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ABSTRACT

a this paper the authors describe a 3D model for MHD Faraday 
inear generators which can be used as an alternative to the 
ntegration of Basic MHD set of equations (1). The mam goal is to 
lefine a computational model capable of giving good results from the 
ioint of view of the macroscopic behaviour of the plasma during the 
/IHD energy conversion. The model is based on the partitioning of 
he ionized gas in an arbitrary number of small parallelepiped- 
haped volumes. In correspondence with each barycentre, the 
lasdynamic characteristic (velocity, pressure, conductivity, Hall 
larameter, etc.) has been evaluated by utilising experimental data 
ind by interpolating them with stationary curves available in 
heoretical studies. All these computed values are assumed as input 
lata, and the computational model uses them to evaluate the 
dectrical characteristics of the ionized gas. This approach, in 
unction with supplemental hypotheses, makes the authors able to 
epresent the energy conversion by an equivalent 3D lumped electric 
letwork in stationary regime. This circuit is composed of an 
dectrical resistive network excited by voltage sources representative 
jfFaraday's law and Hall effects. Then, this network has been solved 
jy means of node analysis and the macroscopic quantities having 
ugh engineering interest such as output electrical power and load 
:urrents have been computed. This approach permits to overcome all 
imitations due to the simulation of the non uniform gas discharge 
egime, which discouraged the development of 3D non-linear models 
solved in the time domain. Finally, the model has been validated by 
somparing numerical results against experimental tests executed on 
irototype Faraday generators.

INTRODUCTION

In the research on MHD energy conversion, the fundamental types of 
investigations are related to the characterization of the plasma 
discharge and the design of the device. On one hand, several 
analytical and experimental studies have been pointed out to 
investigate the plasma behaviour during the energy conversion. On 
the other hand, many computational models have been developed to 
support the designer activity during the optimization of the device 
performance. However, in both cases two important requirements 
must be satisfied: accuracy and feasibility of simulations. These 
exigencies are often in conflict. In particular, for computational 
models, the numerical precision can generally be obtained only by 
means of relevant investment of computer resources (time and 
memory). The difficult to develop a 3D model, which satisfies the 
exigencies previously cited, is greater than for two-, one- and zero­
dimensional models. But it is important to note that in many 
technical cases a 3D model is fundamental for the correct evaluation 

the performance of MHD devices. For examples1 the present 3D 
model permitted the evaluation of the performance of the Faraday 
MHD generator varying the external 3D magnetic field map 
generated by a super-conductive (sc) magnet. As just said, there is 
■tot a relevant i ’  ̂ ~ J:----- :— ' — J~’~ while it is very

common to find zero-, one- and two- dimensional ones expecially 
when analytical approaches are used. In fact in this case the basic set 
of MHD equations (1) must be simultaniously solved together with 
equation (2) which takes in to account electric and magnetic 
effects2 .
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where

j = s E‘ - ^ ( j * B) (2)

with

E* = -VV + v x B (3)

The meaning of the symbols used above is:
8 = mass density of fluid [kg/m3]
v = velocity [m/s]
s = dielectric constant [F/m]
E = electric field [V/m]
B = magnetic induction [T]
p0 = magnetic permeability [H/m]
p = pressure [N/m2]
U = internal energy of the gas [J]
pq, = dynamic viscosity of fluid [Ns/m2]
t = time M
j = current density [A/m2]

E* = total electric field [V/m]
V = electric voltage 
P = Hall parameter

[V]

The Hall parameter is defined by:

