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ABSTRACT 

A simple, one-dimensional, electr)cal model is devel
oped for linear magnetohydrodynam1c (MHD) generators 
and is used to analyze the performance 'of the 
component Development and Integration Facility (COIF) 
generator. This simple MHD model is applicable to 
Faraday and diagonal operation modes. Starting with 
suitably averaged Ohm's law relations and Maxwell's 
equations, a closed-form solution is obtained for the 
basic MHD equations. The key to this development is 
the introduction of a net nonuniformity factor that 
accounts for transverse nonuniformities through the 
plasma and slag layers. ~ith this approach, separate 
transverse voltage drop and axial leakage. terms are 
not needed since the net nonuniformity factor properly 
accounts for both of these losses. For both modes of 
operation, simple lumped-circuit models are developed 
as aids in understanding the basic principles involved 
in MHD power generation. From the basic MHD equa· 
tions, new methods are developed for computing impor
tant channel properties in terms of routine 
experimental data and good estimates for the average 
plasma velocity and Hall parameter. Simple experi
ments are described to accurately measure the average 
plasma velocity and average Hall parameter at any 
axial location. Among the channel properties that can 
be estimated using these methods are the slag axial 
leakage current, the plasma axial current, the channel 
axial resistance per pitch, the channel transverse 
resistance per pitch, the net nonuniformity factor, 
the local load factor, and the optimal diagonal link 
overlap--all under power generation conditions. Using 
the closed-form solutions, several COIF tests are 
analyzed in detail, and optimal link configurations 
are computed for maximum power production. From this 
analysis, serious deficiencies are identified in the 
COIF generator as it is presently configured, particu· 
larly for diagonal connections. Specifically, it is 
shown that the presence of coal slag has forced the 
COIF generator to operate off-design. Recomnendations 
are given to improve generator performance for more 
power at less stress. In addition, it is shown that 
Faraday and diagonal modes should produce the same 
local power densities (and hence total power) when 
both modes are optimally configured and loaded for 
maximum power extraction. 

INTRODUCTION 

Over the past decade, several simple magnetohydrody· 
namic (MHD) models have appeared in the MHD literature 
and elsewhere. Although these models adequately 
e~plain many important MHD phenomena, they all ignore 
s!gnificant effects caused by plasma/slag nonuniformi· 
t!es. However, it is difficult to include all 
significant effects in any simple, one-dimensional 

model. The one-dimensional model originally pr~posed 
by ~u1 and later updated by Nelson et al.2 handles 
transverse nonuniformities via a nondimensional volt· 
age drop and handles axial slag leakage via an imposed 
axial current. A variant of this model proposed by 
Pian et al.3 handles axial slag leakage via an axial 
slag resistance per pitch. However, both of these 
models assune a uniform plasma (nonuniformity factor 
c - I) and dl.JTll all plasma nonuni formi ty effects onto 
the transverse voltage drop and axial leakage terms. 
Another interesting model proposed by Solbes4 handles 
plasma nonuniformities but ignores wall leakage 
effects. Recent studies by Daniels and Nelson2, 
however, indicate that slag leakage currents can be 
quite large (often over 100 A) for the Component 
Development and Integration Facility (COIF) channel 
and cannot be ignored. 

This paper proposes a simple, one-dimensional model 
based on a net nonuniformity factor to account for 
plasma/slag transverse nonuni formi ti es. si·nce these 
transverse nonuniformities are primarily responsible 
for the large axial currents believed to exist in 
coal-fired MHD generators, this model should represent 
a significant advancement over previous one· 
dimensional models in terms of accuracy and simplicity 
(explicit transverse voltage drop and axial leakage 
terms are not needed in the model). Plasma transverse 
nonuniformities are automatically included in the 
model; however, axial nonuniformities and transverse 
leakage currents are generally ignored. 

SIMPLIFYING ASSUMPTIONS 

Closed-form solutions will be obtained for linear MHD 
channels of the type shown in Figure 1. Although the 
channel walls illustrated in Figure 1 are straight, 
this does not have to be the case in the general 
treatment that follows. The standard right-handed 
coordinate system COfTTllOnly used in the MHD corrmunity 
is adopted for this development and is shown in 
Figure 1. To reduce the complexity of the MHD 
problem, the following simplifying assumptions are 
needed: 

- generator is operated in a steady-state condition, 

• changes in zdirection are negligible, 

- Ex and JY are constan:. on any cross section, and 

• plasma changes due to channel loading are negli· 
gible. 

Basically, these assunptions apply to low-interaction 
MHD channels in which transient effects and s.idewall 
effects are negligible. 
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FIGURE f - LINEAR MHD CHANNEL 

Fundamental to this development is the introduction of 
the cross-sectional average operator<·> defined by 

<q>•.!.f qdA 
A A 

( 1) 

for any quantity q. The averaging in equation (1) is 
over the entire channel cross section A, including the 
slag layers. Operator<·> is linear since 

<q1 .. qz>~<q1>•<q2> 
<cq>~ C <q> 

where c is any constant quantity (over cross 

(2) 

(3) 

section A). It follows from the simplifying assunp
tions that the Faraday voltage V 1 and the net axial 
current Ix can be expressed in terms of the cross
sectional averages of Ey and J,, as follows: 

V1 •H<Ey> 
l,~A<J,> 

where His the channel height. 

