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ABSTRACT

The Electric Pow er Research Ins titu te  (EPRI) has aw arded a 

con tract to  the M HD Developm ent C orpora tion (MDC) to  

develop ins trum enta tion  and contro l requirem ents and 

strategies fo r com m ercia l MHD po w e r p lants. MDC 

subcontracted MSE to  do the  technica l developm ent required. 

MSE is being assisted by M ontana S tate  U n ivers ity  (MSU) for 
the topping cycle developm ent.

A com puter m odel o f a stand-alone M H D /steam  plant is being 

constructed. The plant is based on the plant design set fo rth  
in the MDC proposal to the Federal Clean Coal Technology 5 

so lic ita tion . It consists o f an MHD topp ing  plant, a Heat 
Recovery Seed Recovery (HRSR) plant, and a steam  tu rb o -

generator. The m odel is based on the com puter code used for 
a s tudy of the Corette p lant re tro fitted  w ith  an MHD plant. 

Additional contro l stra teg ies, based on MHD testing  results 
and current steam  bo ttom ing  plant con tro l data, w ill be 

incorporated. A m odel w ill be devised and im plem ented fo r 

autom atic con tro l of the p lant. Requirem ents regarding 

instrum enta tion  and actuators  w ill be docum ented. 

Instrum entation and actuators  tha t are no t com m ercia lly  

available w ill be iden tified . The role and desired 

characteris tics  o f an expert system  in the autom ated contro l 

scheme is being investiga ted. S tart-up and shu tdow n 

procedures w ill be studied and load change dynam ic 

perform ance w ill be evaluated. System  response to abnorm al 
topping cycle and o ff-design  system  opera tion w ill be 

investigated. A lte rnate  design approaches in the areas of 

stab ility , operating range, com ponent stress, and 

environm ental com pliance w ill be investiga ted.

This e ffo rt a ttem p ts  s ign ifican t advances over previous 

m odeling e ffo rts . This includes use o f MHD topping cycle 

models w h ich  couple gasdynam ic and electrical behavior fo r 

the s tudy o f con tro lling  o f the MHD topping cycle . A 

curve fitte r, w h ich  uses cub ic Herm itian spline in terpo lation 

functions in as m any as five  dim ensions, a llow s m uch more 

accurate reproduction o f nonlinear, m ultid im ensional functions. 

This pro ject w ill be the firs t to  investiga te  p lant dynam ics and 

contro l using as m any as seven independent variables or 

contro l inputs to the MHD topping cycle . This e ffo rt w ill also 

catalog required ins trum enta tion  and the required 

characteris tics  of an expert system .

INTRODUCTION

reasons fo r  the  lack o f a com m ercia lly  applicable package. 

First, e lectrical and gas dynam ic cha racteris tics  o f MHD 

subsystem s have tim e constants on the order of m illiseconds, 

m uch shorte r than those found in conventional pow er plants 
and o ther types o f advanced techno logy pow er system s. A 

m ajor e ffe c t of th is  rapid response is th a t the MHD process 

has very tig h t requirem ents on m ass flo w s  as they a ffec t 

pow er production . Perform ance rates o f the order cited, 

coupled w ith  need fo r sustained a tten tion  to mass flow s , can 

stress or exceed the ab ility  o f human operators to  react w ith  
su ffic ie n t speed and sound judgem ent.

Second, the  accessib ility  o f MHD equipm ent is lim ited 

com pared to ord inary po w e r p lant un its, e ither because of 
extrem e opera ting e n v iro n m e n tso r personnel hazards 

associated w ith  the equipm ent. The com bustor in a 
com m ercial application w ill operate at five  to  six tim es 

atm ospheric pressure and w ill have core gas tem peratures of 
about 4 ,5 0 0  °F . It w ill have a voltage o f perhaps 10 ,0 0 0  to 

2 0 ,0 0 0  vo lts  be low  ground potentia l. The M HD generator 
itse lf w ill be shrouded in a m agnet having a fie ld s trength of 

up to six Tesla, and it  w ill have a strong electrical gradient 

along its  length . As a sa fe ty  po licy, personnel should not be 

in p ro x im ity  to the MHD system  during operation.

Add itionally, the therm a l-to-e lectrica l conversion process itse lf 

is in ternal and d iffuse , m aking it  im possib le to  m onitor d irectly. 

Its behavior m ust be in ferred or reconstructed from  external 

m easurem ents b y  using com puter a lgorithm s. Both operators 

and au tom atic  con tro l system s m ust rely s trong ly  on 
instrum enta tion  coupled w ith  com puta tion  rather than upon 

d irect m easurem ent o f som e system  variables. State 
estim ation and real-tim e param eter iden tifica tion  solution 

m ethods are generally applicable to these situa tions.

This on-going pro ject has three prim ary ob jectives:

Define suitable con tro l stra teg ies fo r  com m ercial 
(u tility) operation o f MHD topping plants.

Define suitable con tro l stra teg ies fo r com m ercial 

(u tility) operation o f an in tegrated p lant having an 

MHD topp ing  cycle  and conventiona l bo ttom ing 

cycle.

Define ins tru m enta tio n  requirem ents fo r the 

ob jectives above, as well as required characteristics 

o f an expert system .

Detailed ins trum enta tion  and con tro ls  required fo r in tegra tion 

o f M HD topping system s in to  com m ercia l u tility  environm ents 

have not ye t been developed. There are tw o  fundam ental
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The u ltim ate  ob jective o f the proposed w o rk  is developm ent o f 

a set o f con tro l strateg ies and d iagnostic  procedures fo r the 
MHD system  to assist in the trans fe r of M HD from  the tes t 

environm ent to a com m ercia l u t il ity  environm ent. In doing 

this, certa in  fundam enta l guidelines should be fo llow e d  to 

m axim ize p lant ava ilab ility  and con tro l system  e ffectiveness.

