and electrical energy and hence the possibility of large propagating fluctua­
tions was first described in some early work [1-3] on magnetoacoustic interac­
tions. Later work [4-7] suggested that for certain operating conditions this 
mechanism could lead to instabilites in MHD generators.

Whether instabilities develop or not, the coupling between the inherent 
fluctuations in an MHD generator and the electrical power circuitry is 
undesirable and can affect an MHD generator's performance in many different 
ways. Even moderate acoustic oscillations could produce large plasma nonuni­
formities, which would lead to degradation of an MHD generator's electrical 
performance. Interactions and oscillations may develop between the magneto­
acoustic field and the electrical load circuitry which would affect the 
development of advanced power conditioning circuits. This type of interaction 
may already have been observed at the CDIF facility during tests of the 
inverter circuits [8 ]. The understanding of the nature of the magnetoacoustic 
interaction is important for the future design and success of large-scale MHD 
power plants.

The most common method of studying the nature of the magnetoacoustic 
interaction analytically (and thereby obtaining predictions of wave growth or 
attenuation, and phase velocity, etc.) has been to examine the solutions of an 
MHD dispersion relationship. Experimental data are needed in order to assess 
the validity of the analytical model and the approximations used in deriving 
this MHD dispersion relationship. No experimental results to date have been 
reported that enable a comparison to be made with solutions of the MHD disper­
sion relationship. The reason for this state-of-affairs is that, in small 
interaction, laboratory-scale MHD generators, the predicted magnetoacoustic 
effects are small and often overwhelmed by competing effects [9,10]. To 
attempt to measure predicted magnetoacoustic effects, well-designed 
experiments with sensitive measurement techniques are needed. This paper will 
present the results of a series of experiments performed using the Stanford 
M-2 facility which clearly demonstrate the magnetoacoustic effects on the two 
acoustic-like waves in a MHD generator. These data can be used to assess 
certain aspects of the magnetoacoustic theory.

THEORETICAL DEVELOPMENT

Dispersion Relationship
The theoretical approach involves the solution of essentially the same MHD 

dispersion relationship as described by Barton [7]. It comes from a first- 
order linearization of the three quasi-one dimensional MHD conservation equa­
tions for time dependent perturbations about a known steady-state solution. 
The linearization is done in terms of the acoustic variables, p', u' , T', 
pressure, velocity and temperature, respectively, and includes variations in
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plasma properties such as electrical conductivity and chemical composition. 
The MHD channel is modeled as a forced boundary value problem in which all 
disturbances are only allowed to originate either at the upstream or down­
stream boundaries. The linearity of this system of equations requires that 
fluctuations in the MHD channel always be of the same frequency as the 
boundary excitation source. For this reason traveling wave solutions of the 
form exp{ i(kx-tot)} may be assumed to satisfy the equations. The result is a 
cubic dispersion relationship whose roots yields three complex wave numbers, k 
= kr + ik^ , which are functions of the angular frequency cj and of the MHD 
interaction parameter S. These three complex wave numbers represent three 
different types of waves; a downstream magnetoacoustic, an upstream magneto­
acoustic, and a convected magnetoentropic wave. The imaginary part of the 
complex wave number describes the magnetoacoustic effect on the amplitude of 
the three waves because the amplitude is proportional to expC-k^x). The real 
part of the complex wave number describes the magnetoacoustic effect on the 
phase velocity of the three waves. The phase velocity is related to the the 
real part of the wave number , kr, by cphase= to/kr.

For the present theoretical study several approximations have been used in 
simplifying the MHD dispersion relationship. For the electrical equations an 
ideal Faraday generator has been used with infinite segmentation, and the 
boundary layer voltage drops have been lumped together and included in the 
external circuits. The effect of steady-state axial property gradients, and 
viscous and thermal conduction effects have been ignored. No significant 
change in the nature of the solutions to the dispersion relationship is 
expected due to the use of these modeling approximations. It may be noted that 
two and three dimensional models have shown the quasi-one dimensional model 
(long wavelength model) to be reasonably accurate over a wide range of fre­
quencies [1 1].

The results from the numerical solution of this MHD dispersion relation­
ship for conditions typical of those that can be obtained in the Stanford M-2 
MHD generator facility are shown in Figures 1-3. In these figures both the 
effect on the phase velocity and the effect on wave amplitude are demon­
strated. In these graphs the abscissa is a nondimensional frequency particu­
larly useful for the study of magnetoacoustics. It is expressed in terms of 
the angular frequency, to, the length of the duct, L, the isentropic speed of 
sound, aQ, the magnetic interaction parameter, S, and the Mach number of the 
flow, M. For conditions typical of those in the Stanford M-2 facility the 
magnitude of this nondimensional frequency is equal to one when the physical 
frequency is about 125 Hz.