OHM'S LA~ RELATIONS 

The basic constitutive relation that connects the 
current density J, the electric field E, the plasma 
velocity U, and the magnetic flux Bis Ohm's law, 
which in vector form is 

J+µ.JXB•<1(E+UXB) 

(4) 

(5) 

(6) 

whereµ. is the electron mobility and <1 is the 
conductivity of the medium (plasma or slag). In the 
slag layers, one can assumeµ. to be zero for all 
practical purposes. In MHD plasmas, however,µ. can be 
re lat ivel y large and the J x B term gives rise to a 
substantial Hall field whose effects can not be 
ignored. Assuning the z components are negligible, as 
well as the transverse velocity component, Ohm's law 
can be expressed in component form as follows: 

1 
E, ·;CJ,+ [3J y) 

1 
fy•a(JY-[3J,)+uB 

a 
J,• l+l3 2 (£,-13Ey+[3uB) 

a 
JY· 1+13z(Ey+[3£,-uB) 

where [3 - µ.I Bl is the Hall parameter. 

(7) 

(8) 

(9) 

( 10) 

Equations (7) through (10) are ess~ntially three
dimensional in nature but can be reduced to one
dimensional form b6 an averaging technique originally 
developed by Rosa. The key to this development is 
to average the two Ohm's law equations that contain 
only one J,, or E Y term but not both terms. Following 
Rosa's methods, one eventually obtains the averaged 
Ohm's law equations: 

1 
£.a <a)<J,>+<l3>Jy] 

1 < E y >• <o>[GJ y- <[3><J • >)+ <uB> 

<a> . 
<J,>• [GE -<[3><Ey>+ <13><uB>] 

G+<[3>z • . 
<a> Jy• [<E

1
>+<[3>E,-<uB>]. 

G+<l3>z 

where 

1 + 13 2 

G•<a><-->-<!3>2 
a 

( 11) 

(12) 

(13) 

( 14) 

( 15) 

is the net nonuniformity factor (Rosa G factor). It 
is shown in reference 7 that G2: I always holds with 
equality holding if and only if both a and [3 are 
constant on cross section A. The one-dimensional 
(averaged) equations (11) through (14) are surpris
ingly similar to the original three-dimensional 
equations (7) through (10). The only difference, 
other than the appearance of average values every
where, is the occasional insertion of a nonuniformity 
factor Gin these formulas. The averaged Ohm's law 
equations are redundant since any two of them will 
suffice (the remaining equatfons can be easily derived 
from the selected pair of equations). 

BASIC MHD EQUATIONS 

To obtain a closed-form solution for the four electro-
1dynamic variables Ex, <Ey>, <J,>, and Jy in terms of 
the gas dynamic variables and the channel 
configuration, it is necessary to find four indepen· 
dent equations relating these four quantities. The 
averaged Ohm's law equations provide two of the needed 
equations. The remaining two equations are derived 
from Maxwell's equations and contain the boundary 
conditions. 

The first Maxwell equation needed is Faraday's law, 
which in light of the simplifying assunptions can be 
expressed in integral form as follows: 

J>·dl•O ( 16) 

where C is any closed curve. Choosing loop C to be 
the right triangle formed by the diagonal link as 
shown in Figure 2, one obtains 

V 1 •! 0 R,+nV• 

-A ,J ,R • a npE • + H < E 1 > 

-r.J,•<a>[tE,+ <Ey>] ( 17) 

where n is the link overlap, pis the electrode pitch, 
A, is the electrode (plus insulator) surface area, I. 
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;s the link current, R0 is the ballast resistance, v. 
•
5 

the Hall voltage per pitch, a is the link overlap 
!ogle, and 

np 
, .. iane•H 

..:o>A, R , ... --;-- . 
( 18) 

( 19) 

auantity I is the link overlap parameter and r 0 is the 
00r,dimensional ballast resistance. 

np 

0 
H 

FICURE 2 - CLOSED LOOP C 

The second Maxwell equation needed is the continuity 
of current law, which in light of the simplifying 
assunptions can be expressed in integral form as 
follows: 

(20) 

where Sis any closed surface. Choosing S to be the 
infinite plane (closed at infinity) perpendicular to 
the channel axis as shown in Figure 3, one obtains 

•A<J,>-nA,Jy 

(21) 

where/ is the load current and ly is the transverse 
current per pitch (assumed to be the same as / 0), 

--+-- I 

1-:,: 

FIGURE 3 - CLOSED SURFACE S fl.VDICATED BY DOTTED LINE! 