In no particu la r order, th e y  are:

Since MHD is a new techno logy in pow er production , 

the M HD system  should in itia lly  be subjected to the 

m in im al level o f stress (e.g. arcing, Hall voltage, 

cu rre n t density, therm al gradients) tha t a llow s 

su ffic ie n t fle x ib ility  in p lan t operations. This applies 

pa rticu la rly  to the e lectrica l environm ent w ith in  the 

M HD channel. Since the only d irec t poss ib ility  of 

fa s t electrical contro l on the channel duct is through 

the po w e r cond ition ing  system , particu la r a tten tio n  is 

being paid to the channel, po w e r condition ing 

in te raction  and the channel electrode current 

m anagem ent system  in s tudying  the  operational 

envelope. Results from  earlier w o rk  on th is  top ic  are 

given in Reference 1.

O perator skill levels and a tten tio n  levels should not 

be greatly  in excess o f those necessary in a typica l 

po w e r plant; a lthough, som e specialized tra in ing in 

M HD characteris tics  w ould  be expected.

The responsib ility  fo r rapid system  ad justm ents (in 

the tens of m illiseconds) w ould necessarily reside in 

the au tom atic  con tro l system . Since the detailed 

channel environm ent cannot be extensive ly on-line 
m onitored, the internal environm ent m ust be inferred 

th rough real-tim e state estim ation, w h ich  is then 

input to  an expert system  fo r con tro l actions. The 

rem ainder of the MHD system  could fun c tio n  under 

fu lly  au tom atic  contro l or w ith  som e degree of 

opera tor in tervention.

Next to preserving system  in te g rity  and fu n c tio n  of 

all portions o f the plant, the m ost im portan t need is 

to keep the p lant on line, producing pow er. The 

con tro l system  should be designed so tha t con tro lle r 

failure cannot be fa ta l to  the to ta l p lant. Failures 

should either re turn the a ffec ted  com ponent of 

con tro l to  operator con tro l, or should continue 

au tom atic  operation in a gracefu lly  degraded mode.

To the extent possible, con tro l stra teg ies should be 

realized on a com m ercia l d is tribu ted  contro l system  

(DCS); thereby, m in im izing the need fo r specialized 

hardw are and/or s o ftw a re  w ith  the ir a ttendan t costs 

and com plica tions. W hen custom  equipm ent is 

required, it should in te rface to the DCS through 

standard in te rface hardw are and pro toco ls.

Control Strategies Guidelines

Several issues m ust be considered in develop ing such a 

con tro l system  fo r the M HD system . G enerally, opera tion will 

be in one of three m odes: Norm al opera tion , s ta rt-up /sh u t- 

do w n , and em ergency cond itions.

Under norm al operation, the M HD sys tem  w ill be subjected to 

varia tions of operating po in t w ith in  a prescribed envelope of 

m ass flo w s , pressures, tem pera tu res, e lec trica l po w e r 

extraction , m agnetic fie lds, channel vo ltage gradients, etc. 

W ith in  th is  envelope, the overall com b ined-cyc le  p lant 

operating po in t should be a u tom atica lly  ad justed fo r optim al 

e ffic ie ncy , equipm ent life , re liab ility , s tab ility , d ispatch  

responsiveness, and em ission levels. It is expected th a t for a 

given MHD system  ins ta lla tion , the  opera ting  bounds w ill be 

fa ir ly  narrow  in itia lly , and th a t th e y  w ill expand as personnel 

becom e m ore fam iliar w ith  the sys tem .

Because the M HD system  is pa rt o f a to ta l p lan t, an extended 

v ie w  m ust be taken of M HD co n tro l. It m u s t be assured that 

con tro l stra teg ies selected fo r the  MHD system  are com patible 

w ith  contro l stra teg ies applied to  the  balance o f the  plant; 

thereby, creating a com plete , in tegra ted  opera ting package for 

the com bined-cycle po w e r p la n t1

An example o f dynam ic p lant in te rac tion  is the  e ffe c t of 

dynam ics in MHD topping p lant s to ich io m e try  and m ass flow s 
(w h ich  are in tu rn  related to  M HD p o w e r dem ands) on 

secondary air requirem ents in the b o tto m in g  p lant. Secondary 

air is required to  achieve com p le te  com bustion  in the  heat- 

recovery/seed-recovery (HRSR) steam  genera tor th a t is 

cons is ten t w ith  necessary con tro l o f NOx and o ther emissions. 

M HD is inherently  a cleaner te ch no logy  than conventiona l coal 
firing , bu t it m ust have suitable con tro l applied.

A second exam ple tha t is related to  bo th  po w e r production 

and equipm ent in te g rity  is the in te rac tion  o f induced d ra ft fans 

w ith  M HD d iffu se r exit pressure cond itions, and subsequent 

e ffe c t on MHD mass flo w s  and p o w e r generation . The 

im portance o f m aintain ing a su itab le  com bustion  gas pressure 

pro file  in the steam  p lant is w e ll-kn ow n .

Project Tasks and Schedule

A set o f three tasks to reach the  ob jectives o f th is  pro ject are 
outlined b rie fly  be low :

1) Create a fu lly  de tailed, dynam ic com pute r m odel of a

pro to typ ica l stand-alone M H D /steam  p lant using firs t- 

princip les w henever appropria te . C oncentra te  
especia lly on MHD topp ing  cycle  m odeling tha t 

includes system  variables th a t p rovide m easures of 

perform ance at reasonable stress levels. Determ ine 

and embed in to  the  m odel a con tro l p o licy  having 

suitable ou tpu t po w e r w h ile  m ain ta in ing  sa fe ty  and 

operating m argins. D eterm ine requ irem ents fo r 

instrum enta tion  and actua to rs , w ith  special em phasis 

on those w h ich  are no t cu rre n tly  com m erc ia lly  

available. Determ ine role and ch a ra c te ris tics  o f an 
expert system  fo r  use in MHD plant.

