Coal-Fired MHD Test Progress At The Component Development And Integration Facility

Author(s): I. Stepan, A. T. Hart, T. J. Rivers, and R. J. Glovan Session Name: Facility and Proof-of-Concept Status Reports SEAM: 28 (1990) SEAM EDX URL: https://edx.netl.doe.gov/dataset/seam-28

EDX Paper ID: 1374

COAL-FIRED MHD TEST PROGRESS AT THE COMPONENT DEVELOPMENT AND INTEGRATION FACILITY

I. E. Stepan	A. T. Hart	T. J. Rivers	R. J. Glovan
CDIF Operations Division Manager	Test Director	Test Engineer	Senior Test Engineer
MSE, Inc.	MSE, Inc.	MSE, Inc.	MSE, Inc.
Butte, MT 59702	Butte, MT 59702	Butte, MT 59702	Butte, MT 59702

ABSTRACT

The Component Development and Integration Facility (CDIF) is a Department of Energy (DOE) test facility operated by MSE, Inc. MSE personnel are responsible for the integration of topping cycle components for the national coal-fired magnetohydrodynamics (MHD) development program. Initial facility checkout and baseline data generation testing at the CDIF utilized a 50-MW₊, oil-fired combustor (with ash injection to simulate coal slag carryover) coupled to the 1A supersonic channel. In the fall of 1984, a 50-MW,, pressurized, slag rejecting coal-fired combustor (CFC) replaced the oil-fired combustor in the test train. In the spring of 1989 a coal-fired precombustor (CFPC) was added to the test hardware. In addition, significant progress and developments were made by MSE in the areas of the solid suspension injection system, the stack gas analysis system, and temporary fine coal transport.

Testing during the last year emphasized baseline testing, including oxygen injection for effective mixing, fine coal testing, duration testing, and iron oxide slurry injection testing accomplished.

MSE activities in test hardware included the fabrication and assembly of an entire 1A₁ channel and the repair and refurbishment of the channel that has been in test service since July 19, 1989. MSE has also designed and fabricated several developmental projects that include the MSE nozzle, the triple port walls in the diffuser and a post-nozzle test section for combustor-only testing. This paper discusses the involvement of these pieces of hardware in the test program during the last year.

Facility modification and installation of current controls, the permanent solid suspension injection system, and modifications for a temporary fine coal system are addressed. Also, projects on the horizon such as installation of the continuous slag rejection and removal system, and testing to address hardware candidate materials and design for the prototypic channel are discussed. Long-term plans for new installations are also addressed.

INTRODUCTION

The Component Development and Integration Facility (CDIF) is operated for the Department of Energy (DOE) by MSE, Inc. MSE is chartered with integrated testing of coal-fired MHD topping cycle components. Currently under evaluation are a 50-MW, coal-fired combustor (CFC), developed by TRW, and a linear generator, diffuser, and a full compliment of current control units, all supplied by AVCO Research Laboratory, Inc. Previous CDIF SEAM papers have detailed the initial oil-fired, ash-injected power tests, as well as the CFC and coal-fired precombustor (CFPC) checkout and initial power generation testing at the CDIF. This paper provides the status of CDIF coal-fired power generation testing since the 27th SEAM (June 1989). During the past year, test activities have concentrated on technical issues of coal-fired MHD, addressing cathode wall shorting phenomena, secondstage mixing, and duration testing, all in the interest of additional data to support Proof-of-Concept hardware decisions. Efforts to install the new AVCO-supplied current controls have also been completed.

TEST SYSTEM DESCRIPTION

Since August 1985 when the first electrical power tests with the CFC were conducted, CDIF test activities have focused on coal-fired MHD power generation. The 50-MW_ CFC in its current test configuration is depicted in Figure 1. The oil-fired preheater, receives the incoming air from a highvolume compressor and heats this air to 1,200 after oxygen is added to obtain the desired enrichment. The CFPC uses a portion of the preheated air from the OFV to combust coal and produce air heated to 2,900 $^{\rm O}{\rm F}$ that is then introduced to the first-stage combustor. Preheated air enters the cylindrical first stage tangentially and entrains pulverized coal particles injected from the endplate. Operating substoichiometrically, coal is gasified and slag particles are driven to the combustor wall. A concentric baffle guides the molten slag into a water-filled tank below. The gas stream passes through the deswirl section of the combustor (where dry potassium carbonate may be added) and enters the second stage. Additional oxygen, and sometimes nitrogen (to simulate a prototypical oxidizer product) are injected in the second stage to bring the plasma to near-stoichiometric conditions. Baseline operating conditions used for the majority of the testing during the last year are:

Thermal Throughput	50 MW
Mass Throughput	17.4 1b/s
OFV Preheat	1,200 °F
CFPC Preheat	2,900 °F
Oxidizer Enrichment	39.2%
CFPC Equivalence	1.09
First-Stage Equivalence	0.55
Second-Stage Equivalence	0.95
Global N/O	0.70

With the completion of CFPC combustor checkout testing, the channel was installed. The channel that

was identified as the $1A_1-C1$ provided almost all of the test service since the 27th SEAM. That channel was comprised of anode wall elements capped (top and upstream side) with type 446 stainless steel, cathode wall elements with 75 percent tungsten/25 percent copper leading edge sidecaps, peg-style forward sidewalls, and diagonal bar-style aft sidewalls. The details of these elements have been described in a previous SEAM paper.

A full compliment of AVCO-supplied current controls were installed and checked out. On-line testing of the current controls began in May, and results will be discussed at SEAM 28. Figure 2 shows the arrangement of the current controls in conjunction with the channel.

Major CDIF plant support systems are shown in Figure 3. Compressed air, gaseous oxygen and nitrogen, fuel oil, pulverized coal, iron oxide/oil slurry, and dry seed are the process flow delivery systems. Medium pressure, deionized cooling water maintains the desired test train component temperature. The magnetic field is provided by a 2.9 tesla iron core magnet. Conversion of the dc to ac power, transmission to the commercial power grid, and variable generator loading are provided by an Electric Power Research Institute (EPRI)-supplied inverter system. Channel electrical configuration and measurements are achieved in a room containing the required numerous termination blocks and voltage/current transducers. A data acquisition system (DAS) records and stores over 2,000 measurements and calculated values each second (1,500 of these are electrical parameters). Since the combustor operates at a voltage potential of up to 9,000 volts, all process flow, cooling water, and instrumentation attachments to ground must meet stringent isolation criteria.