Choosing the first and last of the averaged Ohm's law 
equations and the two Maxwell equations, the complete 
set of HHD equations become 

<J,>•<a>E,-<l:\>Jy 

G+ <!3>2 
<Ey>•-<l3>E,+ Jy+<uB> 

<a> 
-r,Jy•<a>[tE,+ <E,>] 

/mA[<J,>-IJy] 

Solving these four independent equations for£,, 

(22) 

(23) 

(24) 

(25) 

<Ey>, <J,>, and Jy in terms of the channel configura· 
tion and gas dynamic properties, one obtains 

(G+ <13> 2 +r,)/- <o> A(<l3>+t)<uB> 
E • ..;__--'----'-'------'--'----'----

• <a>A(G+t'•r,) · 
(26) 

-(Gt+ t <13 > 2 + <13 > r,)I +<Cl> A(t <13 > +1 2 + r,) <uB > 
'<E >• 7) 

' <Cl>A(G+l 2 +r,) 

(G + I <13 > + r,)1- <Cl> Al <uB> 
<J >- (28) 

' A(G+l 2 +r,) 

J 
_(<13>-t)l-<a>A<uB> 
- (29) 

Y A(G+t 2 +r 0 ) 

In view of the si~lifying ass~tions, these one· 
dimensional equations yield only the average values of 
the electrodynamic variables at each axial location. 

GLOBAL HALL SOLUTION 

The global Hall solution can be obtained from the 
local solution by integrating equation (26) over the 
channel length: 

The bracketed expressions above can be assumed con
stant over a load sweep since experimental load lines 
for the COIF channel are nearly linear. Thus, 
equation (30) reduces to 

v-v"-1R· (31) 

where V,, is the open circuit voltage given by 

JL(<l3>+t)<uB> v .. m 
2 

dx 
o G+t +r, 

(32) 

and R' is the generator internal resistance given by 

(33) 

The short circuit current /" is obtained by setting 
v-o in equation (31): 

.Voe 
I,. R' 

In practice, V,. and I,. are obtained from load line 
extrapolations as shown in Figure 4, and R' is 

(34) 
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computed from equation (34) or directly from the slope 
of the experimental load line. 

I 

r,,a 

Slope = -t/R:,. 

V 

FIGURE 4 - GLOBAL HALL LOAD LINE 

Internal resistance R' is not the same as the bulk 
resistance R' that is normally measured by applying a 
voltage along the channel length with the magnetic 
field turned off and the external links disconnected. 
The bulk resistance R' is given by 

R' (' dx 
Jo <a>A 

(35) 

Both R' and R' are sensitive to slag shorting via the 
<a> term, with both resistances tending to decrease 
as polarization develops. 

The Hall voltage Vis related to the load current/ 
and load resistance R via the lumped circuit Ohm's 
law: 

V•IR (36) 

From equations (31) and (36), it follows that the open 
circuit V?ltage is given by 

V .. •IR+IR
0

•/(R+R
0

) (37) 

Consequently, a global load factor K can be defined by 

K•..!'.:._._R_ 
· Voe R+R' 

(38) 

From equations (31), (34), (36), and (38), it follows 
that 

V•KV 0 , 

V -V V -KV 
/•-"-• " "•(1-K)I 

R' R' " 

R V KV,. K • 
.l.(l-K)I .. -1-KR 

P.•Vl•K(l-K)V 0,I,. 

(39) 

(40) 

(41) 

(42) 

where P. is the Hall power extracted. Clearly, P• is 
maximal when K• 1/2 or, equivalently, V•(l/2)V ... 
/•(l/2)/,c, or R•R", However, total power P·P.+P, 

' is not necessarily maximal at this condition. 

PO\./ER RELATIONS 

Using the simplifying ass1..n9tions, the electrical 
power, mechanical power, and Joule heating power loss 
can be easily expressed in terms of measured voltages 
and currents and the average (motional) electromotive 
force <uB>. The electrical power extracted per pitch 
is_given by 

t.P•-pA<J•E> 

•-pA(<J.>E.•Jy<Ey>) 

(43) 

Using relations (17) and (21), equation (43) can be 
recast into the following alternate form: 

(44) 

where t.P.-1v. and t.P,·lfR, are the Hall power and 
ballast power extracted per pitch, respectively. 