Control Strategies Issues
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2) Use m odel crea ted in 1). Develop s tart-up  and 

shu tdow n  procedures fo r the  p lant. Evaluate 

dynam ic p lan t perform ance in response to changes in 

load. Evaluate cha racte ris tics  o f p lan t behavior 
w hen opera ting  a t o ff-des ign  cond itions. Determ ine 

outcom es o f abnorm alities in the MHD portion  o f the 

p lant. M ake any required augm entations to  the 

com puter m odel to  enable running o f the necessary 
conditions and cases.

3) Investigate  a lte rna tive  design approaches as m ay be

suggested w h ile  com p le ting  1) and 2). A lte rnatives 

should o ffe r prom ise of overcom ing a shortcom ing or 

de fic iency in the  present design, or o f s ig n ifica n tly  
im proving som e aspect o f the design, e.g ., con tro l 

s tab ility , opera ting range, com ponent stress, or 
environm enta l com pliance.

W ork was started in O ctober 1991 and is scheduled to  be 

com pleted in M ay 19 95 .

Responsibilities

This pro ject is being accom plished by  MSE w ith  support from  

M ontana S tate U n ivers ity . The f lo w  of responsib ility  fo r  th is  

pro ject is show n in Figure 1. Briefly, funding originates w ith  
the Electric Pow er Research Ins titu te  (EPRI) w ho has 

contracted w ith  the M HD Developm ent Corporation (MDC). 

MDC provides pro ject m anagem ent and d irection  but has 

contracted the techn ica l w o rk  to MSE. MSE is responsible for 
creating com puter m odels of the bo ttom ing  cycle com ponents 

and fo r system  in tegra tion  and operation. MSE has contracted 

w ith  MSU to  do the challenging w o rk  associated w ith  

m odeling the topping cycle .

Concept Change

The original co n tra c t was based on the concep t of a re tro fit 

p lant to  be insta lled on the  C orette p lant in Billings, M ontana 

(Reference 2). As w o rk  started on the  subm itta l to  the U.S. 

Departm ent of Energy (DOE) fo r Clean Coal 5 (Reference 3) 

support, the concep t changed to  a stand-alone plant 

occupying the same s ite  as the C orette  p lant bu t not having 

any operating ties to  it .  The original tasks were to be 1) 

modelling the C orette  p lant as it existed, 2) creating a s tand-

alone MHD m odel, and 3) com bining the tw o  to  develop 

in tegrated con tro l po lic ies. Due to  the change in the proposed 

plant the tasks to  do C orette  p lant and in tegra ted m odelling 

were deleted and the task  to do stand-alone plant m odelling 

was expanded as described in th is  paper.

DYNAMIC PLANT MODEL DESCRIPTION

The dynam ic p lant m odel carries the fo rm , s truc tu re , and 

m any o f the hardw are m odels from  previously  com pleted 

studies, see, fo r  exam ple, References 4  and 5. The curre n t 

w ork involves crea ting  m odels fo r the B illing M HD Plant, w h ich  

contains fea tures no t found  in any previously  proposed plant, 

and using a m uch m ore detailed and higher f id e lity  topping 

cycle m odel w h ich  a llow s coupling o f in ternal gasdynam ics to 

external electrical c ircu its . The current w ork  also fea tu res use

o f up to  five  dim ensional spline curve fits  fo r  use w ith  the 

algebraic topping cycle model and steam  tab le data.

Model Formulation

A diagram  show ing the process involved in creating the 

dynam ic p lant m odel is show n in Figure 2. A number o f steps 

and a num ber o f o ther com puter codes are used. M any o f the 
other com puter codes are existing from  previous w ork on this 

subject and w ill be b rie fly  described in the next section. 
Ancilla ry Model D escriptions.

A s ign ificant portion  o f the  dynam ic p lant m odel is the topping 

cycle m odel. The topp ing  cycle model is represented to  the 

plant model as an algebraic set o f cu rve fits . This is possible, 

even necessary, because the tim e constants o f the topping 
cycle are on the order o f m illiseconds or less, while tim e 

constants of the balance o f the p lan t are on the order of 
seconds. These curve fits  are generated using a database of 

successive runs w ith  a steady-state topping cycle model at 

operating po ints, w h ich  span the necessary region of valid ity. 

The algebraic model describes (1) the flu id sta te  at the topping 
cycle /bottom ing cycle in te rface, (2) pow er ou tput, and (3) 

cooling w ate r requirem ents as a fun c tio n  of seed fraction , 

s to ich iom etric ratio, oxygen frac tion , preheat tem perature, 

m agnetic field s treng th , coal f lo w , and exit pressure. The 

steady-state m odel, in tu rn , uses data in the fo rm  of curve fits  

from  a com bustor code and from  a therm odynam ic equilibrium  

code. These codes are described la te r in th is  paper.

Other portions o f the dynam ic p lant model are modules 

(subroutines) each representing a piece o f equipm ent. 

Hardware characteris tics  and physical law s are embedded in 

the code to  create firs t-p rinc ip le , lum ped-param eter models, 
which can be in terconnected to represent the overall p lant. 

Control law s are likew ise  embedded in a separate subroutine, 

which m onitors the sta te  o f the p lant and returns appropriate 

control actions. In form ation on superheated steam  is cu rve fit 

in the same m anner as other data in the m odel, and is 

available to  the routines as functions to  ensure therm odynam ic 
law s are obeyed. Specific hardw are con figura tion  is encoded 

in the m ainline routine. Run-specific data is input from  data 

files at run-tim e.

A dynam ic com puter model o f the MHD topping cycle, made 

com patib le w ith  the steady-state  m odel, is being used to 

devise and im plem ent contro l strateg ies fo r  au tom atic contro l 

of the MHD topping cycle . It is also being used to docum ent 

response to abnorm al topping cycle operation, s tudy start-up 

and shu tdow n procedures, evaluate load change alternatives, 

and investiga te alternate design approaches to  expand 

operating range.