TEST RESULTS

Major programmatic and technical objectives have been met in the last year. From July 1989 through April 1990, 65 test starts occurred with a coal burn time of 125:32 hours and electrical power generation of 77:59 hours. Significant test accomplishments are detailed in Table 1.

The test program over the last year at the CDIF was designed to support the overall effort to acquire more and longer duration data to aid vendors responsible for design of the Proof-of-Concept hardware. Major technical accomplishments during the year were:

- completed second-stage oxygen injection configuration testing, within the limits of the second-stage configuration options;
- completed fine coal testing;
- completed testing of varied rates of iron oxide injection on anode and cathode walls; and
- completed more tests for longer continuous duration periods.

Second-Stage Oxygen Injection Testing

Second-stage oxygen injection testing was accomplished during the last year. The second stage was configured for testing using an effective length/height (L/H) ratio of 0.7 and 2.7. Oxygen injection configuration and injector port sizes were also modified. The following listing outlines the oxygen injector frame configurations and some results for the tested configurations:

Our

act

ACCI

the the

TR

Fo

COI

COI

sei

Du

wi of

in ho

pr

ve

CO

wh

Du

re

an

ho

to

Th

r۵

pc Ne

ne

sł

a

Ci

Fe

ri

e

tı

C

0

c e t

L/H	Injector Configuration	Injector Size	Peak Power Achieved	N/O Ratio, Phi 1, Phi 2
0.7 0.7 0.7	12-port vertical 8-port horizontal 20-port	0.363 inches	1.76 HW _e	0.70, 0.55, 1 _{.00}
2.7 2.7	8-port vertical . 12-port horizontal	0.363 inches 0.363 inches 0.363 inches 0.300 inches	1.86 NWe 1.73 MW 1.65 MW 1.69 MW	0.75. 0.57. 0.90 0.75. 0.55. 0.35 0.70. 0.55. 0.39 0.70. 0.55. 0.39 0.70. 0.55. 0.39
2.7	20-port (10-port noninmpinging)	.0.363 inches	1.52 MW.e	0.75, 0.56, 0.95

Since SEAM 27, those configurations designated have been tested.

Also tested was a temporary arrangement to inject a mixture (by weight) of 10 percent $N_2/90$ percent 0_2 , and 20 percent $N_2/80$ percent 0_2 . This option was tested to determine the impact of prototypic second-stage oxygen injection. The limited testing accomplished indicated no detrimental impact would be experienced.

Fine Coal Testing

Fine coal testing was completed when fine coal from the CDIF baghouse was reintroduced into the normal coal product used at the CDIF. The fines were reintroduced at a 15 to 20 percent mix of fines. Results from the tests confirmed that no dramatic changes in power level occur when fine coal is introduced to the combustor.

Varied Rate Iron Oxide Injection Testing

During the course of testing, varied rate iron oxide injection was tested. The flow rates were varied so that iron oxide sent to the cathode and anode walls varied from 2 to 8 lb/min slurry. The flow rate delivered to the channel appeared to have an impact on power production due to the loss of effect of iron oxide over time on cathode wall shorting. Immediately before the February 1990 testing shutdown, the last tests indicated that very low flow rates of iron oxide may be most effective and cathode shorting may not reappear over time.

Duration Testing

One of the goals for FY90 was to accomplish steadystate combustor testing and long-duration power testing. Efforts were made to operate testing for a 24-hour duration. Although a 24-hour test was not accomplished, record continuous test duration lengths were achieved. The old record for continuous test length was established October 2, 1986, with 8 hours 29 minutes of coal-fired MHD testing and 7 hours 10 minutes of power production. This record was surpassed twice during the quarter, and the final record established for continuous testing at the CDI was achieved February 6, 1990, with 12 hours 50 minutes coal burn time and 12 hours 36 minutes of continuous power run time.