The plasma, as it moves down the channel, gives up 
some of its energy to generate electric power exter
nally and Joule heating internally. This net power 
extracted from the plasma is usually called the 
mechanical power and is denoted by Pu, The mechanical 
power extracted per pitch is given by 

•-HA,Jy<uB> 

• / Y <uB> H (45) 

From equations (6), (43), and (45), one obtains the 
Joule heating power loss per pitch t.P 1 as follows: 

t.P, • pA <IJl 2 /a> 

•t.Pw-AP 

•-I,V.•ly(<uB>H-V1 ) (46) 

The three power quantities can also be expressed in 
terms of the channel configuration and gas dynamic 
properties. Starting with the local solution 
equations (26) through (29), one eventually obtains: 

AP• p r, <<1> 2 A2 <u8> 2 +Q 1 <a> A <uB> /-Q 2 /
2 

.... (47) 
<a>A (G+t 2 +r,) 2 

t.Pw• p <a> 2 A 2 <uB> 2 -(<j3>-t)<a>A<uB>I ( 4B) 
<a> A G+ t 2 + r, 

t.Pi• p (G+t 2 )<a> 2 A 2 <uB> 2 -Q,<a>A<uB>l+Qzlt19 ) 

<a>A (G+t 2 +r,)' · 

where 

Q, • (<13 > + t)(G+ 12 )+ (3t- <13 >)r, 

Q 2 • (G+ <j3> 2 )(G+ t 2 )+ (2G+ 2t <13> +r,)r, 

Q, • 2 <l3>(G+ 12 )+ 2tr, 

(50) 

(51) 

(52) 
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LUMPED CIRCUIT MODELS 

The axial lunped circuit model for one pitch can be 
derived from equation (11) as follows: 

c-~A J __ P_A<J > 
-pE. <a>W ' Y <a>A • 

v ... v.-1.R. 

where w' is the channel width and 

<13> I 
v,-«i>i7 y 

p 
11.-<o>A 

(53) 

(54) 

(55) 

voltage V, is an axial voltage source induced by the 
transverse currently and R, is the channel axial 
resistance per pitch. Resistance R, is related to the 
total bulk resistance R' as follows: 

(56) 

consequently, it is sometimes convenient to denote R, 
by e..R', For similar reasons, the (per pitch) Hall 
voltage V • will sometimes be denoted by 6 V. 

The transverse lumped circuit model for one pitch can 
be derived from equation (12) as follows: 

<'3>A CHA, 
H<E >•<uB>H---<J >+---J 

Y <a>l,/ • <a>A, Y 

where 

<13> 
V •--/ 

Y <a>l,/ • 

R • ....E.!!_ 
Y <a>A, 

(57) 

(58) 

(59) 

Voltage Vy is a transverse voltage drop induced by the 
net axial current I, if I, is positive, otherwise Vy 
becomes a voltage source. Resistance Ry is the 
transverse resistance per pitch across the channel and 
includes the slag layer contribution. 

The axial and transverse lumped circuit models are 
coupled via the v. and Vy voltages, which in turn are 
proportional to !y and I,, respectively. These lumped 
circuit models may be joined as indicated in Figure 5 
to obtain a local lumped circuit model for one pitch. 
~hen the local lumped circuits are connected with the 
appropriate external links as shown in Figure 6, a 
global lunped circuit network results. Unless the 
generator is operated in a current control mode, the 
lllllped circuit elements in the global network are 
coupled via the load current/, with local plasma/slag 
conditions being felt throughout the channel through 
their influence on the load current. However, when 
the generator is operated in current control mode, 
which includes Faraday operation, it follows from 
equations (26) through (29) that the local steady
state solution depends only on the local plasma/slag 
conditions. 

fly! in 

(I:,} out 

fly! out 

FIGURE 5 - LOCAL LUMPED CIRCUIT MODEL 

The coupling between the axial and transverse lumped 
circuits can be fairly strong. From equations (54) 
and (58), it follows irrmediately that 

(60) 

That is, the power source in the axial circuit is 
exactly equal to the power sink in the transverse 
circuit (ignoring Joule heating losses). Hence, power 
is being shuffled from the transverse circuit to the 
axial circuit if I. is positive; otherwise, the 
direction of power flow is reversed. From 
equations (46), (53), (57), and (60), it follows that 
the Joule heating power loss per pitch is given by 

(61) 

as expected. It is clear from this equation that 
channel performance is highly dependent on the values 
of R, ·and Ry--the smaller these resistance values, the 
better the channel performs. 

I 

R 

F/CURE 6 - GLOBAL NETWORK (OVERLAP n=6 SHOWN) 
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OPEN CIRCUIT RELATIONS 

'\./hen the load current 1-0 (open circuit), the local 
solution given by equations (26) through (29) reduces 
to: 

E a_(<l3>+t)<uB> 
• G+t 2 +r• 

(l<f3>+1 2 +r,)<u8> 
<E >• --------

Y G+t 2 +r, 

<a>t<uB> 
< J > a - --.,,.--

• G+t 2 +r• 

J __ <a><uB> 
Y G+l 2 +r 0 

(62) 

(63) 

(64) 

(65) 

By taking ratios of the various equations above, one 
gets 

E •• <13>+! 
Jy <a> 

<J,> ml 
Jy 
<Ey> r, ----1 .. ----r 

E, <f3::>+t 

(66) 

(67) 

(68) 

where.I is the tangent of the link overlap angle e (see 
Figure 2) and Tis the tangent of the equipotential 
overlap angle 4> given by 

Np <E y> r-tan~------
H E, 

(69) 

where N is the equipotential overlap. All of these 
equations apply to Faraday generators since 1-0 
automatically holds. In addition, these equations 
will prove useful later in designing experiments fo 
measure <a> and <(3>. · 

FARADAY MOOE 

For Faraday generators, the form..ilas derived in the 
previous sections greatly simplify since n•l•l,•O. 
\./hen dealing with Faraday generators, it is convenient 
to introduce standard Faraday notation: 1,-1 0 , R1 •R 0 , 

and r 1 •r 0• For Faraday operation, the lumped circuit 
network decouples to an array of Faraday loops. A 
typical Faraday loop is shown in Figure 7. 

