Damage Processes and Recovery Mechanisms in Long-Term Well Integrity

Bill Carey, Meng Meng, Luke Frash

NETL Well Integrity Workshop: Identifying well integrity research needs for subsurface energy infrastructure

25 May 2021
Topics

• Initial State of Stress in Cement
• Computational Models for Wellbore Integrity
• Self-Sealing Processes in Cement
Cement Initial State of Stress: What is it?

- The stress exerted by the cement against its containing walls
- The stress is unknown because cement evolves from a liquid slurry at hydrostatic stress to a solid which involves consumption of pore fluid and volumetric shrinkage
- This stress controls microannulus formation and cement fracturing
- Requires experimental determination
Cement Initial State of Stress: Why do we care?

• All numerical models of cement performance require this as an initial input
• Essential input to determining adequacy of cement design
 - “Can it handle the imposed stresses”
• Needed to evaluate if past operations damaged the well
• Required to evaluate whether existing design is adequate for future operations (as injector or monitoring well or abandoned well)

Initial state of stress: The key to achieving long-term cement-sheath integrity.
Cement Initial State of Stress: Can it be modified?

- Water/cement ratio
- Expansion agents
- Fluid loss control agents (pore pressure effects)
- Curing agents (retarders)
- Etc.
Triaxial Cement Evaluation Experimental Facility

1. Cement is poured into vessel as slurry
2. Constant axial stress is applied
3. Liquid cement has hydrostatic pressure
4. Curing of cement changes the stress state

Controllable Variables Measurement Objective

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, T</td>
<td>Temperature</td>
</tr>
<tr>
<td>Confining pressure, P_c</td>
<td>Horizontal rock stress</td>
</tr>
<tr>
<td>Axial stress, P_a</td>
<td>Vertical pressure</td>
</tr>
<tr>
<td>Pore pressure, P_p</td>
<td>Pore pressure</td>
</tr>
<tr>
<td>Interface stress, P_i</td>
<td>Cement-casing stress</td>
</tr>
<tr>
<td>Time, t</td>
<td>Waiting on cement</td>
</tr>
<tr>
<td>Cement Formulation</td>
<td>Cement Formulation</td>
</tr>
</tbody>
</table>

Meng, Frash, Carey et al. (in review) "Cement Stress and Microstructure Evolution During Curing in Semi-rigid High-pressure Environments" Cement and Concrete Research
Interpretation of Cement Hydration in Drained Test

Meng, Frash, Carey et al. (in review)

“Cement Stress and Microstructure Evolution During Curing in Semi-rigid High-pressure Environments” Cement and Concrete Research

25 May 2021
Application of Results to Safe Operating Conditions
Impact of Temperature and Pressure Excursions
via thermoporoelastic calculations

Effect of Initial State of Stress

2 MPa

Effect of Cement Permeability

High Perm

5 MPa

Low Perm

Mechanical Modeling of Well Integrity

- **Common Assumptions** (from Jo and Gray 2010)
 - Elastic materials
 - Concentric, circular well
 - Initially bonded
 - Cohesion/tensile strength
 - Plane strain

- **Model complexity**
 - 2D versus 3D
 - Poroelastic effects
 - Thermal effects
 - Failure mechanisms
 - Plasticity

- **Model types**
 - Finite element
 - Analytical (e.g., Frash and Carey 2019; Meng et al. 2021)

- **Objective**: calculate failure as function of thermal/mechanical stresses

Experiments, Observations, and Current Understanding of Self-Sealing Processes in Cement

Experiments, Observations, and Current Understanding of Self-Sealing Processes in Cement

Cited work

Experiments

This study: Nguyen et al. (2020) Int. J. Greenh. Gas Control. 100, 103112

Modeling

Experiment Details

- Constant flow (CF) and Constant Pressure (CP) conditions shown
- Use of hydraulic diameter and fluid residence time allows comparison among 9 experiments and 3 models
- Diagram delineates regions that are strongly sealing vs. strongly non-sealing
- Our experiments are primarily in the transitional to non-sealing
- Results allow prediction of fracture sealing conditions

How Much Cement is Needed to Seal a Microannulus?
As function of Pressure Gradient
Research Needs on Cement Self-Sealing

• How best to make use of constant flow-rate experimental data
• What scaling issues exist in going from experiments to wells (length, flow rate, large cross-section flow channels)?
• 3D numerical simulations of fracture sealing
• What limits exist for closing large apertures
• What is the affect of cement formulation? CO\textsubscript{2}-resistant cements?
• Self-sealing under multiphase conditions
Conclusions

• We are just now obtaining data on initial state of stress—much more to understand
• The state of stress is critical to design and analysis of cement performance
• Pore pressure plays a critical role in cement stress
• Excellent infrastructure for well models exist but a great need to validate these simulations, e.g., plastic behavior
• Cement self-sealing has been amply demonstrated but hasn’t quite developed into a predictive tool

Acknowledgements

• Thank you to the organizing committee
• I’d like to acknowledge fruitful discussions with many colleagues on this topic