The first graph of each set represents the MHD effect on the phase 
velocities of the three waves in an MHD generator. For the case of no MHD 
interaction, the phase velocities for the two magnetoacoustic waves and the 
magnetoentropic wave reduce to the well known expressions Cp^age = u ± aQ and
Cphase = u respectively. Here u is the fluid velocity, aQ is the isentropic 
speed of sound, and the upper and lower signs apply respectively to downstream 
and upstream-traveling acoustic waves. For the general case, it is convenient 
to define a wave velocity, a, as the difference between the phase velocity of 
the wave and the fluid velocity. The MHD effect on the phase velocity of a 
wave can then be represented by the deviation of a/aQ from one for the two 
magnetoacoustic waves and the deviations from zero for the magnetoentropic
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wave. The dependence of the a/aQ curves on Mach number has been found numeri­
cally to be small over a wide range of Mach numbers from 0.15 to 0.80.

In the wave amplitude graphs the imaginary part of the wave number is 
divided by the product (S»M) to allow all the dependence on the magnetic 
interaction parameter to be explicitly displayed in these graphs. The fact 
that the curves are almost constant for sufficiently large values of the

A
nondimensional frequency w demonstrates that k^ scales linearly with S over a 
wide range of frequencies and interaction parameters. The effect of changes in 
Mach number on the values of the wave amplitudes for large co scales almost 
directly with residence time in the channel for each of these waves. For 
instance, for a downstream-traveling wave [phase velocity proportional to 
(1+M)] the residence time in the channel decreases as the Mach is increased, 
and the large w value of the curve decreases proportional to changes in (1+M). 
The parameter which has the largest effect on both the phase velocity and the 
wave amplitude curves is the Faraday load factor, Kp.

Solutions of this MHD dispersion relationship (or of similar relations) 
have been studied extensively [1-7], with particular attention paid to the 
solution for the imaginary part of the wave number, because the value of k^ 
governs the possible occurrence of MHD instabilities. The present study has 
brought out two new interesting features of the solutions which have either 
previously not been identified or emphasized. The first is the large MHD 
effect on the phase velocity especially at low frequencies. The magnitude of 
this effect is demonstrated in Figures 1(a), 2(a), and 3(a). The second (and 
more important) feature is the introduction of the nondimensional frequency 
given in Figures 1-3. With the use of this nondimensional frequency, the 
entire dependence of the solution on frequency and magnetic interaction param­
eter is displayed explicitly. There is no other implicit dependence on fre­
quency or MHD interaction. This simplication will apply as long as steady- 
state axial property gradients, and viscous and thermal conduction effects are 
ignored. The physical reason for this nondimensional grouping is that for 
acoustic fluctuations the inertial force scales with angular frequency u>. This 
nondimensional grouping is, then, a ratio of the acoustic inertial force to
the MHD JxB force. The use of this nondimensional frequency helps to clarify 
the nature of the MHD interaction, particularly at low frequencies.

Channel Acoustics
The simplest acoustic model for an MHD channel is a constant area duct 

with an excitation source upstream and a known boundary condition downstream, 
as shown schematically in Figure 4. The pressure field inside the duct can be 
described analytically by the simple acoustic wave equation, which requires 
two boundary conditions, one upstream and one downstream. A useful form in 
which to specify the downstream boundary condition is in terms of a complex 
reflection coefficient, . The upstream boundary condition must specify the 
nature of the upstream excitation source and how it varies in amplitude as a 
function of frequency.

Under ordinary acoustic conditions the solution to the wave equation 
yields a pressure field inside the duct that can be expressed as the superpo­
sition of a downstream- and an upstream-traveling wave;

p'(x,t) i(k x - a)t) A e d + B -i(k x + cot) e u ( 1)
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The downstream boundary condition, R̂  , 
A and B in this expression by

can be used to relate the coefficients

Rj = r eie up
down

B -i(k + k , ) • 1  -r— e u d ( 2)
x=l

Equation (1) can then be rearranged in the form

p'(x,t)=Re{ A e ^^rd^ 

where r'=

k =

; kidX /  1 + r'2+ 2r' cos[ 2k(x-l)+e] e ^ e ^ }

(k. + k , ) • 1  r e iu id

k + k ru rd

(3)

and <J> is the phase angle given by

r' sin [ k (x-1 ) + 0 ] - sin [ k (x-1 ) ]
tan 0 = ----------- ---------------------------------- . (4 )

r' cos [ k^Cx-l) + 0 ] + cos [ kd(x-l) ]

The subcripts r and i refer to real and imaginary part, and the subcripts u 
and d refer to the downstream- and upstream-traveling acoustic-like waves 
respectively.