FICURE 7 - FAP..IDAY LOOP 

For Faraday operation, equation (57) reduces to 

(70) 

The open circuit Faraday voltage v,., is obtained by 
setting / 1 •0 in the above equation: 

V 10, •<uB> H (71) 

Consequently, equation (70) can be rewritten as fol
lows 

V 1 • V 10, -11 Ry (72) 

The Faraday voltage must also satisfy the relation 

(73) 

where R 1 is the external Faraday resistance. Thus, 
equation (70) becomes 

(74) 

A local Faraday load factor k can be defined by 

V 1 <Ey> R 1 k•-------v,., <uB> Ry+R 1 
(75) 

From the definitions of k, r 1 , and Ry it follows that 

r, 
k•--

G + r 1 

l-k•-G
G+r1 

(76) 

(77) 

where in general the nonuniformity factor G depends on 
generator loading k. 

For Faraday generators, the local solution given by 
equations (26) through (29) reduces to 

E •- <l3><uB> •-(l-k/13><uB> 
• G+r 1 G 

<E >• r, <uB> • k <uB> 
y G + r 

1 

<J,>•0 

<a><uB> <a><uB> 
Jy•- G+r

1 
•-(l-k) G 

(78) 

(79) 

(80) 

(81) 

Essentially, parameter k replaces parameter r 1 in the 
Faraday equations. 

The power relations given by equations (43) 
through (46) reduce for Faraday operation to the 
following relations: 

t::.P•! 1 V 1 •!:R, 

t::.PJA•! 1V 10, 

t::.PJ•l 1(V 10,-V1 ) 

(82) 

(83) 

(84) 

The local solution simplifies even further when r 1 or 
equivalently ratio Gl<a> does not depend on generator 
loading. In this case, the short circuit Faraday 
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urrent / 1,.can be found by setting v;~o in 
~uation (72) and using equations (59) and (71) to 
get: 

V,,. <<1>A,<uB> 
1,,..Ry• G (85) 

from equations (72), (73), (75), (82), and (85), it 
follows that 

VI .. kV,., 

V 1,.- V 1 • V , .. -kV /oc. ( l -k)/ 
J,•~ R, 1

" 

Vi. kV, .. __ k_R 
K1•T; (l-k)/ 1,. 1-k ' 

t:, p • V 1 ! 1 • k ( I - k) V 10J '" 

(86) 

(87) 

(88) 

(89) 

• clearly, Faraday power is maximal when k• l/2 or, 
equivalently, R1 mR, or r 1 •G. The condition that R, 
be independent of generator loading is equivalent to 
the local Faraday load line being linear, as shown in 
figure 8. 

Slope = -f/Ry 

'foe 

FIGURE 8 - LOCAL FARADAY LOAD LINE 

DIAGONAL MODE 

The local Hall solution can be obtained from the local 
solution by integrating equation (26) over one pitch: 

vh--~ E,dx•-pE. 

a [p(<l3> + I) <uB>]-[G+ <!3>
2 
+r,_p_J, 

G+t 2 +ro G+t 2 +r
0 

<a>A ( 9
0) 

If the above bracketed expressions can be regarded as 
reasonably constant over a load sweep, then 
equation (90) can be rewritten as 

(91) 

Where Vh is the open circuit Hall voltage per pitch 
given by oc 

(92) 

ai:xi R 0 is the generator internal resistance per pitch 
91Ven by 

G+ <13> 2 +r, p 
R •---'--...: 

• G+t 2 +r, <a>A 

The local short c I rcui t current f 11, is obtained by 
setting Vh•O in equation (91): 

11 
_ vh". <a>A(<l3>+t)<uB> 

" R 0 G+ <J3> 2 +r 0 

(9.3) 

(94) 

Using the above relation, equation (91) can be rewrit· 
ten in the following alternate form 

(95) 

In practice, Vhoc and / 1" are obtained from load line 
extrapolations as shown in Figure 9 and R 0 is obtained 
from equation (94) or directly from the slope of the 
experimental load line. 