p = ©r = 1B_  (4)
menQce

where © is the cyclotron frequency, t is the average time between 

two electron collisions, c e is the average velocity of thermal 

agitation, me is the electron mass, n is the atomic and molecular 
density, Q is the crossectional dimension from which the motion 
quantity transmission occurs and e is the electron electric charge. 
Moreover, in the energy conversion there are also other phenomena
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which must be taken in account. In particular, one of the most 
relevant aspect is the nonuniform discharge regime. This 
phenomenon has been studied in many experimental and theoretical 
works^>4>5 its simulation is very difficult because it is always 
necessary to introduce theoretical hypothesis on discharge evolution 
by means of hypothetical assumptions on arching characteristics or 
periodical variations of the plasma electrical conductivity. This time 
dependent evolution must be considered during the integration of the 
Basic MHD set of equations (1) to obtain a suitable description of 
the real physical phenomenon. But the difficulties are evident. 
However, it has been pointed out how in Faraday MHD generators 
the effects of the electrical nonuniformities are rather smalP. In 
spite of this, the Basic MHD set of equations (1) can be integrated 
only by means of simplifying hypotheses both in gasdynamic and in 
electric terms. An example^ of a 3D model based on the integration 
of parabolized Basic MHD set of equations (1) by means of Rational- 
Runge-Kutta methods for integrating in the main flow direction and 
Galerkin finite element method for integrating in each perpendicular 
cross-section has been just presented^. An alternative to this 
approach can be obtained by means of lumped electric circuit. The 
aim of this work is to describe a 3D circuital model capable to 
evaluate the performance of the MHD Faraday generator from a 
macroscopic point of view (more accurate investigation can be also 
pointed out increasing the computational resource investments). For 
this type of generator the nonuniformities can be neglected as 
previously said. This simplification allows to avoid the time domain 
analysis which requires a long time of computation. Consequently, in 
our model the energy conversion is studied using an equivalent 
stationary regime. In addition, under appropriate simplifying 
hypotheses, for Faraday generators, it is also possible to introduce a 
reduced set of equations to solve, in stationary condition, the 
equivalent electrical network. All these simplifications, which make 
the computation fast and reliable, are justified by experimental 
observations on prototype Faraday generators^.

THE MODEL

General description

The proposed model is based on a circuit approach deduced from 
2D models described in literature  ̂>4,7 and from the one developed 
by the authors  ̂ to simulate liquid metal MHD pumps by 3D 
equivalent electrical network. The plasma and the duct belonging to 
the active region (i.e. the section of the device where are located the 
electrodes and where the external magnetic field acts, see Fig. la) 
are subdivided in a finite number of elementary parallelepiped­
shaped volumes (bricks) (see Fig. lb). The precision degree of the 
model depends strongly on the number of elementary bricks. The
sides of each brick are called Ax,A y ,Az, while afterwards we will 

call the dimensions of the inlet cross section of the

channel, lx _out ,/z_ouf the outlet cross section ones and ly the active
length along the y axis which is parallel to the velocity of the main 
flow of the plasma. The cross sectional side dimensions of the
channel at a generic y coordinate will be indicated as lx _y ,l2_y .

These dimensions are variable along y axis, and the • geometric 
relations to determinate them are:

l  _  ‘x -o u t  ~  lx - in  + , ( 5 n
X - y  , y  ^  lx -o u t  v-v

of the electrical network of each brick.
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nd

"■'v'J'
h - o u t  4 -

L l Y + /, (6)

J / \  geometric algorithm provides to partition the active length of the

I dHD channel by a preliminary subdivision of the Iv length m nv
| y
P egments (preferably smaller than the inter-electrode insulating
-"'pace dimension or, alternatively, it is possible to operate two
different partitions along y axis and, precisely, one for electrode

'''egions and one for insulating regions). Referring to the simple
lartition, the side along the y axis of the elementary brick is:

The ideal current-controlled voltage sources simulate the emfs 
within the plasma due to the Hall effect. This choice is justified by 
the fact that, as it will be more evident next, these emfs depend on 
the total magnetic field (i.e. the external magnetic field added to the 
reaction field) and on the spatial current distribution (i.e., the branch 
current in the equivalent electrical network of each brick). 
Temporally, to model each brick of the plasma, it is possible to 
assume that all main physical quantities, which play a relevant part 
in the determination of the electrical network parameters, are 
hypothetically known (the method to evaluate these values will be 
explained in a next paragraph). Under this assumption, the resistive 
parameters, the Faraday generators and the Hall generators are 
respectively given by:

(7)
R i  =

1 A, 
CT(x,y,z) ZAjAjj (13)

/  n the same way each cross section which has a surface growing 
/ .  inearly along the y axes, has been partitioned in nx(y) and nz(y) 

egments. The elementary brick sides along x and z axis are then:

u
n  x-in

(8)

Ei = Jv x B-d! = [VjHk -  vkHj] M-cAj (14)