Plant Description

A block diagram  o f the Billings M HD Plant, as represented in 

the dynam ic p lant m odel, is show n in Figure 3. It is apparent 

tha t the plant is h ighly in te rconnected ; it is exactly  th is  

in terconnectedness th a t m akes th is  con tro l s tudy necessary. 

The plant, as represented here, has s im p lifica tions made to 

elim inate item s w h ich  w ill have no e ffe c t on its  con tro llab ility .
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For exam ple, the coal process loop and the  seed regeneration 

cycle are com plex system s in the ir ow n right, bu t are 

represented here as single b locks w ith  m in im al dynam ics since 

the in ternal com plexities of these loops are not re flected onto 

the po w e r generation p lant.

N om enclature fo r Figure 3 is as fo llo w s . All p lant com ponents 

are represented in rectangles w ith  a brie f te x t identifie r and 

reference num ber in them . C ircles represent convergences or 

d ivergences; places w here stream s are separated or b rought 

together and m ateria l p roperties need to  be calcula ted. These 

convergences or d ivergences do not represent physical 

com ponents, bu t m ay represent th ings like a pipe tee. Control 

po ints are show n w ith  the schem atic sym bol fo r a valve (an X 

w ith  lines at the ends), w hethe r or not the  con tro l po in t 

actua lly  is a valve or no t. This is done fo r  d raw ing  s im p lic ity . 
A num ber beside each sym bol identifies it. Table 1 conta ins a 

lis t of all p lan t com ponents, includ ing convergences and 

divergences w ith  a longer descrip tion and the name used to 

id en tify  it in the dynam ic m odel. The reference num ber inside 

the rectangle corresponds to  the iden tify ing  num ber in th is 

tab le. Table 2 con ta ins a lis t o f the con tro l po ints and w h a t is 

being con tro lled . The num ber beside the contro l sym bol 

corresponds to  the iden tify ing  num ber in th is  table.

For purposes o f illum ination , tw o  o f the m ajor f lo w  paths w ill 

be described here. Again, it  m ust be stressed tha t w h a t is 

described is the system  from  a con tro l and instrum enta tion  

perspective on ly. It m ay or m ay not be useful fo r other 

purposes.

The com bustion  gas path s ta rts  w ith  the 

com bustor/nozzle /channel and goes to  the  d iffuse r/tran s ition  

and then the radiant boiler. A fte r, the rad iant boiler additional 

air is added to  com plete com bustion. The heat exchanger 

com ponents fo llo w in g  th a t are the  prim ary oxidant preheater, 

the superheater, the reheater, a parallel pa th  consisting o f the 

high tem perature  econom izer and the secondary air heater, 

and the lo w  tem perature  econom izer. The baghouse and an 

induced d ra ft fan com plete the path. Contro l variables 

considered th a t a ffe c t th is  path are the m aterial stream s in to 

the com b usto r to m ainta in  m ass flo w , s to ich iom e try , and seed 

frac tion ; secondary air f lo w  to  m aintain fina l s to ich iom etry ; 

and vacuum  d ra w n  by the ID fan to  m ainta in  atm ospheric to 

s ligh tly  subatm ospheric  pressure a t the ex it o f the d iffuse r.

The w a te r/s te am  flo w  path can be considered to s ta rt at the 

condensor. Only the m ain path w ill be described; other m inor 

paths can also be fou nd . The condensor is sensitive to  river 

tem perature  and c ircu la ting  w a te r f lo w  rate. From the 

condensor the  condensate pum p boosts pressure to  send flo w  

through the  lo w  tem perature  heat exchanger and the low  

tem perature  econom izer and in to  the deaerator storage tank. 

From the deaerator storage tank the bo ile r feed pum p sends 

f lo w  th rou gh  the com b usto r heat exchanger and the high 

tem perature  heat exchanger in to  the steam  drum . The steam  

drum  has c ircu la tion  forced fro m  it th rough the 

d iffu se r/tra n s itio n  and rad iant bo iler and back to it. S team  is 

taken fro m  it, a ttem perated by spray f lo w  if necessary, and 

sent th rou gh  the superheater to the high pressure turb ine. 
Return fro m  the  HP tu rb ine  m ay be attem perated by spray and

is sent th rou gh  the reheater to the  in te rm ed ia te  pressure  and 

lo w  pressure turb ines. F low is returned to  the  condensor. 

Contro l po in ts  include flo w  fro m  the  condensa te  pum p and the 

boiler feed pum p, f lo w  through the  d iffu s e r/tra n s itio n  and 

rad iant bo iler, and superheat and reheat sp ra y  f lo w . The HP 

turb ine governor valve is also a m a jo r co n tro l po in t.

Computer Code Description

The dynam ic p lant model is coded in FORTRAN and is 

com prised o f driv ing  routines, w h ich  a llow  execution  of 

subrou tines representing various ha rdw are  com ponents (e.g. 

pum ps, heat exchangers, fans, generators), another 

subrou tine, w h ich  em bodies the con tro l la w s  and policies, and 

a subroutine w h ich  represents the  co m b usto r, MHD channel, 

and d iffuse r. The m odel accepts in pu t fro m  data files, which 

spec ify  the in itia l s tate o f the p lan t, co n tro l param eters, and 

p lant param eters.

A diagram  show ing  the layout o f the  co m p u te r m odel is 

show n in Figure 4. The m odule called MA1N5 (the numeral 

"5 "  appended to m any of the m odule  nam es ind ica tes the 

version o f the m odule tha t is appropria te  to  the  Clean Coal 5 

proposal, as opposed to num erous previous versions fo r  other 

p lant configura tions) is the m ainline rou tine . Its role is to  open 

appropria te in p u t/o u tp u t data file s , read necessary p lant data 

and run spec ifica tion  data from  these file s , m ainta in  the 

m aster tim ing  variable, in itia lize data arrays, in itia lize the plant 

m odels, and con tro l the in tegra tion  steps. C urren tly  a fourth  

order R unge-Kutta, fixed  step-size in te g ra tio n  a lgorithm  is 

being used. Other a lgorithm s w ill be exp lored, as w ill 

in troduc ing  a variable step-size. M A IN 5  calls tw o  o ther 

m odules as subrou tines. One o f these is OUTPUT, w h ich, true 

to  its  name, ou tputs selected da ta  fro m  the  p lan t model in the 

specified fo rm a t. OUTPUT m akes no calls o f its  ow n .