I I 

Ii.,c 

'---I-----'--.. v,,_ 
v,,_,,. vhoc 

Inlet Region Midchannel Re!Jion 

FIGURE 9 - LOCAL HALL LOAD LINES 

The short circuit Hall voltage for one pitch, denoted 
by Vh1e• can be found from equation (95) by setting 
I • I": 

V hrc • (/ '" - 1 rc)R 0 (96) 

Clearly V Mc can become negative at any location where 
the global short circuit current/" exceeds the local 
short circuit current ''"" This is exactly the 
situation that occurs at the channel inlet where both 
<()> and Bare relatively small, and hence so is''"" 
Consequently, it follows from equation (95) that VA 
can become negative (Hall field reversal) in the inlet 
region at large load currents J. Furthermore, the 
Hall field reversal is usually accompanied by a 
Faraday field reversal due to excessive downstream 
axial currents I, (see equations (57) and (58)). From 
equation (94), it appears that the only practical 
remedy is to increase the link overlap and decrease 
the link resistance in the inlet region. 

For diagonal connections, the Hall load resistance R 
can be thought of as being distributed over the entire 
channel length as follows: 

(97) 

where Rh• D.R is the load resistance per pitch defined 
by 

(98) 
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Consequently, it follows from equations (91) and (98) 
that the open circuit Hall voltage per pitch is given 
by 

A local Hall load factor k can be defined by 

v. R• k------
v "" R• + R • 

(99) 

( 100) 

Although the same symbol k is used to represent the 
(local) Hall and Faraday load factors, there should be 
little confusion since it will usually be clear from 
the context whether the generator is of the diagonal 
type or Faraday type. 

From equations (91), (94), (98), and (100), it follows 
that 

V .-kV••• 

I • V "" - V • • V "" - kV"" • ( l _ k) I 
R • R • '" 

v. kV... k 
R.•7• (l-k)/

1
,. ·wR• 

l:i.P•• V •I• k(l -k)V •• ,1 1,. 

( l O 1) 

( 102) 

(103) 

(104) 

Clearly, the Hall power t:,.p• extracted per pitch is 
maximal when k•l/2or, equivalently, v.-(l/2)V •• ,. 
/•(l/2)/ 1,., or R.·R 0 • However, the net power 
l:i.P•l:i.P.•l:i.P 0 is not necessarily maximal at this 
condition. A major problem with diagonal operation is 
that it is virtually impossible to maintain the 
optimun (local) load factor at all locations since 11,. 

varies considerably along the channel. However, by 
varying the link overlap and link resistance properly 
along the channel, the variation in 11,, can be reduced 
substantially, and the channel can be operated with 
local load factors near optirrum (k• l/2). 

FARADAY OPTIMIZATION 

For Faraday generators, it follows from 
equations (71), (85), and (89) that the electrical 
power extracted per pitch is given by 

l:i.P•k(l-k)p<a>A <uB>z 
G 

( 105) 

Although t:,.p always maximizes at k•l/2when the other 
quantities on the right·hand side of equation (105) 
are fixed, t:,.p also depends strongly on <uB> and ratio 
Gl<a>. Thus, <uB> and ratio Gl<a> are two good 
measures of combustor performance since Faraday power 
varies directly with the square of <uB> and inversely 
with the ratio Gl<a>. 

It follows irrmediately from equation (47) that the 
Faraday connection (t•O) produces maximun power among 
all diagonal connections at open circuit conditions 
(/•O). A related question is whether tapping the Hall 
field via an external load would result in more power 

produced by a Faraday generator. Since equations (47) 
through (52) apply to this situation .(with t-0), after 
simplifying one gets: 

AP• p r, <a>' A' <uB>'•(G-r,} <J3> <a> A< u.B> 1-((G • r 1)'• G <Jl>'JI' 
<a> A (G•r,>' 

( 106) 

Upon differentiating the above relation with respect 
to I (assuning the other terms on the right·hand side 
do not depend on I) and setting the result equal to 
zero, one obtains the optimun Hall load current/: 

I-~(G_-_r~,)~<-'-13_>_<_a_>_A_<_u_B_> 
2[(G+r 1 ) 2 +G <J3> 2

] 
(107) 

However, it has already been shown that an optimally 
loaded Faraday generator operates at load factor 
k• l/2 or, equivalently, r 1 -c. In this case, it 
follows from equation (107) that the optimal Hall load 
current /•O and no additional power can be realized 
by tapping the Hall field. 

For later reference, it is noted that the optimally 
loaded Faraday generator (at k • 1 /2) has average 
electric field components given by 

<l3><uB> 
E • o - 2G 

<uB> 
<Ey>•-2-

<J. >- 0 

<a><uB> 
J y • - 2G 

p<a>A<uB> 2 [<uB>HJ 2 

l:i.P• 4G • 4Ry 

DIAGONAL OPTIMIZATION 

( 108) 

(109) 

( 110) 

( 1 1 I) 

(112) 

For diagonal generators, it follows from 
equations (92), (94), and (104) that the Hall load 
power extracted per pitch is given by 

( l 13) 

Clearly, t:,.p• maximizes at k • 1 /2 when the other terms 
on the right-hand side of equation (113) are fixed. 
However, t:,.p• also depends strongly on <uB>, ratio 
Cl<a>, and parameter t. 