The coefficient A in Eq. 3 can be determined once the upstream boundary 
condition is specified. To determine the phase of the pressure wave in the 
duct from Eq. 4, A is not needed and hence the upstream boundary condition is 
not needed. The phase anywhere in the duct is only a function of the down­
stream reflection boundary condition and is independent of the upstream exci­
tation source. This is particularly advantageous in an MHD generator where the 
exact nature and amplitude of the upstream source is unknown.

The phase angle as defined in Eq. 4 contains an arbitrary constant. A more 
unambiguous quantity is the phase difference between two pressure signals 
measured at different axial locations in the duct. For the idealized case 
where there are no dissipative losses, R^=l, and M=0, this quantity depends on 
frequency as shown in Figure 5. The phase difference is always 0 or 180 
degrees with sharp transitions in between. The reason for this behavior can be 
explained in terms of the envelope of the standing-wave pattern that exists in 
the duct. For this simple case, the envelope of the pressure fluctuations at a 
given frequency would look similar to that shown in Figure 6 . The downstream 
boundary is always an antinode if the reflection coefficient is real and 
positve. The locations of the nodes in this pattern correspond to the minima 
in the square root term in Eq. 3. In this case

cos [ 2K(x-l) + 0 ] = -1

or 2k(x-l) + 0 = -(2n+l)n n = 0 ,±1 ,±2 ,...
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and so (x-1) ( 2 n + l )n  + 0 (5)node 2 k

The first node occurs for n = 0, and successive nodes in the standing-wave 
pattern correspond to incremental values of n.

The behavior of the phase difference in Figure 5 can be understood by 
examining the locations of the nodes in Figure 6 relative to the two axial 
measurement locations. If the two axial locations are separated by an even 
number of nodes, the phase difference is 0 degrees, and if they are separated 
by an odd number of nodes, the phase difference is 180 degrees. The transition 
between 0 and 180 degrees occurs when one of the measurement locations happens 
to be a node. The location and spacing of the nodes changes when the frequency 
changes as described by Eq. 5. Starting at low frequencies the nodes are 
widely spaced, and the two axial locations are not separated by any nodes and 
hence no phase difference. As the frequency increases, all the nodes move 
toward the downstream boundary. The frequency at which the location of the 
first node is equal to that of the most upstream of the two axial locations is 
the frequency at which the first transition to 180 degrees occurs in Figure 5. 
Successive transitions occur as nodes, which continue to move closer to the 
downstream boundary as the frequency increases, pass by one or the other of 
the measurement locations. For these idealized conditions, measurements of the 
transition frequencies would enable the sound speed to be determined.

This simple example illustrates the basic principles that underlies the 
experiments to be described later. Under real conditions, dissipation, mean 
fluid flow and an imperfectly reflecting downstream boundary produce distor­
tions in the idealized dependence of the phase difference on frequency, but 
the same basic behavior is preserved. Because of nonideal effects, the transi­
tions are more gradual and the peak values are less than 180 degrees.

Magnetoacoustic Effects on the Phase Difference
For MHD conditions, the character of the dependence of the phase 

difference on frequency will be influenced by the two effects shown in Figures 
1 and 2; namely the MHD effects on the phase velocity and on the damping of 
the acoustic-like waves. The frequency at which a sharp transition in the 
phase difference occurs (under idealized conditions) is directly related to 
the average phase velocity of the two magnetoacoustic waves. The relationship 
can be seen by rewriting Eq. 5 in terms of the transition frequencies that 
would be observed at a fixed measurement location;

and if

r = ( 2n+l )ti + 6
tran s  2 ( x - l )

u) = k»c ,

then -  ( 2n+l )ti + 9
Wtran s  C 2 ( l - x )

One can see that that any change in c will lead directly to a shift in the 
transition frequency. The shift in frequency would be relatively easy to 
measure if the transitions in the phase difference plots were sharp. As an 
example, Figure 7 demonstrates the effect on a phase difference plot of a 5 
percent reduction in c. (In the real case, the reduction in c will vary 
strongly with frequency, and the effect at the second transition would be less
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than at the first.) In this figure the shift in frequency caused by the small 
change in c is easily visible. The more gradual the transitions become due to 
acoustic losses, the less sensitive the technique becomes for measuring 
changes in the average phase velocity.

Ordinary acoustic effects can cause c to change due to variations in the 
Mach number. The average phase velocity of the two acoustic waves is propor-O _tional to (l-M^). Any increase in the Mach number causes a reduction in c and 
hence causes the transition frequencies to shift to lower values. The effect 
that a nonzero Mach number can have on the phase difference is demonstrated in 
Figure 8 . The small negative slope in the M = 0.2 curve is due to the fact 
that the phase velocities of the downstream- and upstream-traveling waves are 
different when there is a mean gas velocity.