PLANT5, true  to its name, handles the  calls to  the m odules 

w h ich  represent pieces of p lan t equ ipm ent. It is essentia lly  a 

sequential lis t of subroutine calls to  all o f the  m odels which 

represent pieces of p lant equ ipm ent. A typ ica l subroutine call 

to  a fic titio u s  piece of equipm ent m ig h t be;

CALL EQUIP5 (G A S 1, 102, 10 3 , W A T E R 1, 26 , 27 , W ATER2, 

53 , 54, STATE, 3)

In th is  FORTRAN call s ta tem ent, G A S 1 , W ATER 1, W ATER2, 

and STATE are dum m y argum ents fo r the  program m er's  

convenience to  provide a cue on the  nature o f the  variable 
being passed by the fo llow in g  num ber or num bers. The 

num bers fo llo w in g  the dum m y argum ents , exce p t fo r STATE, 

are the node num ber fo r the m ateria l exchange be tw ee n  tw o  

m odules; one would trea t it as an o u tpu t, the  o ther as an 
input. The num ber fo llow in g  the du m m y variab le  STATE is 

also a dum m y variable fo r the p ro g ra m m e r's  conven ience to 
ind ica te  the num ber o f s tate variables in th e  m odule . Each 

node, as ind ica ted by a num ber, corresponds to  a th ree -w ide  

ro w  o f num bers in the m atrix  representing  the  s ta te  variables 

o f the p lant. The three num bers represent the  s ta te  o f some
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m aterial at the node po in t by ind ica ting  its  en thalpy, f lo w  rate, 

and pressure. The last subrou tine  called is named CNTRL5 
and contains the contro l a lgorithm s fo r  the plant.

The m odules representing p lant equipm ent are, w henever 

possible, based on firs t-p rinc ip le s  m odelling o f the in fo rm ation 

in Reference 3 supplem ented by  in fo rm ation  per Reference 6.

A lis ting o f all cu rre n tly  used p lan t m odels is given in Table 1. 

Heat exchanger m odels rely on concep ts from  Reference 7.

The turbine m odel has as its  basis Reference 8 . Pumps, fans 

and com pressor m odels utilize cha racte ris tic  curves from  

equipm ent m anufacture rs th a t are representative o f the size 
and use as in the proposed p lant. The m odule representing 

the MHD po w e r tra in  required substantia l e ffo r t to  produce a 
highly accurate and useable m odel. It is described more 

thoroughly in the next section . A ll m odules th a t have steam  
connections rely on curve fits  representing properties of steam  

tha t are not passed d ire c tly  as variables bu t are required w ith in  
a m odule fo r com putations.

The subroutine w h ich  represents the com bustor, nozzle, and 

MHD channel (named CNC5) w as prepared to  pred ic t the 
Billings p lant characteris tics. The electrical portion  o f the 

model was based on the P roof-o f-C oncept channel 

configura tion  being tested by MSE at the CDIF in Butte, 

M ontana. One electrode is chosen at each o f the anode and 

cathode consolida tion regions to  serve as a m aster to  the 

other consolida tion electrodes. It is assum ed fo r th is  model 

tha t current is shared equally be tw een all consolidated 

electrodes. Each electrode in the  m odel represents about ten 

channel electrodes. No a ttem p t was made to  address fring ing 

e ffects. A schem atic o f the m odeled channel and inverter is 

show n in Figure 5. The channel area pro file  used is show n in 

Figure 6. The predicted m agnetic fie ld pro file  assum ed by the 
model is show n in Figure 7. Further in fo rm ation  on how CNC5 

was generated can be found in the section titled  S teady-state 

Model.

The module conta in ing the con tro l law s, named CNTRL5, is 

separate fro m  the hardw are m odules, a lthough it  is still called 

from  PLANTS. A ll o f the required p lant con tro l a lgorithm s are 

gathered in to  th is  single m odule. The lis t of con tro l po ints is 

given in Table 2. Typical in dus try  standard a lgorithm s will be 

chosen fo r contro l where the y are applicable and can be 

shown to w ork , a lthough alte rna tives w ill be explored as well.

Four m ajor inpu t files are required fo r the dynam ic p lant model 

to run. The firs t of these supplies the program  contro l 
param eters such as the length o f the run, the in tegra tion  step- 

size, and so fo rth . The second o f these in pu t files supplies the 

initial values fo r the sta te  variables. A t the end o f each run 

the updated set o f the values are ou tput, so tha t a fu tu re  run 

can be continued from  a previous run, w ith  or w ith o u t 

changes, if  desired. The th ird  file  specifies con tro l param eters 

to the con tro l a lgorithm  found in CNTRL5. the last file  a llow s 

input of hardw are cha racte ris tics  at runtim e, w ith o u t requiring 

a recom pile, to  any o f the hardw are m odules. Examples of 

th is use m ig h t be a param etric s tud y  of the system  and contro l 

e ffec ts  o f degraded heat trans fe r from  the superheater, where 

a num ber o f runs w ould  be made from  the same sta rting  po int 

w ith  d iffe re n t heat trans fe r co e ffic ien ts  fo r the superheater.

ANCILLARY MODEL DESCRIPTIONS

Combustor Model

The com bustor model used in generating data fo r the  overall 

p lant is a sim ple tw o-s tag e  model w ith o u t internal dynam ics. 