The value of parameter t that maximizes t:,.p• can be 
found by differentiating equation (113) with respect 
to I (assuning the other terms on the right-hand side 
do not depend on t). Setting this derivative equal to 
zero, one obtains the optimal t: 

C+ r 0 1---
<!3> 

(114) 

In reality, the degree of polarization depends on t 
and hence so do G and r 0 • Thus, an iterative 
procedure is required, where the optimal t given by 
equation (114) IIX.ISt be successively updated as G and 
r 0 vary in response to changes int until equilibrium 
is established and equation (114) is satisfied on a 
steady-state basis. Then and only then is the optimal 
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1 that maximizes Hall power determined.' The optimal 
(diagonal) link parameter twill be denoted by t' in 
the remainder of this paper. 

frOl11 equation (94) and (114), it follows that the 
Local short circuit current at the optimal link 
overlap is given by 

<a>A <uB> 
/ 1,c m <l3 > ( 115) 

Although the local short circuit current given by 
equation (115) would likely be moderately uniform 
along the channel, the optimal t given by 
equation (114) is unrealistically large at the channel 
entrance due to excessively small Hall parameters 
occurring there. Nevertheless, the channel needs to 
be reconfigured at the inlet to increase power 
production there. This could be accomplished by 
increasing the link overlap and reducing the ballast 
resistance as much as possible. 

At the optimal link overlap, it follows from 
equations (102) and (115) that the load current I is 
given by 

<a>A <uB> 
/m(}-k)--<-l3_> __ ( 116) 

where k is the local Hall load factor. Plugging the 
above expression for I into equations (26) 
through (29) and using relation (114), one obtains the 
local solution at the optimal link overlap: 

<l3><uB> 
E • • - k __ G_+_r_•_ 

<E y>-[r, + k(c+ <13 >2. _<_13_>_2 r_•)] <uB; 
G+r• G+<l3> +r. 

<a><l3><uB> 
<J,>•(l-2k) 2 

G+ <13> +r• 

( 
G-<13> 2•r,) <a><uB> 

J • - I - k ----'--__;. 
Y G+r• G+ <l3> 2+r, 

( 117) 

(118) 

( 119) 

( 120) 

Although these formulas are somewhat complicated, they 
greatly simplify when k• l/2 or r,•O. Maximun Hall 
power is extracted when both k• l/2 and r.-o. Thus, 
it follows from equations (117) through (120) that a 
diagonal generator optimally configured for maximum 
Hall power production has average electric field 
components given by 

E •- <l3><uB> 
• 2G 

<E ;. <uB> 
y 2 

<J,>-o 

J ·- <a><uB> 
y 2G 

t,p. P<a > A <uB> 2• [<uB> HJ2 

4G 4Ry 

( 121) 

( 122) 

( 123) 

( 124) 

( 125) 

At this optimal condition, the electrical power 
extracted per pitch depends only on <uB> and ratio 
Cl<a>, as was the case for Faraday generators (see 
equation (105)). 

Interestingly, electric field equations (121) 
through (125) for the optimally configured and loaded 
diagonal generator have the same form as the corre· 
sponding field equations (108) through (112) for the 
optimally loaded Faraday generator. The only 
reasonable conclusion pos~ible is that the equilibrium 
values for the plasma/slag properties will be essen
tially the same in both cases and the electric fields 
produced by each type of generator will be identical 
for all practical purposes. In particular, the power 
extracted per pitch for each locally optimized connec
tion, whether it be Faraday or diagonal, will be 
essentially the same. Thus, on a local basis, there 
is no inherent advantage of Faraday over diagonal or 
vice versa. On a global basis, however, there may be 
advantages of one type of connection over the other 
due to difficulties in simultaneously optimizing the 
generator at all locations. This problem is particu
larly apparent for diagonal connections where the 
local short circuit current / 1" usually varies along 
the channel, and consequently, it becomes impossible 
to operate the generator at a local load factor k - l /2 
at all locations (see equation (102)). 

RECOMMENDED EXPERIMENTS 

The following experiments are needed to estimate a few 
key channel parameters not currently being measured. 
Once these key parameters are known, many other 
channel parameters of interest can easily be calcu
lated. For best results, the combustor should be 
operated at nominal baseline conditions during these 
experiments. 

Measuring <u> 

The average plasma velocity <u> under no load can be 
determined from an open circuit Faraday test (no 
external links). Since unacceptably large Faraday 
voltages may occur at full magnetic field strength, 
this test should be run at low B fields. Assuming the 
B field is constant on any cross section, one obtains 
from equation (71) the following relation: 

V 10, • <uB> H •<u> BH ( 126) 

Using this relation, <u> can be easily calculated 
from measurements of v,., and B. Once <u> is known, 
v,., at full magnetic field strength can be readily 
calculated from equation (126). 