The peak values of the phase difference and the shape of the dependence on 
frequency in the region of the transitions are sensitive to the amount of 
acoustic loss there is in the channel. There are two sources of acoustic loss, 
transmission loss at the exit due to an imperfectly reflecting boundary, and 
dissipative losses in the flow due to viscous and thermal effects. Transmis­
sion loss affects the phase difference because it makes the value of r in Eq. 
4 less than one. Figure 9 demonstrates what happens to the phase difference 
when the value of r is reduced from 1.0 to 0.71 (the experimental value). The 
dissipative loss affects the phase difference because the exponetial term in 
the expression for r' becomes less than one if k^ is greater than zero. Figure 
10 demonstrates the effect of two different values of ^  on the phase 
difference. The two values of used in this figure correspond to typical 
values for (1) normal acoustic dissipative losses, and (2) MHD dissipation 
losses in the Stanford M-2 channel (see Figures lb,2b).

In the actual case changes in dissipation and phase velocity caused b y MHD 
effects occur simultaneously. The combined effect for a reduction in c of 5 
percent is shown in Figure 11 in comparison with the effect of dissipation 
alone. The 5 percent effect is not nearly as pronounced in this case as it is 
in Figure 7. Comparing Figures 9 and 10, one can see that if the MHD effects 
on the phase velocity are 5 percent or less, the changes in the phase 
difference plots due to the MHD effect on ki will be more pronounced than 
those due to the MHD effect on c. The dissipation effect can also be measured 
more accurately because it is easier to detect the lowering of the peak level 
of the phase difference than it is to detect small shifts in the rising edge 
of the transitions.

Experimental Considerations
The change in the phase difference produced by MHD effects on both the 

dissipation and the phase velocity will be maximized if the measurements are 
made at as low a frequency as possible. For the phase velocity it is obvious 
from Figures 1 and 2 that the largest effects on c would be observed at low 
frequencies. For the dissipation the desirability of low frequencies is not as 
obvious because the value of ki from these figures is relatively independent 
of frequency over the range of frequencies of interest. However the measure­
ment of the magnetoacoustic effect on k£ really involves measuring the incre­
mental magnetoacoustic dissipation in excess of the normal acoustic dissipa­
tion, as shown in Figure 9. The classical expression for the amount of normal 
acoustic dissipation in a tube is [1 2]
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(6 )
where

and

ki
1 f OJV

2a 1 2o
izL
/Pr J

v is the kinematic viscosity,
P is the perimeter of the duct,
S is the cross sectional area of the duct, 
y is the ratio of specific heats,
Pr is the Prandtl number of the gas.

The acoustic dissipation scales with the square root of frequency, and hence 
the relative effect of the raagnetoacoustic dissipation with respect to the 
normal acoustic impedance will be larger for lower frequencies.

Three methods were devised to produce transitions in the phase difference 
at the lowest possible frequencies. One method involved extending the test 
section beyond the active MHD channel. Because this arrangement tends to 
diminish the magnitude of the magnetoacoustic effects in the combined MHD duct 
and its continuation, the length of the extension must be limited. A second 
method involved the use of an enlarged cross sectional area for the test 
section extension. The effect of this area change on lowering the transition 
frequencies will be discussed in the next subsection. The third approach 
involved placing a small-area orifice at the downstream end of the test 
section extension just upstream of the exhaust ducting, and adjusting the flow 
rate and back pressure so as to achieve choked flow in the orifice. For choked 
flow through an orifice, the acoustic reflection coefficient is [13]

R  ... -  < 7 >orifice 1+aM

where [ 1+
(Y — 1)M ]

a =
[1+ ]

The use of the choked-flow orifice as the downstream boundary of the test 
section has three advantages. First, it provides a known, constant downstream 
boundary condition. Secondly, it decouples the downstream exhaust acoustics 
(which had plagued preliminary magnetoacoustic experiments [14]) from the MHD 
channel acoustics. The last and most important property of the orifice is that 
the reflection coefficient is real and positive and hence approximates an 
acoustically closed end. The first transition frequency for a closed-end 
system is one-half that of an open-end system. An open-end system is approxi­
mately what would be obtained if the channel were to terminate through a 
diffuser (or otherwise) into the larger area exhaust ducting. This factor of 
two can make a significant difference particularly on the measurement of the 
magnetoacoustic effect on the phase velocity.

Two Region Model
Equations 1-4 describe the acoustics properties of a highly simplied model 

of a MHD channel in which the duct area is constant and the gas properties are 
uniform in the axial direction. As described in the preceding subsection, the 
actual experimental arrangement is better modeled as consisting of two 
regions; an upstream region in which the waves are raagnetoacoustic, and a 
downstream region in which the waves are (ordinary) acoustic. A schematic of 
the two-region model is shown in Figure 11. An area change at the interface
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between the regions has been included to lower the transition frequencies at 
which the phase difference changes. (The reason why the area change lowers the 
frequency of the transitions will be discussed later.)