Its purpose in the con text of th is  w ork  is s tr ic tly  to provide 
equilibrium  data on (1) heat loss fro m  the com busto r and from  

the nozzle, and (2) enthalpy o f ex it gas (from  w hich 

tem perature can be calculated) as a fun c tio n  of inpu t contro l 

po in t variables. It consists basically  o f tw o  volum es (firs t 
stage and second stage) w ith  m aterial in flo w , internal 

equilibrium  chem istry, wall heat transfe r, and m aterial ou tflo w . 
Equilibrium tem perature is calculated by balancing heat 

release, heat f lo w  w ith  exiting com bustion gas, slag heat flo w , 
and wall losses. As a result o f the assum ed liquid slag 

rejection fraction , the model also calculates the to ta l mass 

flo w  o f slag and of com bustion gas. Internally, it  contains an 

equilibrium  code tha t is also used to determ ine therm odynam ic 
and transport properties o f com bustion gas fo r the range o f 

tem peratures and pressures expected in the channel. 

Assum ptions are made tha t coal particu la te  burnout is 

com plete, i.e ., all carbon in the coal is converted to  C 0 2 or CO 

in the com bustion process. Neither chem ical k inetics nor fluid 
flo w  relations are em ployed in the m odel.

Input variables are coal f lo w  rate, enriching oxygen mass flo w  
rate, oxidant mass flo w  rate to  the firs t stage, oxidant mass 

flo w  rate to the second-stage, ox idant preheat tem perature, 

seed mass flo w  rate, and com bustor pressure. During 

operation of the com plete plant m odel, the firs t six o f these 
variables are contro lled by the plant contro l system .

C om bustor pressure is a resu lt of the f irs t  six variables and is 
calculated in the m odeling of the topping cycle, as described 

be low . Parameters fo r operation are coal com position, firs t 

and second-stage geom etry, s idew all tem perature o f each 

stage, slag rejection frac tion , convection heat transfer 

coe ffic ien t, s idew all therm al em iss iv ity , and seed type.

Coal com position is th a t o f typ ica l M ontana Rosebud coal, and 

is given below :

Carbon 6 3 .3 2 %
Hydrogen 4 .3 7 %

Oxygen 1 3 .68%

Nitrogen 0 .9 5 %

Sulfur 1 .0 5%
Ash 12 .63%

M oisture 5 .0 0 %

Spline C urvefitter

A FORTRAN program  has been developed at MSU under a 

separate, independent con tra c t to create and in te rp re t cubic 

Herm itian spline in terpo lation fu n c tio ns  fo r a set of know n 

discrete data po ints in as m any as five  d im ensions. This 

program  was used in the  current m odeling e ffo rt.

Fo r ma t i on  of  t he  spl ine  func t i on  requ i res  tha t  magn i t ude  and
var i at iona l  da t a  be  comp i l ed  and  s a v ed  for  al l  ava i l ab l e  da t a
po ints .  Th e  var i at iona l  da t a  is app r ox i ma t ed  by  cen t e r ed
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d iffe rences. In te rpo la tion  is perfo rm ed by sum m ing w eighted 

products o f fo u r basis fu n c tio ns  fo r each o f the independent 

variables. The program  a llow s one to  use quadratic m ethods 

near variable dom ains,w here  variational data m ay be 

questionable. It also a llow s one to  extrapolate  beyond the 

original dom ains using a linear extrapo la tion . These options 

are perform ed w ith in  the FORTRAN routine by alte ring the fou r 

basis fun c tio ns .

The advantages o f th e  m ethod are as fo llo w s : (1) They have 

guaranteed C1 c o n tin u ity  th rou gh ou t the dom ains. (2) T hey 

are fu lly  m ultid im ensiona l, w h ich  a llow s one to  accurate ly 

create a dynam ic m odel a ffec ted  by all inputs. (3) They are 

very  general and do not require sub jective in te rpre ta tions 

required in o ther f it t in g  schem es.

The disadvantage o f the m ethod is th a t considerable com puter 

storage and com p u ta tio n  is required to  e ffe c t the functions.

The splines are used to f i t  superheated steam  data, equilibrium  
data fo r flu id properties and com bustor data resu lting from  the 

com bustor m odel, and to  com pile data from  num erous 

operating po in ts  th rou gh ou t the potentia l operating dom ain of 

the topping cycle m odel. This pro ject w ill be the f irs t to 

investiga te  p lant dynam ics and con tro l using as m any as seven 

independent variables or con tro l inputs.

S teady-State Model

The MHD s teady-s ta te  m odel has tw o  fluid sta tes and three 

electrical s ta tes. The boundary conditions (e.g. pressure and 

tem peratures) fo r the flu id  sta tes include an assumed 
stagnation pressure at the d iffu se r ex it. A t the com bustor 

in le t, s tagnation tem perature  is kno w n  as a fun c tio n  of 
stagnation pressure and other constan t inputs according to 

com bustor data. A po in t o f in te rest exists at the choke po in t 

o f the nozzle. A t th is  po in t the flu id  f lo w  m ay becom e 

supersonic, and the  po in t has on ly one true s ta te . In other 

w ords, tem perature  becom es an im p lic it function  o f pressure 

at the nozzle choke should the du c t operate in the transonic 

region. T here fore, the boundary conditions include a strong 

ex it boundary, a w eak in pu t boundary , and a th ird  po int of 

in te rest w h ich  is a cause o f num erical instab ilities in less 

robust num erical so lu tion  schem es. Shocks pose additional 
problem s.

The three e lectrica l sta tes correspond to  tw o  electrode and 

one core node vo ltages. The node voltages are part of a 

single 4-te rm ina l M HD channel c ircu it m odel.

The MHD m odel is prepared to pred ic t as closely as possible 

the proposed Billings M HD plant.

Num erous opera ting po ints  m ust be m odeled using the MHD 

m odel. Data are extracted  from  the num erous operating 

cond itions to describe the flu id  s tate a t the in te rface be tw een 

the d iffuse r and HRSR, coo ling requirem ents fo r  the duct 

sections, com b usto r s ta te , and M HD po w e r o u tpu t. This 

com piled data w ill fo rm  an in p u t-o u tp u t algebraic model o f the 

M HD topping cycle  fo r use in the overall dynam ic plant m odel. 