Eh = J J x B - dl = — ^ y , |). | [jjHk -  JfcHjl—
a(x,y,z)|H |L J k k Jj 2

(15)

nd

u (9)

'low it is easy to determine the number of segments n x (y )  and

W y):

M y ) " ^Ax
(10)

. , ( y ) - ^ .
Az

(11)

with i = x, y, z, j = y, z, x and k=z, x, y 

dl = dxgx +dygy +dzgz.
The spatial distributions cr(x,y,z) and P(x,y,z) represent the 
conductivity and the Hall parameter (as scalar quantities) evaluated 
in correspondence with the barycentre of the brick, while v(x,y,z),

H (x,y,z), J(x,y,z) are the spatial distributions of the vectors 
velocity, of the total magnetic field and of the current density. For 
this last distribution we have assumed that each component is given
by:

J.(x,y,z) i t(x>y>z)
AjAk

(16)

n general, these formulae do not give integer numbers, thus we have 
ntroduced an approximation consisting of accepting all the bricks 

' which have their barycentre internal to the duct. Then, it is possible 
■o introduce the equivalent 3D electrical network of each brick (see 

N Fig. lc and Fig. Id ).

Equivalent electrical network

L
y The equivalent electrical network consists of a collection of lumped 

resistive dipoles and ideal voltage sources. The resistive components 
take into account the conductive phenomena within the ionized gas. 
The active components are of two types: independent voltage sources 
and current-controlled voltage sources. The ideal independent 
voltage sources take into account the emfs deriving from Faraday 
law. In fact the plasma can be assumed as a conductor flowing with 
a velocity v through an high magnetic field, H . In this case, an 
electromotive force is induced in the plasma according to the well- 
known equation: 

y
t i .
^ £ = vxg0H ( 12)
&
it

where Ij is the current flowing along the i axis and Aj and are the 
above defined edge lengths of plasma bricks. The last elements to 
define are the resistances able to simulate the electrodes, the 
insulating walls and the electric loads.

Fig. 2 - MHD Faraday linear generator: each electric load is subject 
to Faraday emf.
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The resistances of electrodes and insulating walls can be easily 
derived take in mind the electrical characteristics of these materials. 
In particular, when the calculation has not to compute the wall 
electrical losses, it is possible to introduce a relevant simplification 
by assigning the resistivity pe = 0 to the electrodes and the resistivity 
pj = oo to the insulating walls. The electric loads are instead input 
data and their connection with the electrodes determine the different 
types of MHD linear generators. For the Faraday generator the load 
resistances are linked at each electrode pair located perpendicularly 
with respect to the gas flow axis (y axis, see Fig. 2).

Network analysis

Performing opportune transformations on each serial branch which 
links two adjacent brick barycenters, we can obtain an equivalent 
electrical network havmg n nodes:

n =  n b +  n e (17)

where n  ̂ is the number of the bricks and ne is the number of 
electrodes. This network can be solved by means of node 
analysis^>lM2 In this case the basic equations to solve are:

[ino] ~ [®no][^no] (18)

where [1^] is the column vector of the node current sources, [Gno] 
is the node conductance matrix and [Vno] is the column vector of the 
unknown nodal electric potential. The dimension of this system is 
£, = n - 1, where n has been defined above. The structure of the 
system must be modified to introduce the current-controlled voltage 
sources. In general, dependent sources can be taken into account by 
means of additional set of <p ^ k equations, where k is the number of 
the electric branches of the network. In this case the node method 
permits to write the following system of equations:

[P] -  [N][tp]T[F][P] -  {[M] -  [N][g * ]}[a ]T[ Vno ] = [N] (19)

where:

• [P] is the vector containing the branch current piloting the

controlled sources defined by [P] = [M][V] + [N][l]; where

[V] is the branch voltage vector of dimension (k); and [i] is 
the effective branch current vector of dimension (k);

• [M], [N] are suitable rectangular matrices having elements 0 ,1 or
-1 which permit to defme the vector [P] as previously shown;

• [F] is a matrix expressing the constitutive relationship of the
controlled sources, its terms can be derived by the equations 
(15);