The dependence of the phase difference on frequency for this two region 
problem is obtained by employing the known solutions in each region separ­
ately, and then applying the matching condition at the interface that the 
pressure and volume flow rate be continuous. In ordinary acoustics the 
specific acoustic impedance (ratio p'/u') is pQa0, but in magnetoacoustics 
this is no longer true. The dispersion relationship must be used to determine 
the specific acoustic impedance, which may be different for the upstream- and 
downstream-traveling magnetoacoustic waves. To allow for this variable impe­
dance, the equations are left generalized in terms of a normalized specific 
impedance

= _E_
u

In analogy with the one region model, the pressure and velocity fields in 
region 1 can be written

, . i(k ,x - cot) pj = A^e Id + Bie-i(kluX + (8a)

. A1 i(k. ,x - cot) u; = --- e Id + “* e~i(kluX + u t )  , (8b)
1 Zld Zlu

and similarly for region 2

, i(k0 x - cot)V 2d +B2e"i(k2ux + wt) (9a)

, A2 i(k x - cot) u' = --- e 2d B2 -i(k x + cot) + --- e zu (9b)
2 Z2d Z2u

The matching condition at x=l^ is

p * 1 = p ' 2 and u'isi = u'2S2 . (1 0)

The reflection coefficient at x=(l^ +12) can be expressed as

B2 -i( k„ + k )*(l.+l„)R = — -- e v 2u 2d; k 1
2 A2

(ID

If a reflection coefficient for region 1 is defined as

B,
R, =1 A

1 -i( k + k )• 1—  e k lu Id' 1 ,
1

then Eq.'s 8-11 can be used to solve for Rj. The result is
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( 12)R, = [ 1 + Z12SR 1 Z2R ^

Z1r[ 1 + *2^ + Z12SR t 1 Z2R^2^

where n - D  i(ko +Ro .)*l0 R^= R2  ̂ 2u 2d 2

and Z 12 =
Id
’2d Z1R

Id
lu Z2R

Z2d „ S2— —  , and SR= —
' 2u 1

The solution for the pressure field in region 1 is then given by Eq.'s 3 
and 4 if the value for the reflection coefficient given in Eq. 12 is used in 
place of Eq. 2. When using Eq.'s 3 and 4 in this two region model, the lengths 
and wave numbers that appear in those equations should be those for region 1 
alone. All previous discussions about the nature and character of the phase 
difference plots still apply to the solutions obtained with this two region 
model.

The increase in the cross sectional area was included in the two region 
model because of the effect it can have on reducing the first transition 
frequency at which the phase difference changes. As an example, Figure 13 
demonstrates the relative shift in the transition frequency caused by changing 
the area ratio SR from 1.0 to 2.4. The 35 percent decrease in the first trans­
ition frequency produces a significant increase in the magnitude of the 
magnetoacoustic effects on both the change in the damping and the phase 
velocities.

The decrease in the transition frequency occurs because the matching 
condition, Eq. 10, requires a discontinuity in u' and the specific acoustic 
impedance at the interface. The standing-wave envelope, as depicted in Figure 
14, will also have a discontinuity at the interface which results in the first 
node moving closer to the downstream boundary. The change in the standing-wave 
envelope effectively reduces the wavelength at any given frequency. The 
shorter wavelengths cause the transition frequencies to shift to lower values.

The analysis for the effect of a sudden area change assumes purely one­
dimensional flow. This description is obviously approximate, particularly in 
the vicinity of the area change. The model can most easily be corrected for 
two- and three-dimensional effects by using a effective value of SR in the 
theory which is somewhat less than the geometrical value. The effective value 
of SR can be found by performing a "calibration" measurement of the test 
section under known conditions. For these experiments, the calibration was 
done using room temperature nitrogen.

EXPERIMENTAL APPARATUS AND PROCEDURES 

Experimental Facility
All experiments were conducted in the Stanford M-2 MHD facility of the 

High Temperature Gasdynamics Laboratory (HTGL). The flowtrain consisted of a 
combustor, plenum, nozzle, and run-in section upstream of the active MHD 
channel region. Downstream of the test section the run-out section had a cross 
sectional area 2.7 times that of the active MHD region. The run-out was ter­
minated by a choked-flow orifice followed by the scrubbing and exhaust system.
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All internal surfaces upstream and including the active MHD region were lined 
with MgO brick to minimize the heat loss. In the downstream components the 
internal surfaces were unbricked and made of water cooled copper or stainless 
steel. A schematic of the Stanford M-2 flowtrain used for these series of 
magnetoacoustic experiments is shown in Figure 18. Some of the important flow- 
train dimensions are listed in Table I.