Add itional ou tpu ts  w ill be collected to approxim ate operating

stresses, and these variables w ill be used to  de fine an 

allow able opera ting region fo r the topp ing  cycle  p o rtion  o f the 

p lant.

Because of the num erous opera ting con d itio ns  to  be modeled, 

a com pute r m ethod m ust be chosen to  ba lance com puter 

speed, robustness and accuracy in de te rm in ing  steady-states. 

The num erica l m ethods investiga ted have included relaxation, 

in tegra tion , con jugate gradient search, and re laxation o f the 

tim e dependent M HD m odel. As o f n o w , it  seem s th a t a 

conjugate gradient search m ethod looks prom is ing  fo r 

s im u ltaneously  so lv ing fin ite  d iffe re nce  approxim ations to the 

flu id  s ta te  equations and the e lectrica l vo ltage pro file  in the 

s teady-sta te . It sho w s a good m ix o f robustness, accuracy 

and convergence speed.

A sum m ary o f in pu t param eters is given in Table 3.

Dynam ic Model

The tim e-dependent model is a one-d im ensional, 

pseudo-tw o-d im ensional m odel w h ich  solves the tim e 

dependent flu id  and electrical MHD partia l d iffe re n tia l 

conservation equations using a Lax-W endroff in tegra tion  

schem e and variable tim e step. The tim e-dependen t model 

w ill be used to model trans ien t behaviors in the M HD duct and 

pred ic t e ffec ts  o f proposed topp ing  cycle  con tro ls . For 

exam ple, trans ien t cond itions m ust o ccu r during start-up 

procedures as the  channel f irs t becom es transon ic  or as seed 

is in troduced. The tim e-dependent m odel should prove useful 

in these instances. This m odel is fu rth e r described in 

Reference 9.

SUMMARY

Ins trum enta tion  and con tro ls  required fo r in tegra tion  o f MHD 

topping system s in to  com m ercia l u tility  env ironm ents have not 

been developed fo r several reasons inc lud ing  the  m ism atch in 

dom inant tim e constan ts  be tw een the M HD po rtion  and the 

steam  plant po rtion  of the p lant, the unusual nature of the 

MHD process, and the inaccess ib ility  o f the M HD process, 

bo th  fo r people and d irec t in s tru m enta tio n . A s tud y  has been 

funded by EPRI, th rough  MDC, to  address th is  de fic iency. The 

objectives o f th is  s tud y , w h ich  is being done by MSE and 

M SU, are to  define con tro l stra teg ies fo r M HD topp ing  cycles 

and in tegra ted p lants having an MHD po rtion  and to  define 

ins tru m enta tio n  and required cha racte ris tics  o f an expert 

system  fo r such p lants. Three tasks are cu rre n tly  defined to 

reach these ob jectives. They are: 1) create a dynam ic  p lant 
m odel o f a p ro to typ ica l M H D /steam  p lant and use it  to  

determ ine contro l policies, ins trum enta tion  and expert system  

requirem ents, 2) use the model to explore opera tion  o ff of 

design center, and 3) investiga te  a lte rna tive  design approaches 
as m ay suggest them selves w hile doing the  fo rego ing  w ork . 

W ork  was started  in O ctober 1991 and is scheduled to  be 

com pleted in M ay 19 9 5 . The p lant is based on the  p lant 

design set fo rth  in the MDC proposal to the  Federal Clean Coal 
Technology 5 so lic ita tion .
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Several o ther com pute r m odels are required to  generate the 

database necessary to  build the  p lan t dynam ic m odel. These 

include a com b usto r model to provide equilibrium  data on heat 

loss from  the com busto r and fro m  the nozzle and enthalpy of 

exit gas as a fu n c tio n  o f in p u t con tro l po in t variables. A lso 

both steady-state  and dynam ic  MHD topping cycle m odels 

were created. The steady-s ta te  model is used to  generate a 

database on various opera ting po ints  of the topping cycle th a t 

can be used in the p lant m odel. The dynam ic m odel is used to  

explore con tro l po licy  ram ifica tions on the topping cycle . A 

program  was developed under a separate ly funded e ffo rt 

w h ich creates and in te rp re ts  cubic Herm itian spline 

in terpo lation fu n c tio n s  fo r  a set o f data po ints in as m any as 

five d im ensions. This program  was used to prepare the data 
from  the s teady-sta te  m odel fo r use in the plant dynam ic 

m odel. As a resu lt o f the use o f th is  m ethod, th is  pro ject is 

the firs t to  investiga te  p lant dynam ics and contro l using as 

m any as seven independent variables or contro l inputs to  the 

MHD topping cycle.
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F I GURE  1 - PROJECT  RESPONS I B I L I T I ES

F I GURE  2 CREAT I ON  PROCESS  FOR  DYNAM I C  PLANT  MODEL
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F I GURE  4 - COMPUTER  MODEL  SYSTEM  ORGAN I ZAT I ON

anode PTO region

--each modeled electrode represents ten 
--"esc" stands for current shuffle circuit 
--the diffuser is grounded 
--"cons" stands for consolidation

F I GURE  5 - CHANNEL  AND  I NVERTER  SCHEMAT I C
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F I GURE  7 - PRED I CTED  MAGNET I C  F I ELD  PROF I LE

F I GURE  6  - B I LL I NGS  PLANT  CHANNEL  AREA  PROF I LE
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TABLE 1 -  DYNAMIC PLANT MODEL HARDWARE MODULES