ну	SEAM #28 (1990), Session: Facility and	d Proof-of-Concept Status Reports
atio	TEST HARDWARE SUPPORT ACTIVITIES	40 minutes of power generation service) the channel
rame	During the last year, several test hardware During the in support of the test program have been	was in new condition. This channel was the first one that contained all components that had been manufactured and assembled by MSE. On February 12, 1990 the channel was removed from test service
a,	accomplished. These decentricity as agreed upon when accomplished AVCO vendor representatives have included the TRW and AVCO vendor representatives have included	because of internal water leaks on peg sidewalls and electrical arc burning of the G-9 frame material.
	the following and creating an apprication by	While in service, the 1A ₁ -C1 channel accumulated a
-2. 1.00	Completed the CrC modification as specified by	service and 77 hours 59 minutes of coal composition
	TRW to eminand to alter second-stage oxygen	generation time. Total energy generated during this
57. 0.95	injection configurations with minimal impact on	period was 96.5 MWhr. The anode wall (wall sections 25 and 26) was severely damaged by this test service.
55. 0.90	test schedule.	and has been scrapped.
56, 0	Completed installation and checkout of the newly	
	installed, AVCO-supplied current controls and	fabricated and assembled the 1A,-C2 channel, which
	prepared 101 mile the second	was to consist of the following wall sections:
* have	united	anode wall costions 33 and 34
	Continued a program of the chamiler refut bisimilate,	cathode wall sections 27 and 28,
ct a	testing at the CDIF.	right sidewall sections 37 and 22, and
0 ₂ ,	ted the supporting designs to install the	left sidewall sections 39 and 48.
as Cond-	TRW-supplied continuous slag rejection system and	However, in February 1990, it was decided by the
	the MSE-designed slag removal system.	integrated topping cycle (ITC) contractor that the
uld be	currented developmental projects that included the	next series of tests would be materials related. The next channel to be put into test service (in May
	MSE nozzle and various components designed to	1990) would contain components that would be
	support diagnostic measurements of the plasma.	prototypic in design and would include the new
from	Thu Combustor Modifications	placed on the anode and cathode and left sidewall.
'mal		This Materials Test Channel, scheduled for May 1990
	Following the checkout of the new CFPC, which was	test service, was comprised of the following wall sections:
i.	completed in the fail of 1903, the compositor, configured with a smooth-walled air inlet filler	Sections.
	section was used to continue the testing program.	anode wall sections 33 and 34 new
	During this time, the IRW second stage was configured	cathode wall sections 19 and 20 85 hrs 36 min electrical
	of 0.7 and 2.7. The 0.7 L/H provided oxidizer	right forward peg sidewall 37 new
., 1	injection options of 12-port vertical, 8-port	right aft diagonal sidewall 30 77 hrs 56 min
ied so	provided oxidizer injection options of 8-port	left forward diagonal sidewall 31 new
valls	vertical, 12-port horizontal, and 20-port. This	left aft diagonal sidewall 32 77 hrs 56 min
te	combustor was used for testing until February 1990 when a shutdown began.	electrical
of iron		A list of all the 1A channels wall segments that were
	During the shutdown, refurbishment of the combustor	available for test service as of April 1, 1990, are
ow flow	and removal of the coal adapter and replacement with a	service.
cathode	hot sleeve. Also, the second-stage was reconfigured	
	The three locations enable exidizer to be added at I/H	Siag Rejection and Removal System Installation
	ratios of 0.8, 1.9, and 2.7, and are capable of 12-	The project to install the TRW slag rejection test
and u-	New frames were also added to the second stage to test	equipment and the MSE-designed slag removal system
r r	new materials for prototypical applications. Figure 4	were completed. The hardware will be installed in
for a	snows the second stage and the arrangements of the	phases to minimize test interruption. Between
not lengths		phases, the newly installed equipment will be used as batch slag containers, much the same as the previous
test	<u>Lurrent Control Installation and Checkout</u>	equipment was used. The last phase, scheduled to
hours	Four AVCO-supplied current control cohinete ware	occur in the fall of 1990, will tie all of the
as	recently installed at the CDIF. Checkout testing and	continuous slag rejection and removal system.
nal	testing which discusses with the standard stan	
he un	rus, which is scheduled to resume in May 1990.	<u>Development Projects</u>
ites of	<u>Mannel Refurbishment, Fabrication, and Assembly</u>	The MSE designed and fabricated nozzle was placed in
	O_n July 19, 1989, the channel identified as the 14 -C1	test service in January 1988. Since that time, it
	exception laced into test service. With the	combustion time and 114 hours 3 minutes of electrical
	two Cathode wall sections (and which had 7 hours	power generation time. The exit end of the nozzle is
	- were sections, (each writch had / hours	now starting to snow some deterioration (see Figure
	L1-3	3

78

5). As can be seen from Figure 5, there has been some cracking and erosion of the capping material (type 446 stainless steel). This type of cracking is typical of a ferrous material that is experiencing carburization/sulfidation. However, the cracking is not serious because it does not extend beyond the cap. The amount of erosion that was observed on the cap indicates that the life of the nozzle should be in excess of 500 thermal hours.

After MHD test 90-DIAG-13, the nozzle was partially disassembled and two materials test coupons (bar elements) were placed at the exit end on the bottom. The coupons were supplied by AVCO and consisted of a solid molybdenum element and a tungsten capping on copper element.

MSE has designed and fabricated two devices that allow instrumentation to be attached to the test train to perform diagnostic measurements on the plasma. The devices are the post-nozzle test section, which is attached to the outlet of the second-stage nozzle, and the diffuser triple port walls, which are located horizontally in the forward subsonic section. In the past, these components have been used by Mississippi State University (MSU) to accommodate their diagnostic equipment.

During the year, the portal size of the triple port walls was reduced from 3 inches in diameter to 2 inches in diameter in an effort to improve the nitrogen purge efficiency of these walls. Figure 6 is a photograph of the modified portal. The modified wall sections were placed into test service in May 1990.

PLANT SUPPORT SYSTEM ACTIVITIES

Major improvements in plant system operation yielded longer duration tests and higher quality experimental data. Many plant activities improved system reliability while others satisfied changing requirements of the test program. Major improvements in plant system operations are listed below:

- completed temporary modification to the coal system to support fine coal testing;
- completed various improvements to the coal system for enhanced operation;
- installed a new, permanent solid suspension injection system to support testing; and
- initiated modifications to the stack gas analysis system.

Fine Coal Testing Support

Temporary modifications were made to the coal system to mix and inject coal fines that are normally removed by the baghouse for MHD testing of fine coal. These temporary modifications proved the ability of the injection system to handle fine coal as it naturally occurs during the grinding process of the final coal product.

Coal System Improvements

Numerous improvements were made in the coal system to enhance operation. A new type of flow control valve was installed for the CFPC pinch valve. Sleeve life

of this new pinch valve is projected to match that the first-stage coal pinch valve.

SEAM #28 (1990), Session Facility and Proof-of-Concept/Status Reports

A screen was installed in the coal primary injector to trap particles capable of plugging the CFPC pinch valve. Since the screen was installed, the CFPC pinch valve has not plugged, and inspections of the screen have shown it traps particles that could have plugged the valve.

To support duration test efforts, steps were taken to accomplish on-line coal processing during MHD testing. Prior to the effort, test duration was limited by the batch coal capacity.

The coal filter receiver was recently replaced because the original equipment was undersized and damaged. Timely replacement during a testing shutdown provided the opportunity for installation without interference to the test program.

Permanent Solid Suspension Injection System

The solid suspension injection system was designed to mix, store, and inject slurry additives into the test train. The current slurry, a 50/50 percent by weight mixture of iron oxide and gear oil is being added to mitigate the effects of erosion caused by interelectrode shorting. The new, permanent system was installed in the fall of 1989, replacing a temporary system used in the initial investigation of the effects of iron oxide on channel longevity. Flor rates for the new system are from 2 to 8 lbs per minute slurry. Figure 7 shows the configuration of the system. Following the initial installation, a mix/storage tank was added for increased capacity for duration testing.

Initial operation used a slurry of agricultural-grade iron oxide; however, particles of silica and grinding media found in the material caused system failures. An upgrade to pigment-grade iron oxide rectified the failures. Additionally, recent additions of CAB-0-SIL at 0.25 percent by weight have curtailed the iron oxide from falling out of suspension. Since the beginning of calendar year 1990, these changes have been in effect, and system dependability has increased. The final hurdle to be overcome involves occasional plugged iron oxide injectors at the channel.