TABLE I M-2 Flowtrain Dimensions

Combustor diameter = 9.0 cm length = 37 cm
Plenum width = 9.7 cm height = 22 cm length = 38 cm
Nozzle inlet width = 6 .0 cm inlet height = 13 cm

exit width = 3.0 cm exit height = 10 cm length = 5 cm
Channel width = 3.0 cm height = 10 cm length = 108 cm
Run-out width = 6 .6 cm height = 13 cm length = 51 cm
Orifice width = 1.4 cm height = 6 .8 cm
Magnet active length = 5Cl cm

Spacing between Microphones: in the MHD Channel : 21.9 cm
Distance from Downstream Microphone #3 to MHD Channel Exit : 17.1 era

The experiments were all performed with the MHD generator operating in a 
normal, segmented Faraday configuration with thirteen electrode pairs. Banks 
of lead-acid batteries could be inserted into the individual external load 
circuits in increments of 120 V to augment the current density to values in 
excess of 1.0 A/cm2. The MHD plasma was produced by near stoichiometric com­
bustion of ethanol and oxygen. Potassium hydroxide was mixed with the ethanol 
to produce about 2% Potassium by weight in the products, which produced an 
electrical conductivity with a nominal value of 15 mhos/m. The static pressure 
in the channel was nearly atmospheric with a nominal core temperature of 2750 
K. The Mach number of the plasma was kept low, near 0.20, to maximize the 
magnetic interaction parameter as much as possible. More details on the 
facility and characteristic parameters of the Stanford M-2 MHD generator can 
be found in references [7-9]. Details on the data acquisition instrumentation 
and equipment can be found in reference [14].

Cold Flow Experiments
A set of experiments using room-temperature gases in the experimental MHD 

channel were conducted prior to the magnetoacoustic experiments. The purpose 
of these cold flow experiments was to test the validity of the expression 
given by Eq. 7 for the reflection coefficient of the orifice, and to determine 
the proper value for SR. A speaker installed in place of the M-2 combustor end 
plate was used as the upstream acoustic excitation source. Nitrogen was 
injected into the channel through the 02 and N2 swirl ports in the M-2 com­
bustor. The nitrogen flow rate and the exhaust back pressure were adjusted to 
produce a choked flow at the downstream orifice. The Mach number in the test 
section was equal to about 0.11. Pressure probes located at the three loca­
tions shown in Figure 15 were used to measure the acoustic signal.
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A comparison of the measured phase difference between the two upstream 
pressure probes and the corresponding theoretical value is shown in Figure 16. 
For the theoretical calculations the acoustic dissipation was computed from 
Eq. 6 , and the best fit for the reflection coefficient was found to be 0.83, 
in agreement with Eq. 7 for the Mach number of 0.11. The best fit for SR was 
found to be 2.6, while the geometrical value is 2.7. This difference is in 
agreement with the postulated error in the theory due to three-dimensional 
effects in the vicinity of the area change.

Excitation Source and Procedure
In the experimental MHD generator the pressure fluctation level for the 

background noise portion of the inherent fluctuations can be comparable to the 
wave-like portion, especially at low flow rates. This behavior occurs particu­
larly at or near the transition frequencies in the phase difference, because 
these frequencies correspond to nodes in the acoustic part of the signals. (At 
a node the acoustic signal is greatly reduced, but the noise is unaffected.) 
The quality of the experimentally measured phase difference is greatly reduced 
when the background noise becomes comparable to ox greater than the wave-like 
fluctuations. To produce good quality results, an excitation source is needed 
which is capable of producing acoustic-like disturbances in the MHD channel 
that are well above the background noise. Because the frequency spectrum of 
the noise is quite broad, the most effective approach is to use an excitation 
source that has a narrow-band frequency spectrum, and then use spectral data 
reduction techniques to isolate the strong acoustic-like signal from the 
background noise. The simplest narrow-band excitation signal is one composed 
of a set of discrete frequencies. In reducing the data only the results at the 
discrete excitation frequencies should be used, because the results at other 
frequencies are in general noisy and of poor quality.

To produce controlled acoustic-like disturbances in the MHD channel a 
voltage ^was applied between opposed Faraday^ electrodes causing a large AC 
current J' in the channel. The corresponding J'xB force on the plasma produced 
significant pressure fluctuations. The source of the oscillating current was a 
series-parallel combination of four programmable DC power supplies (Kepco 
model ATE 100-10M) which was capable of producing up to 200 volts and 20 
amperes with a upper frequency bound of 3 kHz. The programmable source for the 
power supplies was a specially built sinewave synthesizer capable of producing 
a signal composed of up to 17 distinct sinewaves. The number of sinewaves in 
the signal, the frequency spacing between each sinewave, and the center fre­
quency of the signal were all adjustable.