• jTpj is a projection matrix of dimension (cp, k); its terms are 0, 1,

-1 and it projects the pilot branch currents creating a column

vector [i] = [Tp| l 0] having k  rows, and where [l0] is the

vector of all ideal current generators obtained operating a 
Norton transformation of each branch;

• [A] is the incidence matrix of dimension (k, q),

,X
G* is a diagonal matrix of dimension (k, k); its terms are the

branch conductances and it is linked to the node conductancê & 

matrix by: [G„0] = [a | g * [a ]T ;
P

is a column vector obtained by cancelling in [l0] all the rows^'’ 

in which a controlled source is present.
Systems (18) and (19) must be simultaneously solved and the total
set of equations has S, + cp dimension. From the analysis of the ' 
equivalent electrical circuit of each brick (see Fig. Id) one can
note that all branches of the network have a dependent source. Thus,
for practical plasma partitioning, the dimension (ig + k + ne / 2) of 
the total set of equations is unacceptable because, also using, 
appropriate sparse matrix algorithms, the computational time can be 
too high. Successfully in Faraday generators a relevant number ol 
simplifications can be introduced. In fact in this special case, the 
current mainly flows along the x axis direction where the discharges 
take place and the emfs given by (12) are present (see Fig. 1), For

these reasons it is possible to assume J(x,y,z) = Jx(x,y,z)gx. In

addition, considering H(x,y,z) = Hz(x,y,z)gz 

v(x,y,z) s  Vy(x,y,z)gy, (14) and (15) become:

and

Ex = vyri0H
lim -r e c t 

(20)smoach'

P(x,y,z)
mam

JvH,EHy -  P  * E- dl -  nIttI j x
y o(x,y,z)|H|

( 21)

II
That is, in our model are only present ideal voltage sources (that act 
along the x axis according to (20)) and ideal current-controlledaiiimia 
sources (that act along the y axis according to (21)). Consequently, 
the set of equations given by (18) and (19) can be simplified as at i[ it 
described below. The [Gno] matrix can be subdivided into the sum::!® 
of two sub-matrices: ddq

felw 4

[Gno] =  [G']+[G"] (“ ) fetal*
B f e d l g f c

where [G'j is the simple conductance matrix without considering the 
controlled source, while [G”] is the matrix which takes into account 
only by the elements due to the controlled sources. The matrix [G'] is

symmetric and its mutual and diagonal terms G'^ and G'rsare 
expressed by:

Gr,s = -(
1 1 A,

cr(xr,yr,zr) a(xs,ys,zs) 2AjAk
(23) T«[|

G r,r =  Z - G r ,. (24)
fefet

where (x r,y r,z r) and (xs,y s,z s) are the coordinates of the r 
and s*E node which are respectively coincident, as shown before, 
with the barycentres of two neighbour bricks; the summation in (241 
is extended to all branches of the r^ node. The [G”] matrix is easy 
determinable as follows:

%

G",.p-G"m.q =+ Cc (25)

f e l l
Hu

and
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= G"I'Q' (26)

vhere / and m are the generic row indices while p  and q are the 
;enenc column indices of the [G"]. Precisely, between the nodes / 
md m there is the current-controlled voltage source, while between p 
md q nodes there is the branch m which the pilotmg current will be 
ound. Because we have only current-controlled voltage sources, all 
(ranches between neighbouring nodes must be transformed 

''According to the Norton representation and at the same time the 
“Controlling quantity from effective current branch to equivalent 
Coltage Ec. By operating m this way the term Cc can be easily 
d̂educed. Similarly the (T^J can be obtained1® as the sum of two 

Column-vectors: 
ftll!t;
H 0] = [r]+[T]- (27)
llSt;

vhere

it(*"r -Cc Ec (28)

]'4  ,ind
%

"m = + c  c Ec (29)

necessary to introduce as input data the conductivity, the Hall 
parameter, the velocity and the magnetic field which characterize the 
specific MHD energy conversion under analysis. TTiese values can be 
extrapolated merging theoretical and experimental studies available 
in literature as described below.