Stack Gas Analysis System Enhancements

The thermoelectron wet gas analysis system was modified and became operable for SO_2 , CO and NO_x monitoring.

A new stack gas analysis facility and a compressed gas storage facility are being designed. Construction is scheduled to be complete in the fall of 1990. This new facility will provide permanent facilities for analysis and also adds some automation and expanded capabilities to the process. The new facilities will include a programmable logic controller.

Two additional modifications to enhance stack gas data collection include an autosampler for the gas, chromatograph and a remote calibration manifold. autosampler for the gas chromatograph will change th mode of operation from batch to continuous.

DATE

7/25/89

8/10/

Long-term

additiona

prototypi activitie

Testing W until the

support t

	SEAM	#28 (1990), Session: Facility and Proof-of-Concept Status	Reports
FUTURE PLANS A	T THE	CDIF	REFERENCES

Long-term plans at the CDIF include a new DAS and Long-term plans at the COLF include a new DAS and additional liquid oxygen storage. Support for the addition is also planned. All prototypic hardware installation is also planned. All activities are scheduled to occur in the early 1990s. activities

lat of

:tor

pinch

the

have

(en to

5

Testing with the workhorse hardware will continue Testing the arrival of the prototypic test hardware. To until this requirement, a total of 15 prove until this requirement, a total of 15 new channel support this will be fabricated and support this requirement, a cotal of 15 new channel wall sections will be fabricated and assembled by MSE. wall sections will be refurbished and Additional wall sections will be refurbished and reassembled peg sidewalls.

1. Glovan, R.J., "Status Report of 1A Test Train Hardware Performance and Development," 27th SEAM Conference, Reno, NV, June 1989.

ACKNOWLEDGEMENT

This work was conducted under contract to the United States Department of Energy, Contract DE-AC07-88ID12735.

and date in our extreme

all the second

۱d				TABLE 1	MHD	TESTS		
ion	aute	TEST NO.	TEST OBJECTIVES	COAL BURN TIME (hr min)	ENERGY GENERATED (HW hr)	PEAK POWER	POWER RUN TIME (hr min)	<u>COMMENTS</u>
ned to e test	<u>0414</u> 7/25/89	89-CFC-14	 Demonstrate functional performance of seed and iron oxide slurry systems and consumable process flow delivery into the compustor before conductivity and power testing. 	02:25	N/A	H/A	N/A	Test objectives were partially met. Startuos were smooth, and systems generally operated well. However, incorrect slag tank thermocouple readings for vent line coolant temperatures resulted in the hose overheating and melting. Shutdown of the test was required for repair.
ed to stem ion_of			 Continue to establish baseline fouling condition for redesigned, smooth-walled filler assembly at nominal stoichiometry. Evaluate dependence of individual filler panet heat loss on fouling condition. 					
Flow r n of a			 Obtain baseline heat flux data for second-stage individual frames and the entire CFC at nominal power operating conditions. 	•				
ty for -grade inding			4) Achieve smooth startup and shutdown and maintain combined- stage operation at 50 Mut for a minimum duration of 7 hours, consumables limiting. Operation will vary N/O (global) from 0.76 to 0.70.					
res. d the B-O-			 Obtain baseline stack gas emission data for carbon closure prior to power conditions. 					
e iron e have			6) Continue evaluating additional system variables including oil burner performance, filler heat flux, refractory performance, and sleeve heat flux.					
01462			 Provide thermal test of rebuilt channel and obtain channel operation heat flux and channel pressure data. 					
			 Support MSU diagnostic equipment measurement. 					
	8/10/89	89-CFC-15	Initially:	05:00	4.42	1.430	4:12	Test objectives were partially met. Compustor startup was smooth. As the test continued, several
x			system to flow coal to the CFPC.					operational problems were discovered that required post-test evaluation, including the CFPC coal flow, the conductivity power supply. The seed flow, and the
cod			Subsequently:					iron oxide slurry flow. For the first time, the new power take-off configurations were checked and
e fall ent			 Accomplish initial testing of the channel in conjunction with the CFPC for both plasma conductivity measurement and power generation operations. 					appeared to work well. After the test, an internal inspection of the channel revealed a low-level leak at amode 56; therefore, the channel was converted to low-pressure cooling so testing could continue without having to remove the channel for repair. Testing was shutdown when adequate seed flow could not be maintained.
matio∩ ne₩			 Evaluate the performance of power take-off current consolidation circuits. 					
as			 Obtain baseline heat flux and power data with N/O = 0.70; Phi 1 = 0.55; Phi 2 = 0.90, 0.95, 1.00, and 1.05 (without iron oxide); and mixing of L/M = 2.7. 				,	
ge the			 Continue evaluation of the filler section fouling, plant systems operation, and CFPC flame stability using the flame detector. 					
			 Support MSU diagnostic equipment measurements. 					

de te te

SEAM #28 (1990), Session: Facility and Proof-of-Concept Status Reports

<u>DATE</u> 9/28/89

10/05/89

10/13/89

TABLE 1 -- MHD TESTS (CONT'D)