NUMBER D E S C R IP T IO N NAME

1 A i r / O ,  m i x e r D IV 1  5

2 P r i m a r y  o x i d a n t  c o m p r e s s o r POXC5

3 C o m b u s t o r / n o z z l e / c h a n n e l CNC5

4 C o m b u s t o r  c o o l i n g  pum p CBPMP5

5 C o m b u s t o r  h e a t  e x c h a n g e r CBHX5

6 C h a n n e l  c o o l i n g  p u m p CHPMP5

7 Low  t e m p e r a t u r e  h e a t  e x c h a n g e r LTHX5

8 D i f f u s o r / t r a n s i t i o n D IF T R 5

9 S te a m  d ru m STMDR5

10 S te a m  d ru m  s u p p l y  h e a d e r D IV 3  5

11 S te a m  d r u m  r e t u r n  h e a d e r D IV 4  5

12 R a d i a n t  b o i l e r RADBL5

13 S e c o n d a r y  a i r  m i x e r D IV 2  5

14 S u p e r h e a t e r SH5

15 S u p e r h e a t  s p r a y SPRA T5

16 R e h e a t e r RH5

17 R e h e a t  s p r a y RHSPR5

18 O x i d a n t  p r e h e a t e r OXPRH5

19 H ig h  t e m p e r a t u r e  e c o n o m i z e r HECON5

2 0 C o m b u s t i o n  g a s  b a g h o u s e CBGBH5

21 C o m b u s t i o n  g a s  d i v e r g e n c e D IV 6  5

22 C o m b u s t i o n  g a s  c o n v e r g e n c e D IV 7  5

23 Low  t e m p e r a t u r e  e c o n o m i z e r LECON5

2 4 S e c o n d a r y  a i r  h e a t e r SECAH5

25 C o a l  p r o c e s s  l o o p COALP5

26 M a in  s t a c k  i n d u c e d  d r a f t  f a n M SID F5

27 S e c o n d a r y  a i r  f o r c e d  d r a f t  f a n SAFDF5

28 F e e d w a t e r  s u p p l y  h e a d e r D IV 5 5

29 D e a e r a t o r  s t o r a g e  t a n k DEAST5

3 0 B o i l e r  f e e d  p u m p BFPMP5

31 H ig h  p r e s s u r e  t u r b i n e HPTURB

32 I n t e r m e d i a t e / L o w  p r e s s u r e  t u r b i n e IPTU RB

33 G e n e r a t o r MGEN
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TABLE 1 DYNAMIC PLANT MODEL HARDWARE MODULES

3 4 C o n d e n s e r COND5

35 C o n d e n s a t e  pum p CDPMP5

3 6 C o o l i n g  t o w e r COOLT5

37 C i r c u l a t i n g  w a t e r  pum p CWPMP5

3 8 S e e d  r e g e n e r a t i o n SDREG5

3 9 C o l d  h i g h  p r e s s u r e  s t e a m  h e a d e r D IV 8 5

4 0 C o m b u s t o r  g a s  p r e h e a t e r CBGPH5

4 1 C h a n n e l  g a s  p r e h e a t e r CHGPH5

42 H e a t  r e j e c t i o n H T R E J5

4 3 C i r c u l a t i n g  w a t e r  pum p  d i v e r g e n c e D IV 9 5

4 4 C o o l i n g  t o w e r  c o n v e r g e n c e DV10 5

4 5 C o a l  f e e d COALF5

4 6 S e e d  f e e d SEEDF5

4 7 D i f f u s e r / r a d i a n t  b o i l e r  pum p RBPMP5

TABLE 2 —  DYNAMIC PLANT MODEL CONTROL PO IN TS

1 S e c o n d a r y  c o m b u s t o r  a i r  f o r c e d  d r a f t  f a n  f l o w  r a t e

2 C o m b u s t i o n  p r o d u c t s  s t r e a m  i n d u c e d  d r a f t  f a n  f l o w  r a t e  a n d  p r e s s u r e  d r o p

3 B o i l e r  f e e d  p u m p  f l o w  r a t e

4 O x i d a n t  c o m p r e s s o r  f l o w  r a t e  a n d  r a t i o  o f  0 2- e n r i c h e d  a i r  t o  r e g u l a r  a i r

5 S u p e r h e a t  s p r a y  f l o w  r a t e

6 R e h e a t  s p r a y  f l o w  r a t e

7 C i r c u l a t i n g  w a t e r  pu m p  f l o w  r a t e

8 R a d i a n t  b o i l e r  w a t e r  f l o w  r a t e

9 D i f f u s o r / t r a n s i t i o n  w a t e r  f l o w  r a t e

10 G o v e r n o r  v a l v e  o f  h i g h  p r e s s u r e  t u r b i n e

11 C o a l  f l o w  r a t e

12 S e e d  f l o w  r a t e

13 C o n d e n s a t e  f e e d  p u m p  f l o w  r a t e
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TABLE 3 SUMMARY OF INPUT PARAMETERS FOR STEADY-STATE MODEL

IN PU T S COMMENTS

CONSTANT INPUTS Invariant between trials

C h a n n e l  g e o m e t r y C l o s e  t o  B i l l i n g s  s p e c i f i c a t i o n s

C o a l  c o m p o s i t i o n M o n ta n a  R o s e b u d

M a g n e t  p r o f i l e S e e  F i g u r e  7

PTO c o n f i g u r a t i o n D i a g o n a l  s c a l e d  v e r s i o n  o f  POC 
c h a n n e l

S l a g  r e m o v a l A s s u m e d  70% r e m o v a l

O t h e r  m o d e l i n g  a s s u m p t i o n s F i r s t  p r i n c i p l e  a s s u m p t i o n s ,  w h e r e  
p o s s i b l e

INDEPENDENT INPUTS Variables used in defining 
operational range

C o a l  f l o w

E x i t  s t a g n a t i o n  p r e s s u r e O n l y  s m a l l  v a r i a t i o n  a b o u t  
s u b a t m o s p h e r i c

M a g n e t  s t r e n g t h K e e p i n g  s a m e  m a g n e t  p r o f i l e

O x y g e n  f r a c t i o n

P r e h e a t  t e m p e r a t u r e

S e e d  f r a c t i o n

S t o i c h i o m e t r i c  r a t i o
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