Temperature and pressure distribution

From the analysis of many experimental data11’ 14 we have observed 
that:
• along the channel the temperature, T(0,y,0), has a decreasing 

trend from its maximum value, in correspondence with the inlet 
cross section, T(0,0,0), to its minimum value, in correspondence
with the outlet cross section, T(0,/y ,0) (this distribution, which
may be considered linear, is shown in Fig. 3);

•  on the cross section, the gas flowing in the duct has its 
maximum temperature value, Tcc, in the central core of the 
channel (hot region), while it has its minimum value near the 
walls (boundary layer); for practical case, an estimation of this 
values can be fixed by:

Tw = YTcc (30)

vhile the column-vector [T] can be written in the usual way. By 
ising this approach we have obtained a system of equation of 
limension q. But in this case the sparsity of the matrix [Gno] is 
educed and, m general, the symmetry is compromised.

IONIZED GAS CHARACTERIZATION
:se

:::general considerations
i
v-fhe evaluation of the main physical quantities is a fundamental 
v problem in MHD generator modelling. Many theoretical, 

:xpenmental and empirical studies have been proposed and a lot of 
nodels have been developed to simulate MHD generators from a 
nicroscopic point of view. This approach permits a partial or total 
:stimation of all unknown physical quantities during the simulation 

Plgrif the energy conversion. All models developed using this method 
a£;ire very attractive, because the physical phenomenon is entirely 

simulated. However, their implementation in a calculation code 
Jresents difficulties not easily surmountable. In addition, these 

’nodels are strictly dependent from the particular generator under 
analysis (i.e., they are implemented referring to specific plasma 
characteristics, assigned load interconnections and so on). 
Consequently, the generalization of their use to every realistic device 
arrangement is not a trivial problem. For all these reasons, the 
application of these models, during the preliminary design phase of 
generator devices, is inadequate. In fact, the designer needs of a 
generalized and flexible code able to provide fast and reliable results 

p lor every configuration to analyse. This goal can be matched by a 
. macroscopic model of the device. In this case, using appropriate 
strategies, the physical quantities can be computed separately from 

computational MHD generator model. Probably, their evaluation 
will be affected by a relevant degree of uncertainty, but -it can be 
made independently from the particular device under analysis. Thus, 
toe generality of the code is obtained and the rapidity of the 
computations is ensured. The model proposed in this paper has been
developed using ------— 1 1-------J— «” parameters of
ê equivalent _______ ________ ^escribed, it is

with y = 0.5 -r 0.9.
Observing that on the cross section the representative curve of the 
temperature evolution (see Fig. 4) is the same either along the x axis 
or the z axis, one can easily determine a 3D distribution of the 
temperature inside the plasma combining the curves plotted in Fig. 3 
and Fig. 4. This function is given by:

toy , -f(L"J—z2)x2+(L,2- x2)z2 1
T(x,y,z) = T(y)-e^LL"~x z ' J

for -L '< x < L ' -L ''< z < L ”
T(±L',y,±L") = yT(y)

with L'=^->L L"=
2 2

(31)

Fig. 3 - Temperature evolution along the channel axis as deduced 
from experimental data11.
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and assuming the following set of boundary conditions: Similarly, considering the following polytropic transformation:

fT(±L',y,z) = T(x,y,±L") = yT(y) = YTCC 
[T(0,y,0) = T(y) = Tcc

In Fig. 5 T(x,y,z) the temperature distribution corresponding to the 
inlet cross section, T(x,0,z), is shown.

Fig. 4 - Hypothetical temperature trend corresponding to a generic 
cross section of the duct. By imposing the thermal equilibrium near 
the walls, the plasma must have the same temperature of the inner 
walls, Tw. This distribution has been simulated by a Gauss' curve 
where:
Tcc is the temperature along the channel axis;
Tw is the inner walls temperature;
L is the transversal dimension of the generic cross section of 

the channel.

p(x,y,z) = p(y)
/  \  m
^T(x,y,z)^

xcc y

where m is a suitable empirical coefficient, it is possible to supposi 

a pressure distribution inside the plasma, p(x,y,z). As for tin,'ijii 13- 
temperature, the pressure distribution along the channel axis, pfyf-jjoM 
can be deduced from experimental measurements. jjs