DATE	TEST NO.		TEST OBJECTIVES	CDAL BURN TIME (hr min)	EXERGY GENERATED (NV hr)	PEAK POWER (HVe)	POWER RUN TIME <u>(hr min)</u>	CONCENTS
8/16/89	89-D1AG-4	1)	Obtain baseline heat flux and power data with $N/0 = 0.70$; Phi 1 = 0.55, 0.53, and 0.50; Phi 2 = 0.90, 0.95, 1.00, and 1.05; mixing of $L/N = 2.7$; 12-port horizontal oxygen injection.	06:22	K/A	N/A	K/A	Test objectives were met. Systems generally operated well. Although somewhat erratic early in the test, coal flow was mointained at the requested flow rate during the power portion of the test. Iron oxide slurry injection on the cathode worked well.
		2)	Continue evaluation of the filler section fouling, plant systems operation, and CFPC flame atability using the flame detector.					
		3)	Support MSU diagnostic equipment measurements.					
		4)	(Optional) Evaluate reduced CFPC flame temperature operations.					
09/06/89	89-0 I AG • 9	1)	Obtain baseline heat flux and power data with X/O = 0.70, Phi 1 = 0.55, Phi 2 = 0.95, mixing of L/H = 2.7, 12-port horizontal oxygen injection; varied iron oxide injection on cathode wall, and varied seed flow rates.	05:04	3.72	1.89	03:54	Test objectives were partially met. All systems operated well. For the first time, coal was processed on-line during this test. The processing went well, and newly processed coal was used during the test. This sequence was planned to check out some aspects that are required for the upcoming 16- to 24-hour test. A new record peak power level1.89
		2)	Continue evaluation of the filler section fouling, plant systems operation and CFPC flame stability using the flame detector.					nvewas achieved on my ciris test.
		3)	(Optional) Evaluate seed velocity considerations at L/H = 2.7.					
		4)	(Optional) Evaluate reduced CFPC flame temperature operations					
9/18/89	89-REST-1	1)	Checkout the wiring of the aft power take-off in the resistively consolidated configuration.	01:02	02.24	1.07	00:33	Test objectives were met. All systems and the reduced flame temperature startup operated well. The repaired conductivity power supply was checked out.
		2)	Obtained reduced CFPC flame temperature startup heat flux data.					consolidated configuration and will be repaired before the next test.
		3)	Determine maximum seed flow rate.					
09/20/89	89-DIAG-11	1)	Obtain baseline heat flux, conductivity, and power data with W/O = 0.70, Phi 1 = 0.55, Phi 2 = 0.95, mixing of L/H = 2.7, 12-port horizontal oxygen injection, and varied iron oxide injection on cathode wall.	06:21	6.88	1.74	05:01	Test objectives were partially met. All systems operated well with the exception of the seed system. Iron oxide was run for a five-hour duration with no noticeable decrease in power output.
		2)	Obtain reduced CFPC flame temperature startup heat flux data.					
		3)	Continue evaluation of the filler section fouling, plant systems operation, and CFPC flame stability using the flame detector.					: .
		4)	Support HSU diagnostic equipment measurements.					
		5)	(Optional) Obtain baseline heat flux, conductivity, and power data with N/O = 0.70, Phi 1 = 0.55, Phi 2 = 0.95, mixing of L/H = 2.7 12-port horizontal oxygen, and varied seed flow rates.					
		6)	(Optional) Evaluate seed velocity considerations at L/H = 2.7.					
		7)	(Optional) Obtain Phi sweep data at reduced CFPC flame temperature operations.					
		8)	(Optional) Evaluate iron oxide injection on the anode wall.					
		9)	(Optional) Obtain baseline data at N/G = 0.80.					
9/28/89	89-DIAG-12	1)	Obtain heat flux, conductivity, and power data with varied iron oxide flow rates on the cathode wall and the anode wall.	05:31	2.46	1.89	02:35	Test objectives were partially met. All systems operated well with the exception of the seed system. Seed flow rates were not consistent and will be investigated before further testing.

SEAM #28 (1990), Session: Facility and Proof of Concept Status Reports

Contraction of the second			•					
	TEST NO.		TEST OBJECTIVES	COAL BURN TIME (hr min)	ENERGY GENERATED (NW hr)	PEAK POWER (MWe)	POWER RUN TIME <u>(hr min)</u>	COMMENTS
<u>9/28/89</u>	89-01AG • 12	2)	Obtain baseline heat flux, conductivity, and power data with N/O = 0.70, Phi 1 = 0.55, Phi 2 = 0.95; mixing of L/H = 2.7, 12-port horizontal oxygen injection, and iron oxide injection on cathode wall.					
		3)	Obtain reduced flame temperature startup heat flux data.					
	·	4)	Continue evaluation of the filler section fouling, plant systems operation, and CFPC flame stability using the flame detector.					
		5)	Support MSU diagnostic equipment					
		6)	(Optional) Obtain baseline heat flux, conductivity, and power data with W/O = 0.70, Phi 1 = 0.55, Phi 2 = 0.95, mixing of $L/H = 2.7$, 12-port horizontal oxygen, and varied seed flow rates.					
		7)	(Optional) Evaluate seed velocity considerations at L/H = 2.7.					
		8)	(Optional) Obtain Phi sweep data at reduced CFPC flame temperature operations.					
		9)	(Optional) Obtain data at increased H/O ratios and L/H = 2.7.					
		10)	(Optional) Evaluate increased iron oxide injection on the cathode wall.					
18/05/89	90-012G-1	1)	Obtain heat flux, conductivity, and power data with varied iron oxide flow rates on the cathode wall and the anode wall.	6:36	6.49	1.80	04 : 09	Test objectives were met. Test startup was smooth, and the systems operated well. A reduced flame temperature startup resulted in CFPC heat fluxes remaining low at the startup. Seed flow consistency was improved from previous tests. Shutdown was
		2)	Obtain baseline heat flux, conductivity, and power data with X/a = 0.70, Phi 1 = 0.55, and Phi 2 = 0.95, mixing of L/M = 2.7, 12-port horizontal oxygen injection, and iron oxide injection on the cathode wall.		¢			required when the oxygen supply was depleted.
		3)	Obtain reduced flame temperature startup heat flux cata.					
		4)	Continue evaluation of filler section fouling, plant systems operation, and CFPC flame stability using the flame detector.					
		5)	Support HSU diagnostic equipment measurements.					
		6)	(Optional) Obtain baseline heat flux, concuctivity, and power data with $H/O \approx 0.70$, Phi 1 = 0.55, Phi 2 = 0.95, mixing of L/H = 2.7, 12-port horizontal injection oxygen, and varied seed flow rates.					
		7)	(Optional) Evaluate seed velocity considerations at L/H = 2.7.					
		8)	(Optional) Obtain Phi sweep data at reduced CFPC flame temperature operations.					
		9)	(Optional) Obtain data at increased N/O ratios and L/N = 2.7.					
10/13/89	90-01AG-2	13	Obtain heat flux, conductivity, and power data with varied iron exide flow rates on the cathode and anode wall.	07:13	5.05	1.66	03:39	Test objectives were partially met. The larger seed particles recently inclused in seed deliveries were causing seed flow difficulties. During the test, procedures for flowing the larger seed were developed. Varied iron oxide additions on the anode
		2)	Obtain baseline heat flux, conductivity, and power data with N/0 = 0.70, Phi 1 = 0.55, and Phi 2 = 0.95, mixing of L/H = 2.7, 12-port horizontal oxygen injection, and ifon oxide injection on the cathode wall.					and cathode walls were tested. Shutdown was required when the compustor was brought to a reduced thermal througnout to conserve consumables until troublesnooting of an inverter problem could be done. The reduced CFPC coal flow for the lower thermal througnput could not be maintained, and the compustor tripped. Inverter troublesnooting was not complete,
		3)	Obtain reduced flame temperature startup heat flux data.					and the test was shutdown.