The values of these three parameters were selected on the basis of several 
physical considerations. For a fixed total power in the excitation source, the 
number of discrete frequencies in the signal controls the amount of power at 
each frequency. The more frequencies there are, the less power there is at 
each frequency. The maximum number of frequencies was set so that the induced 
acoustic-like signal in the plasma was still well above the background noise. 
The separation between the discrete frequencies controls the frequency resolu­
tion of the measurements. The bandwidth of the signal is equal to the number 
of discrete frequencies times the frequency separation. A larger bandwidth 
means fewer separate center frequencies are needed to cover the entire fre­
quency range of interest. A trade-off exists between higher resolution and 
larger bandwidth. To reduce the effects of possible drifts in the experimental 
conditions, it is desirable to keep the number of center frequencies small,

2:2:12

SEAM #22 (1984), Session: Generators

https://edx.netl.doe.gov/dataset/seam-22


and thereby keep the duration of the time required to acquire the data small. 
Most of the data were acquired with either a one or two Hertz frequency reso­
lution and with five discrete frequencies used for each center frequency.

EXPERIMENTAL RESULTS AND DISCUSSION
Results

Proper performance of the excitation source was critical to the success of 
the magnetoacoustic experiments. A typica. power spectral density plot for the 
signal measured by the upstream pressure probe is shown in Figure 17. The 
excitation frequencies for this case were centered around 155 Hz. These 
results show that the pressure signal produced by the source contains the 
desired narrow peaks at the discrete excitation frequencies, and that the 
signals for the excitation frequencies are significantly above the background 
noise.

The introduction of a pressure oscillation in the plasma at a given fre­
quency does not guarantee that the disturbance will be wave-like. The 
coherence (a measure of the portion of energy in one signal, which is corre­
lated to the energy in the other signal [15]) measured by two pressure probes 
at different locations in the channel can be employed to determine the extent 
to which the excited disturbance is propagational in character. A wave-like 
fluctuation produces a coherence of 1.0 , while a noise fluctuation produces a 
low coherence of 0.2 or less. A typical coherence plot is shown in Figure 18 
for the same conditions as Figure 17. The coherence is near one at low fre­
quencies and drops off near the frequency at which the first node is located 
at the upstream pressure probe. The background coherence rises again after the 
frequency at which the first node passes the downstream pressure probe. The 
narrow peaks in the coherence around 155 Hz demonstrate that the excitation 
source is producing a strong wave-like disturbance that is spectrally well 
above the background noise.

The excitation frequencies were incremented to cover the range of fre­
quencies from 120 Hz to 260 Hz which spans the range of the first transition 
as shown in Figure 13. At each excitation frequency the phase difference 
between the upstream and the downstream pressure probes determined for the 
cases of ordinary acoustics and of magnetoacoustics is shown in Figures 19 and 
20, respectively. Included in these figures is the corresponding theoretical 
value computed using the two region model and the MHD dispersion relationship. 
The experimental MHD conditions are identical to those depicted in Figures 1-
3.

Discussion
The data in Figures 19 and 20 represent preliminary results obtained from 

the most recent set of magnetoacoustic experiments performed at Stanford. The 
experimental data and the theory are seen to be in very good agreement. The 
data in both figures appear to fall slightly inside and below the theoretical 
curves. This behavior is also observed in the cold flow data in Figure 16 and 
indicates that the difference is due to the acoustic model and not to any MHD 
effects. The change in the phase difference dependence on frequency is quite 
noticable between the two conditions shown separately in Figures 19 and 20. 
The peak value of the phase difference is reduced from 110 degrees in the 
normal acoustic case to 85 degrees in the magnetoacoustic case. The
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differences between the two figures are mostly due to an increase in of 
about 0.13 for the magnetoacoustic waves, in comparison with a value of about
0.03 for the normal acoustic waves. The predicted changes in the phase 
velocities are relatively small (less than 5 percent in the measured range of 
frequencies) and could not be determined from the present data owing to the 
scatter shown in Figure 20. The relatively large Faraday load factor was 
responsible for the small effect on the phase velocities. The external load 
resistor used in the experiments was only 0.7 ohms, but the large boundary 
layer resistances were responsible for the high value of the effective Faraday 
load factor.

Future work will concentrate on refining the data reduction procedures 
employed for the present measurements, and on analyzing additional data to 
examine the consistency of the model. The present results may be improved by 
accounting for small variations on the experimental conditions (particularly 
the current density) , that occurred during the time required to measure the 
phase difference over the entire frequency range. An analysis of additional 
data acquired during these experiments will be used to test the consistency of 
the model by comparing the phase difference between different pairs of 
pressure probes measured at the same time, and by comparing phase differences 
between the same pressure probes measured under different MHD conditions. The 
latter analysis will be particularly important in determining the effect of 
the magnetic interaction parameter on the damping factor k^.