Conductivity and Hall parameter evaluations
,.■00 ‘ 
rtjistnW

Temperature distribution, T(x,y,z), jointly with pressure distribution 
p(x,y,z), can be advantageously used to estimate hypothetical spatial 
distributions of plasma conductivity and Hall parameter. In fact, ir 
many empirical^ and theoretical^ studies available in literature, the ' 
conductivity and Hall parameter versus temperature and pressure are ' 
plotted in stationary regime. Thus, among all these graphics, it ir 
possible to choose the curves which correspond to the specific device 
under analysis. For examples, referring to the device tested by
Ehindhoven Blow Down Facility^  ̂ (used to validate our model),___
we select the calculated curves in stationary regime pertinent to 
Argon seeded by Cesium^. From the analysis of these curves, it is /  
possible to deduce that plasma conductivity is greatly variable with /  
temperature. At the same time, the conductivity is substantially ,, 
invariant with pressure, thus it is sufficient only one curve to x 
represent this dependence^ (e.g., the curve at 1 atm pressure). In ' , 
addition, observing that in MHD conversions typical working 
temperatures are m the range 2000 -r 3000 °K, inner to these limits 
the theoretical curve chosen^ can be easily interpolated by means of 
a polynomial function (see Fig. 6), obtaining:

log cr = aT2 + bT + c (33)

■ Vlere a, b and c are opportune coefficients. For Argon seeded with '

Fig. 5 - Hypothetical temperature distribution on the’ inlet cross 
section, y=0, for y=0.5 and Tcc=2860 °K (see Fig. 3). The 
distribution in correspondence with a generic cross section is similar, 
but m this case the Tcc value must be changed according to the curve 
plotted in Fig. 3.
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a = - 3.486-10-7 [q ' V ’k - 2]

b = 3.22 • 10-3 [Q-'m-'K-1]

^ c  = -4.046 [ o - V 1]

%
ft  introducing (31) in (33), the desired hypothetical spatial distribution 

of the plasma conductivity, cr(x,y,z), can be obtained. For the inlet 
cross section this distribution is drawn in Fig. 7. This approach 
permits to overcome all difficulties linked to the evaluation of the 
conductivity distribution as suggested in previous studies0’

tSJl;
’f t  a = TJ6 (34)
til;

■ft in which J is the current density while 'F and 0 are parameters 
vanable with generator characteristics (e.g., they depend from 
plasma used, thermodynamic conditions, load interconnections and

% so on).
'k
ifei

fig- 7 - Conductivity distribution corresponding to the inlet cross
 ̂ section for Arp------- -~ tU r' ~~— -- -  A b) y = 0.5. The

conductivity vi________ ____ _ .

Equation (34) makes the simulation model of non linear type, 
consequently it must be solved in the time domain and its execution 
becomes critical and slow. Working as previously described, the 
distribution of Hall parameter, P(x,y,z), can be also deduced. In 
particular, by analysing theoretical distributions^ in stationary 
regime, one can note that (3 is strongly influenced both by 
temperature values and by pressure values. But in this case, 
theoretical and empirical curves  ̂ shown that, as first approximation, 
it is possible to make a reasonable simplification by considering the 
Hall parameter as only temperature function. On the base of this 
assumption, we can only consider the theoretical curve  ̂
corresponding to the averaged pressure value of 1 atm. An example 
of Hall parameter distribution along the channel axis is plotted m 
Fig. 8.

Velocity and magnetic field distributions

The usual working conditions of the plasma flowing in MHD 
generators are characterised by a turbulence regime. For this reason, 
we have considered a constant gas velocity along the channel. Thus, 
this distribution can be simulated as a vector having a constant 
modulus with versus and direction coincident with the y axis:

v(x,y,z) = vz(x,y,z)gz = vzgz (35)

The simulation proposed below (executed with the aim to validate 
our model) has been carryed out on the base of this simplificative 
ipothesis, because no specific characteristics were availabe on 
magnet used during the experimental tests^. Other 3D spatial 
distributions can be computed without difficulties introducing 
appropriate working hypotheses and boundary conditions, as 
described in previous papers^’ ^  The magnetic field map can be 
obtained using general purpose code (such as GFUN or ANSYS ) 
based on integral or finite element method. This map can be easily 
evaluated varying the magnet shape (i.e. prototype, cylindrical 
saddle, rectangular saddle, dipoles modular magnet, etc.*’
17, 18^ obtaining the desired 3D distribution of the magnetic field:

