NRAP Phase II
Tools and Workflows
at the 2021 GWPC Annual Forum

September 29, 2021
Short term seismic forecasting – a tool to assess seismicity during injection operations and the RiskCat tool

Corinne Layland-Bachmann (LBNL)
Overview

• Introduction to both STSF and RiskCat
 • Tools in a Nutshell
 • Background and Context

• How to run to the tools
 • Input / Output
 • Challenges

• Examples
Use observed earthquake catalogs and measured (and/or controllable) injection parameters to forecast earthquake rates
RiskCat tool – in a Nutshell

Use earthquake catalogs – observed or calculated - to determine seismic hazard and risk over the project lifetime.
Traditionally, induced seismicity projects are monitored with a traffic light systems (TLS)

- Reacts to single incidents like:
 - Recorded seismic events above threshold
 - Measurement of acceleration / ground motion above threshold
 - Public response

New system that incorporates all recorded seismicity

- Adapt established seismic model to induced seismicity
- Incorporate injection parameter to calculate influence on rates
STSF – Future

New release planned for end of Phase II

- Current model includes **one** statistical model
 - Epidemic type aftershock model (ETAS)
- Include a suite of models

```
Injection Data + Microseismic Catalog
```

```
Forecasting Methods

\[ \lambda_1 \times \text{OpenSHA} \]
\[ \lambda_2 \times \text{SI}_1 \]
\[ \lambda_3 \times \text{SI}_1 \]
\[ \lambda_4 \times \text{ETAS}_1 \]
\[ \lambda_5 \times \text{ETAS}_2 \]
\[ \lambda_6 \times \text{CRS}_1 \]
\[ \lambda_7 \times \text{CRS}_2 \]
```

Weighted Average

Seismicity Forecast
• Epidemic Type Aftershock Sequence Model (ETAS)
• Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.
 • Each earthquake has the ability to trigger aftershocks
 • ETAS is a cascading model
• Epidemic Type Aftershock Sequence Model (ETAS)

• Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.
 - Each earthquake has the ability to trigger aftershocks
 - ETAS is a cascading model
 • Mainshock triggers aftershocks
• Epidemic Type Aftershock Sequence Model (ETAS)
• Originally developed by Ogata in 1988 to determine the occurrence of aftershocks after a main shock / large event.
 • Each earthquake has the ability to trigger aftershocks
 • ETAS is a cascading model
 • Mainshock triggers aftershocks
 • Aftershocks can trigger aftershocks
• **Epidemic Type Aftershock Sequence Model (ETAS)**

• **Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.**

 • Each earthquake has the ability to trigger aftershocks
 • ETAS is a cascading model
 • Mainshock triggers aftershocks
 • Aftershocks can trigger aftershocks
 • After and mainshock are purely temporal terms. If aftershocks are larger than main shocks, there is often a re-classification to foreshock / mainshock.
STSF – Seismic Model

• Epidemic Type Aftershock Sequence Model (ETAS)
• Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.

\[\lambda_i(t) = \frac{K}{(c + t - t_i)^p} 10^{\alpha(M_i-M_{\text{min}})} \]

\[\lambda(t) = \lambda_0 + \sum_{i:t<t_i} \lambda_i(t) \]

K, α = productivity parameters
c = delay term (time)
p = decay term

Background Term
➢ Describes natural / background seismicity

Triggered Term
➢ Describes increase in seismicity due to disturbance
To adapt for injection induced seismicity, a term is added into the background:

$$\lambda_0(t) = \mu + c_f \times F_r(t)$$

- c_f is a scale parameter
- $F_r(t)$ is a measured injection parameter
 - Can be the injection rate, measured pressure etc.
 - When using a parameter that can be changed by the operator, different scenarios can be calculated
 - Earthquake rate if injection rate doubles?
 - Earthquake rate if injection rate is reduced by half?
STSF – Tool installation

• The tool package is a zip file
 • Unpacking the zip file creates a folder with all files needed

• Currently only tested on Mac OSX and Linux
 • Currently not supported under Windows

• Requires Java Runtime Environment (JRE) version 8 update 40 or newer

• Requires gcc and Perl
STSF – Running the tool

• To run the GUI
 • sh bin/application

• Enter parameters will prompt a new window where all parameters are picked
 • Parameters are described in manual
 • Support for parameters in the EDX forum (link at the end)

• Run Simulation runs one simulation with chosen parameters and writes output files
STSF – Examples – Paradox Valley

- Brine water injection over 20 years
- Relatively remote area in Colorado
 - Earthquake rate per five days
 - Different injection periods lead to different seismicity in the early stages
 - STSF underrepresents changes in seismicity during constant injection
 - STSF models late changes due to large events
• EGS project, injection for six days before TLS triggered reduction and shut in
• Urban area in Switzerland
 • Earthquake rates for 1/4-day
 • E2, E4 and E5 are different realizations of the model
 • Different fixed and varying variables that are described in the manual
• **Tool is not designed to work as a site characterization before injection**
 • Minimum number of events is needed

• **Tool relies on seismic event data**
 • Seismic network with high detection rate / low magnitude of completeness
 • Seismically inactive injection might not provide enough data

• **Tool has not yet been applied to an area in real time**
 • Only pseudo real time testing after project was complete or was in operation for a long time already
RiskCat – Background

• Developed as a collaboration between LLNL, LBNL and an independent contractor
• Makes no assumptions about the time and space distribution of seismicity, can accommodate any type of time and space non-stationarity
• Uses simulated or recorded seismic catalogs as input

➢ Induced seismic hazard and risk very well suited as it his highly non-stationary
RiskCat – Installation

• The RiskCat code is on gitlab
 • https://gitlab.com/NRAP/RiskCat

• Unlike other NRAP tools, RiskCat is not a GUI
 • More suited for non-lay users

• Install is described in the readme file
 • The ‘make’ file includes the whole installation
 • Only tested on linux and Mac computers
RiskCat – Running the tool

• ../riskcat KingIS.menu will run the example file
• Example file will create hazard and risk output for a subset of a simulation for King Island
 • Example run will both save files and PDF files with example curves
• Results are saved in the EQSimrisk folder
• The manual explains all input parameters in depth and how to manipulate them
 • Manual still work in progress and will be updated in the next phase
RiskCat – Examples / Hazard

• Based on a simulation of induced seismicity
 • Earthquake catalog with RSQsim
 • Injection with TOUGH2

• Probability of exceeding a pre-defined acceleration threshold

• Four different time periods
 • Pre (background)-, co-, post and late-post injection periods
 • Covers the whole project lifetime

➢ Difference most significant for largest accelerations
Risk is for pre-defined surface site
 • Site conditions need to be known
 • Population density and building stock is important
Risk of nuisance for the same four time periods as the last slide
 • Nuisance indicates lower risks, but important for induced seismicity where public acceptance of the project is key
Nuisance risk is elevated for all levels over background (red)
RiskCat – Challenges

• RiskCat is not a GUI like other tools
• Usage of RiskCat is not straightforward, especially for lay users
• Backward combability to work with other datasets is not always guaranteed
• Technical support is not always straightforward
Questions and Discussion

Thank you!

NRAP Website: https://edx.netl.doe.gov/nrap/
Sign up for NETL EDX: https://edx.netl.doe.gov/user/register

Support for the tools is available in an online forum
https://edx.netl.doe.gov/workspace/dashboard/nrap-tools