39

					1415 TEC	TC (CONT)	(D)		T
			TA	COAL BURK	MHD TES	IS (CUNT	D) POWER RUN		
DATE	TEST NO.	TEST OBJEC	TIVES	TIKE (hr_min)	GENERATED	(HVe)	(hr min)	COMMENTS	DATE
10/13/89	90-01AG-2	 Continue evaluat section fouling, operation, and C stability using detector. 	ion of filler plant systems FPC flame the flame						11/08/85
		 (Optional) Obtain flux, conductivi with N/0 = 0.70, Phi 2 = 0.95, mi 12-port horizont varied seed flow 	n beseling heat ty, and power data Phi 1 = 0.55, xing of L/H = 2.7, al oxygen, and rates.						
		6) (Optional) Evalu considerations a	ate seed velocity t L/H = 2.7.						
		 7) (Optional) Obtai at reduced CFPC operations. 	n Phi sueep data flame temperature						11/15/8
		8) (Optional) Obtai increased W/O ra L/H = 2.7.	n data at tios and						
		9) (Optional) Obtain using increased	n load sweep data seed flow rate.						
10/24/89	90-01AG-3	 Obtain heat flux, and power data wi compustor operation oxide flow rates, iron oxide flow rates 	, conductivity, ith steady-state ions, cathode iron , and varied anode rates.	06:59	4.06	1.84	02:42	Test objectives were partially met. Other than the failed items requiring ismediate repair, the plant systems operated well. Process flows were stable. Testing was shutdown unen the magnet power succity tripped, and troubleshooting efforts revealed no quick repair method. Although the duration objective	
		 Obtain conductiv at both 1.75 and potassium 	ity and power data 2.25 percent					was not accomplished, data to support other objectives was gathered.	
		 Obtain long-dura support of the p prototypic design follows: 	tion evaluation in roof-of-concept n review as						
		 a. CFPC filler fouling; b. plant system c. cnannel per 	r section ems operation; and riormance.						
		 Succort HSU diag measurements. 	nostic equipment						
10/26/89	90-D1AG-4	 Obtain heat flux, and power data w compustor operat oxide flow rates iron oxide flow 	, conductivity, ith steady-state ions, cathooe iron , and varied anode rates.	06:17	6.16	1.86	04:08	Test objectives were partially met. Nidway through the test, consumables were depleted to the level that a duration test could no longer be accomplished. Because the staff and consumables were available, it was decided to continue testing. Two optional test objectives were addressed. Other than the failed	11/21/1
		 Obtain conductiv at both 1.75 and potassium 	ity and power data 2.25 percent					items requiring immediate on-line repair, the plant systems operated well. Process flows were stable.	
		 Octain long-dura support of the p prototypic design follows: 	tion evaluation in roof-of-concept n review as						
		 a. CFPC filler fouling; b. plant system c. channel per 	r section ems operation; and rformance.						11/30/(
		 Support NSU diag measurements. 	nostic equipment						
		Subsequently:							
		 (Optional) Obtain flux, conductiving with W/O = 0.70, Phi 2 = 0.95, min 12-port horizont injection, and with rates. 	n baseline heat ty, and power data Phi 1 = 0.55, xing of L/H = 2.7, al oxygen varied seed flow					•	1
		 (Optional) Obtain increased H/O rational L/H = 2.7. 	in data at atios and						14/01/1
11/08/89	90+0 AG+5	 Dotain heat flux and power data w mixing ratio L/M port vertical ox nominal oil-fire power conditions Phi 1 = 0.55, Ph potassium = 1.50 	, conductivity, ith second-stage = 0.7, and 12- ygen injection at d vitiator peak ($X/O = 0.70$, i 2 = 1.00, and percent).	05:35	3.84	1.76	02:48	Test objectives were partially met. Mainstage coal flow problems were encountered when coal flow could not be delivered at the desired rate. The decreased coal flow was attributed to a plugged screen in the primary injector. Primary injector pressure was raised throughout the test, and as the screen plugged more, the necessary pressure for maintaining flow was too high to allow coal transfers. Testing was shutcown when coal transfers were no longer possible.	
		 Obtain heat flux and power data w mixing ratio L/H vertical oxygen Phi 2 * 0.95, an 2.00 percent. 	, conductivity, ith second-stage = 0.7, 12-port injection, at d potassium =						

SEAM #28 (1990), Session: Facility and Proof-of-Concept Status Reports

 $\overline{\mathbf{x}}$

SEAM #28 (1990), Session: Facility and Proof-of-Concept Status Reports TABLE 1 -- MHD TESTS (CONT'D)