Fig. 8 - Evolution of the Hall parameter as deduced from 
experimental tests
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(36)H(x,y,z) = Hx (x,y,z)gx +H y (x,y,z)gy +H z (x,y,z)gz

Often, the magnetic field map distribution can be considered uniform 
inside the active region, thus (36) can be simplified assuming, as 
first approximation, the magnetic field vector having a constant Hz 
component only:

H (x ,y ,z )sH z (x,y,z)gz = H zgz (37)

The simulation proposed below (executed with the aim to validate 
our model) has been carryed out on the base of this simplificative 
lpothesis, because no specific characteristics were availabe on 
magnet used during the experimental tests^

MODEL VALIDATION

The model proposed in this paper has been validated using 
experimental data3. In Table I we have summarised the main 
characteristics of the device tested, the measured output power, the 
hypothetical temperature values and the computed output power.

TABLE I

Experim ental Da ta  a n d  Com putational Values

Description Value
Inlet / Outlet section 60x60/ 120x120 mm3
Velocity 1200 m/s
Active length 0.80 m
Magnetic induction 2.5 T
Number of electrode pairs 81
Load resistances ^1-15 = 2.2 O R16-35 = 3-3 Q

R36-59 = 4/7 Q R60-81 = 51 n
Plasma flowing in the MHD channel Argon + 2x10'4 Cesium
Measured output electric power 380 kW
Inlet / Outlet temperature 2860 /2600 K
Wall temperature 0.5 ■ axis value
Computed output electric power 360.6 kW

Fig. 9 - Calculated load current and output electrical power in 
correspondence with each electrode pair.

We underline that the inlet/outlet temperature, as well as the wall 
temperature, have been chosen in agreement with the standard 
values proposed in literature^. The simulation has been executed 
usmg the spatial distributions of all physical quantities previously 
determined. The plasma partitioning used for this simulation is not 
so high as an accurate evaluation should require. We have make this 
choice to reduce the number of equations and thus to obtain a 
smaller computational time (developing appropriate LU factorization 
scheme for structurally symmetric sparse matrix, it would be 
possible to optimize the solution of the system with a relevant 
reduction of the time required for the calculations, and then it would 
be possible to thicken the plasma partitioning; however, nowadays 
this improvement has been not yet developed, even if we think to 
implement it in the next version of the code). But this fact has 
caused a reduction of the output power computed (we have verified 
that increasing the plasma partitioning, the output power tendentially 
grow up when the numerical stability of the solution has been not yet 
reached). In spite of this, it is interesting to note that the difference 
between the measured and the computed electrical power is very 
small (= 5%). In addition, as it is easy to note, the trend of the 
current along the y axis (see Fig. 9) is m agreement with the results 
obtained by other authors^. The results obtained confirm the 
validity of all hypothesis made on the temperature values and on the 
spatial distributions of all physical quantities.
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CONCLUSION AND REMARKS
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In the MHD research field, 3D models are hardly used. The 
complexity of the algorithms, as well as, the execution time and the ( 
memory consumption have discouraged the authors to implement . 
these models. In this paper, we have demonstrated that an equivalent 
3D electrical network, in stationary regime, can be advantageously 
used to overcome the cited difficulties in 3D modelling of MHD 
generators. The calculation code can be developed using suitable 
adapted traditional algorithms of and it can be easily made 
compatible with the computational resources of ordinary machines 
(all this mixing the opposite exigencies represented by accuracy of 
the numerical results and acceptable execution times). The analyses 
pointed out by means of this code describe the macroscopic 
behaviour of the Faraday generator. The main specification data of 
the device can be obtain varying its characteristics (e.g., the load 
conditions, the external magnetic field excitation, the plasma 
composition and its working conditions, etc.). The results obtained 
encourage the authors to continue their research activity in the 
development of this model. Nowadays, they are working to 
implement the next improvement of the code that concerns the 
extension of the analysis to Hall and diagonal connected MHD 
generators. For these types of generators it is not possible to make 
approximations on the current density distribution as done for the 
Faraday generator. In this case, appropriate strategies are to be 
introduced to make the model able to represent a fine plasma 
partitioning without compromising execution time and accuracy of 
the numerical results.
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