CONCLUSIONS

Interactions between the magnetoacoustic fields and the electrical power 
circuitry can have detrimental effects on the performance of an MHD generator. 
Previous theoretical studies of these interactions have been based primarily 
on examining the solutions of an MHD dispersion relationship. The derivation 
of this relationship contains many assumptions and approximations whose 
validity has never been successfully tested experimentally. The magnitude of 
the magnetoacoustic effects in laboratory-scale MHD generators is small, but 
experiments to compare with the theory can be performed by making measurements 
at low frequencies where the predicted effects are the largest.

A simple acoustic model of the experimental MHD generator has been 
developed and used in conjunction with the MHD dispersion relations to predict 
the pressure field in the MHD generator. An experimental approach using the 
phase difference between pressure signals measured at different locations in 
the MHD channel to detect small MHD effects on both the damping and the phase 
velocity of magnetoacoustic waves has been developed and has proven to be 
quite sensitive to small changes. To make these measurements, propagating low 
frequency pressure fluctuations in an MHD channel were excited using a 
specially designed external power source to produce oscillations in the 
current between a pair of opposed electrodes located upstream of the MHD 
channel. A preliminary analysis of the data shows good agreement between the 
measured and predicted MHD effect of wave amplitude damping on the phase 
difference. The predicted changes in the phase velocities of the waves were 
too small to detect owing to the scatter in the data. Work is in progress to 
improve the data reduction procedure employed with the present data, and to 
examine additional data taken under different operating conditions. The 
measurements reported here are believed to be the first to provide experi­
mental support for the predicted MHD effects on acoustic waves.
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Figure 1. Results of MHD dispersion 
relationship for effects on (a)
Phase Velocity, and (b) Damping 
Coefficient of the downstream­
traveling magnetoacoustic wave.
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Figure 2. Results of MHD dispersion 
relationship for effects on (a)
Phase Velocity, and (b) Damping 
Coefficient of the upstream­
traveling magnetoacoustic wave.

ENTROPT WAVE

Mq = 0.20 
KF = 0 .7 0  
J T = 0 . 8  fl/CM2

<\jo
' 0.0
ruO"

2=
cn _ 
\o’-

1.0 2 .0  3.0 4 .0  5.0
(WL/n0) / (S-M)

o—'—'—•—•—r~ ■ ' 1 i ' ' ' 1 i ' ' ' ' i ■“
0 .0  1.0 2 .0  3.0 4 .0

(WL/Rq) / (S M)
5.0

Figure 3. Results of MHD dispersion 
relationship for effects on (a)
Phase Velocity, and (b) Damping 
Coefficient of the magnetoentropic 
wave.
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Figure 4. Schematic of the simplest 
acoustic model for an MHD generator.

FREQUENCY (HZ)

Figure 5. Phase Difference between 
pressure signals at two different 
channel locations versus Frequency 
(for the ideal conditions M=0, R^=l, 
and k^=0 ).

Figure 6. Envelope of the standing- 
wave pressure fluctuations for two 
different frequencies (closed end 
boundary condition).
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Figure 7. Effect on the Phase 
Difference due to a 5 percent change 
in the Average Phase Velocity.

Figure 8. Effect on the Phase 
Difference due to a Mean Flow 
Velocity (Mach number = 0.2).

Figure 9. Effect on the Phase 
Difference due to an imperfectly 
Reflecting Downstream Boundary 
Condition (R^ = 0.71).

Figure 10. Effect on the Phase 
Difference due to Dissipation, (1) 
no dissipation, (2) normal acoustic 
dissipation, and (3) MHD dissipation.

Figure 11. Combined effect on the 
Phase Difference of Dissipation and 
a 5 percent change in the Average 
Phase Velocity.

Figure 13. Effect on the Phase 
Difference due to an Area Change 
(from 1.0 to 2.4).
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discontinuity

©
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Figure 12. Schematic of the Two 
Region Acoustic Model.

Figure 1A. Envelope of the standing- 
wave pressure fluctuations in the 
two region model with and without a 
discontinuity.

Figure 15. Schematic of M-2 flow- 
train used for the magnetoacoustic 
experiments. Figure 16. Theoretical fit to 

Measured Phase Difference between 
two upstream microphones in the cold 
N£ flow case.
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Figure 17. Power Spectral Density of 
upstream microphone with the excita­
tion source on.

Figure 18. Coherence between 
microphones for the case when the 
excitation source was on.

FREQUENCY (HZ)

Figure 19. Theoretical and 
Experimental Phase Difference 
between microphones in the MHD 
channel for the Ordinary Acoustics 
case.

Figure 20. Theoretical and 
Experimental Phase Difference 
between microphones in the MHD 
channel for the Magnetoacoustics 
case.
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