	TEST NO.		TEST_OBJECTIVES	COAL BURN TIME (hr_min)	ENERGY GENERATED (HW hr)	PEAK POWER	POWER RUN TIME (hr min)	COMMENTS			
<u>عملة</u> 11/08/89	90-01AG-5	2)	(Optional) Obtain heat flux, conductivity, and power data with second-stage mixing ratio L/M = 0.7, 12-port vertical oxygen injection at varied seed flow rates to determine seed utilization.								
		4)	(Optional) Evaluate seed velocity considerations at L/H = 0.7.								
		5)	(Dotional) Obtain power and conductivity data with L/H = 0.7, at increased N/O.								
11/15/89	90-014G-6	1)	Obtain heat flux, conductivity, and power data for steady-state compustor operation with iron oxide on the cathode and anode walls using a second-stage mixing ratio of L/H = 2.7 with 10-port nonimologing oxygen injection ($W/O = 0.75$, Phi 1 = 0.56, Phi 2 = 0.95, and potassium = 1.75 percent).	07:50	2.89	1.52	02:58	Test objectives were partially met. The plant systems operated well, and coal and seed flows were stable. Although the duration objective was not accomolished, data to support other objectives were gathered. Open circuits on the anode wall appeared and disappeared during the course of testing. When troubleshooting of this problem required opening the magnet and consumables were depleted to the point that the duration test objectives could not be accomplished, testing was shutdown. Post-test			
		2)	Obtain heat flux, conductivity, and power data at Phi 1 \times 0.54 and W/O \times 0.75.					inspection of the shode wall electrical connections revealed widespread failures, which were repaired before the next test.			
		3)	Obtain long-duration evaluation in support of proof-of-concept prototypic design review as follows:								
			 a. CFPC filler section fouling; b. plant systems operation; and c. channel performance. 								
		4)	(Optional) Obtain heat flux, concuctivity, and power data with second-stage mixing ratio $L/M \approx 2.7$ with 10-port nonimoinging oxygen injection at varied seed flow rates to determine seed utilization.								
		5)	(Optional) Obtain decreased H/O conductivity and power data at L/H = 2.7 with 10-port nonimpinging oxygen injection.								
11/21/69	90-COAL-1	1)	Obtain heat flux, conductivity, and slag rejection data with CDIF bagnouse coal fines reintroduced into the normal coal product used for testing at the CDIF; the fines were reintroduced at a 15 to 20 percent mix of fines. Testing with second-stage mixing ratio of L/H = 2.7 and 10-port horizontal oxygen injection (N/O = 0.70, Phi 1 = 0.55, Phi 2 = 0.95, and potassium = 1.75 percent).	02:16	1.76	1.73	01:21	Test objectives were met. All plant systems operated well. Coal flow to the computor with the coal fines introduced posed no flow problems. The test was shutcown with a soft shutdown when the fine coal mixture developed for the test was depleted.			
11/30/89	90-ELEC-1	1)	Obtain voltage spike data as requested by AVCD to aid in current control/inverter troubleshooting.	01:52	0.0002	0.05	00:03	Test objectives were partially met. Many of the plant systems operated well. Coal flow and seed flow from the blue vessel were stable. The inverter rectification data was collected; however, the rest			
		2)	Obtain heat flux and power data with steady-state compustor operation and iron oxide on the cathode wall for a second-stage mixing ratio of L/H = 2.7 20-port (12 horizontal and 8 vertical) oxygen injectors, and with 0.25-inch inside diameter injectors (X/O = 0.70, Phi 1 = 0.55, Phi 2 = 0.95, and potassium = 1.00 and 1.75 percent).	• •				or the data could not be collected because the magnet power supply would not operate. Testing was shutoown when all rectification data had been collected.			
12/01/89	90-ELEC-2	1)	Same as 90-ELEC-1.	02:59	1.64	1.57	02:04	Test objectives were partially net. The plant systems operated well, and coal flows were stable. The seed system failure, which shutdown the test, was attributed to the low resulted seed flow. However, seed flow from the blue vessel was stable, however, at seed flows of 1.0 percent potassium and above.			

;

ive

at t

1111

ged vas

بالمحصار بالمالاندية

Research.

in y In Na

n se dal

Sec. Sec.

TABLE 1 -- MHD TESTS (CONT'D)

SEAM #28 (1990), Session: Facility and Proof-of-Concept Status Reports

<u>DATE</u> 1/19/91

1/23/5

02/0

5."

4

DATE	TEST NO.		TEST OBJECTIVES	COAL BURK TIKE (br min)	ENERGY GENERATED (MV hr)	PEAK POWER	POWER RUN TIME (hr min)	<u>COMMENTS</u>
12/12/89	90-01AG-7	1)	Dbtain heat flux, conductivity, and power data with steady-state comcustor operation and iron oxide on the cathode and anode walls configured with 90 percent 0 ₂ , 10 percent N ₂ oxidizer in the second-stage, a mixing ratio of L/N = 2.7, and 12-port horizontal oxygen injection (N/D = 0.75, Phi 1 =0.55, and Phi 2 = 0.95).	07:50	4.25	1.71	03:27	Test cojectives were partially set. With the exception of the magnet power supply, the plant systems operated well. Process flows were stable, when the magnet power supply failed to restart, conductivity data was collected at the W/O level of 0.75 with a second-stage oxidizer stream composition of 80 percent O_2 and 20 percent x_2 . Testing was shutdown when the magnet power supply failed to restart.
		2)	(Optional) Obtain increased H/O conductivity and power data at L/H = 2.7 and 12-port horizontal oxygen injection (H/O = 0.80, 80 percent G ₂ , 20 percent H ₂ oxidizer in the second stage).					
		3)	(Optional) Obtain decreased H/O conductivity and power data at L/H = 2.7 with 12-port horizontal oxygen injection.					
		4)	(Optional) Obtain data for X/O increase in the first stage at the same operating conditions or increase X/O to 0.80 in the second stage.					
		5)	(Optional) Obtain low thermal (30 HW) operation heat flux, conductivity, and power data.					
12/19/89	90-DIAG-8	1)	Obtain heat flux, conductivity, and power data with fine seed by breaking the seed using eight in- line elbows prior to injection into the CFC with normal-sized seed.	02:47	1.25	1.60	01:03	Test objectives were partially met. Testing was shutdown when the solid suspension injection system, which is used to inject iron oxide slurry, failed. Because of the high intercathode voltages, the test could not continue without the iron oxide because of risk of channel damage.
		2)	Obtain heat flux, conductivity, and power data with steavy-state compustor operation and iron oxide on the cathode and amode walls. The second stage is configured with 90 percent 0, and 10 percent N_2 oxidizer with a mixing ratio of L/R = 2.7, 12-port (0.30-incn inside dismeter injectors installed), and horizontal oxygen injection (N/O = 0.70 and 1.75, Phi = 0.55, and Phi 2 = 0.90 and 0.95).					
		3)	(Optional) Anode iron oxide variations during steady-state conditions.					
		4)	(Ootional) Obtain data for H/O increase in the first stage at same operating conditions.					
		5)	(Optional) Obtain low thermal (30 HW) operation heat flux, conductivity, and power data.					
1/18/90	90-01AG-10	1)	Obtain heat flux and power data with fine seed by breaking the normal-sized seed material using eignt in-line elbows prior to injection into the CFC.	03:07	1.92	1.58	C2:11	Test objectives were partially met. Test startup was smooth. When power conditions were achieved, it was determined that some of the iron oxide injectors were plugged. When one anode and one cathone injector were unplugged, the magnet power supply would not
		2)	Obtain heat flux and power data with steady-state compustor operation and iron oxide injection on the cathode and anode walls. The second-stage is configured with 90 percent 0, and 10 percent $N_{\rm 0}$ oxidizer with a mixing ratio of L/H = 2.7, 12-port (0.30-inch 10 injectors installed) horizontal oxygen injection, and N/O = 0.70 and 0.75, Phi 1 = 0.55, and Phi 2 = 0.90 and 0.95.					
		2)	(Optional) Anode iron oxide variations during steady-state conditions.					
		4)	(Optional) Obtain data for H/O increase in the first-stage at the same operating conditions.					
		23	(Uptional) Obtain (ow thermal (30 HW) operation heat flux, conductivity, and power data.					

SEAM #28 (1990), Session: Facility and Proof-of-Concept Status Reports

TABLE 1 -- MHD TESTS (CONT'D)

				COAL BURN	ENERGY		POWER RUN	
DATE	TEST NO.		TEST_OBJECTIVES	(hr min)	(HW hr)	(HWe)	(hr min)	COHHENTS
1/19/90	90-01AG-11	1)	Obtain heat flux and power data with steedy-state combustor operation and iron oxide injection on the cathode and anode walls. The second stage is configured with a mixing ratio of $L/H = 2.7$, 12-port (0.30-inch inside diameter injectors installed) horizontal oxygen injection, and W/O = 0.70 and 0.75, Phi 1 = 0.55, and Phi 2 = 0.90 and 0.95.	04:29	4.10	1.54 ,	03:38	Test objectives were partially met. Test startup was smooth. After steady state was achieved, the magnet tripped, was restored, and after achieving steady state again, the inverter tripped. Process flows were stable. Iron oxide flow experienced no problems using the pigment-grade rust. Testing was secured when the inverter would not restart.
		2)	(Optional) Anode iron oxide variations during steady-state conditions.					
		3)	(Optional) Obtain data for N/O increase in the first-stage, at same operating conditions.					
		4)	(Optional) Obtain low thermal (30 MW) operation heat flux, conductivity, and power data.					
		5)	(Optional) Obtain heat flux and power data with fine seed by breaking normal-sized seed using eight in-line elbows prior to injection into the CFC.				,	
1/23/90	90-DIAG-12	1)	Obtain heat flux and power data with steady-state compustor operation and iron oxide injection on the cathode and anode walls. The second stage is configured with 90 percent 0_2 , 10 percent H_2 oxidizer with a mixing ratio of L/N = 2.7, 12-port (0.30-inch inside diameter injectors installed) horizontal oxygen injection, and N/O = 0.70, Phi 1 = 0.55, and Phi 2 = 0.95.	09:42	11.75	1.59	09:04	Test objectives were partially met. Plant systems operated well, and process flows were stable until near the end of the test. The iron oxide system experienced no problems using the pigment-grade rust. Post-test inspection did show that one injection tube was plugged. An external channel hose leak required shutdown of the test. This test exceeded the previous continuous test duration records with 9 hours 42 minutes coal burn time and 8 hours 26 minutes of continuous power run time. The previous records were set October 2, 1986, and were 8 hours 20 minutes of coal-fired MHD testing and 7 hours 10 minutes of power production.
		2)	(Optional) Anode iron oxide variations during steady-state conditions.					
82/06/90	90-DIAG-13	1)	Obtain long-duration electrical power data with steady-state compustor operation and iron oxide injection on the cathode wall. The second stage is configured with a mixing ratio of L/H = 2.7, 12-port (0.363-inch inside diameter) horizontal oxygen injection. Operating conditions are N/O = 0.70, Phi 1 = 0.55, and Phi 2 = 0.90 and 1.75 percent potassium.	12:50	16.49	1.65	12:36	Plant systems operated well, and process flows were stable. The iron oxide system experienced no problems using the pigment-grade rust and a single- pumo-to-single-injector configuration. The test was shutdown with a manual emergency shutdown to freeze the slag layer on the channel walls. A minor pre- existing leak in the channel walls. A minor pre- existing leak in the channel walls and evidence of arcing was also present on the electrical lug of anode 279; the channel will be pulled for repair. This test exceeded the previous continuous test duration records with 12 hours 50 minutes coal burn time and 12 hours 36 minutes of continuous power run time. The previous records were set during the last
		2)	(Optional) Obtain heat flux, conductivity, and power data with 90percent 0_2 and 10 percent N_2 in the second-stage at Phi 1 = 0.55, Phi 2 = 0.90, and N/O = 0.75.					test and were 9 hours 42 minutes of coal-fired MHD testing and 8 hours 26 minutes of power production.

TABLE 2 -- CHANNEL WALL SECTIONS AVAILABLE FOR TEST SERVICE (APRIL 1, 1990)

Wall Section Number	Description	Coal Hours	Power Hours
17	Forward Pt Capped Anode	20:20	9:00
18	Aft Pt Capped Anode	0	0
19	Forward Cathode	142:54	85:36
20	Aft Anode	142:54	85:36
30	Right Aft Diagonal Sidewall	125:31	77:56
32	Left Aft Diagonal Sidewall	125:31	77:56
22	Right Aft Peg Sidewall	0	0 [']
27	Forward Cathode	0	0
28	Aft Cathode	0	0
31	Left Forward Diagonal Sidewall	0	0
33	Forward 446 Capped Anode	0	0
34	Aft 446 Capped Anode	0	0
37	Right Forward Peg Sidewall	0	0.
39	Left Forward Peg Sidewall	0	0

Join &

With the State of the state of

FIGURE 2 -- ARRANGEMENT OF CURRENT CONTROLS IN CONJUNCTION WITH THE CHANNEL

FIGURE 3 -- CDIF TEST TRAIN SUPPORT SYSTEMS

FIGURE 7

FIGURE 5 -- PART OF A BAR FROM THE MSE NOZZLE. THE PHOTOGRAPH SHOWS A PORTION OF AN EXPOSED AREA (RIGHT SIDE) AND AN ADJACENT UNEXPOSED AREA. FLOW IS FROM BOTTOM TO TOP.

FIGURE 6 -- VIEW OF A TRIPLE PORT DIFFUSER WALL SHOWING THE RECENTLY FABRICATED 2-INCH DIAMETER INSERTS THAT REPLACED THE 3-INCH DIAMETER OPENINGS.