Measuring<µ> 

The average electron mobility <µ> can be determined 
from an open circuit diagonal test (no external load). 
Since unacceptably large Hall voltages may occur at 
full magnetic field strength, this test should be run 
at low B fields. Assuming the B field is constant on 
any cross section, one gets 

<13>•<µB>•<µ>B (127) 

From equations (66) and (127), it follows that 

( 128) 

A magnetic field sweep at low B values is needed to 
determine the slope and intercept of the above line. 
This test should be performed early in the test 
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sequence while the channel is in a relatively unpolar
ized state. The prepower <a> is determined from the 
intercept, and using this value, the prepower <µ> is 
determined from the slope. The electron mobility is 
not expected to change much under power generation 
conditions. As a bonus, this test establishes the 
prepower <d> for diagonal generators without the need 
for a separate prepower conductivity test (in effect, 
the generator becomes its own power supply). This 
test can also be run for Faraday generators, but a 
separate conductivity test is needed to determine the 
prepower <d> since the intercept in equation (128) is 
always zero (!•O) for Faraday connections. Once<µ> 
is known, <13> at full magnetic field strength can be 
readily calculated from equation (127). 

Measuring R ,, 

The (per pitch) transverse resistance Ry under power 
can be determined from a Faraday load sweep. This 
test is needed to determine how sensitive Ry or 
equivalently ratio Gl<cs> is to generator loading. If 
Ry does not depend on generator loading, then the 
Faraday load Lines are linear, as shown in Figure 8, 
and the analysis of Farad~y generators becomes consid
erably easier. The resistance Ry is determined from 
the slope of the load line, and V 10 , and 11,. are 
determined from the intercepts (see Figure 8). The 
entire Faraday generator should be loaded at approxi· 
mately the same local load factor k to avoid rapid 
axial changes that may invalidate the simplifying 
assunptions stated at the beginning of this paper. As 
a bonus, this test also determines V 10,, 11 ... and <u> 
(see equation (126)). Resistance Ry also can be 
estimated by the methods described in the next 
section. 

PARAMETER ESTIMATION 

Once <u> and<µ> have been experimentally determined, 
many other important channel properties can be esti
mated from them using routine experimental data. For 
example, it has already been mentioned that the 
average Hall parameter <P> can be calculated from 
equation (127) once<µ> is known. Methods for 
estimating other important parameters are given below. 

Estimating <cs> 

The average conductivity <o> under power can be 
easi Ly computed at any axial location once <P> is 
known. It follows from equation (22) that 

<cs>• <J,>+<f3>J, 
E, ( 129) 

For best results, local average values (over several 
electrodes) should be used for Ex, <J,>, and Jy in the 
above forrTXJla. 

Estimating I. 

The (average) slag axial leakage current!, under 
power can be computed at any axial location once <o> 
and <op> are known. The average plasma conductivity 

<dp> can be estimated from prepower conductivity or 
electron mobility tests. It is convenient to split 
the conductivity into two parts: 

( 130) 

where dp is the plasma contribution (a,~o in the slag 
layers) and o, is the slag contribution (cs,~o in the 
plasma). Thus 

The average slag resistance per pitch is given by 

R ._P_ 
' <cs,>A 

( 13 ! ) 

(132) 

and the (local average) slag leakage current is given 
by 

v. 
l,•-R•<cs,>AE. 

I 

( 133) 

where a negative value indicates an upstream leakage 
current. For best results, local average values (over 
several electrodes) should be used for E. in the above 
formula. 

Estimating/ 0 

The average plasma current lp under power is easily 
computed at any axial location once I, is known. It 
is convenient to split the net axial current into two 
parts: 

( 134) 

where Ip is the plasma contribution and/. is the slag 
contribution (recall that,. can be computed easily 
using equation (21)). It follows i1T1J1ediately from 
equation (134) that 

(135) 

Since I, is normally negative in the adopted coordi
nate system (indicating an upstream leakage current), 
it is seen that the/, term usually acts to increase 
the estimated value of lp in the above formula. ~hile 
it is true that large upstream leakage currents tend 
to be associated with large downstream plasma cur· 
rents, the real cause for both effects is the large 
transverse nonuniformities that exist in coal-fired 
MHD channels. These nonuniformities can be measured 
via the net nonuniformity factor G. 

Estimating G 

The net nonuniformity factor Gunder power is easily 
computed at any axial location once <u>, <P>, and <o> 
are known. It follows from equation (12) that 

G • _<.c..13_>_<_J_. _>_-_<_cs_>--'-( _<_u_B_>_-_<_E-'''->-'-) 
J, 

(136) 

For best results, loca[ average values (over several 
electrodes) should be used for<£,>, <J,>, and Jy in 
the above formula. 
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.~ting Gl<a> 

Ratio G/<<1> is a crucial indicator of generator 
rformance and obviously can be computed once G and 

~> are known. The for1TMJlas previously given for 
stimating G and <<1> depend on knowing <u> and <13>. 

~owever, when <J.> is small in comparison to Jy, ratio 
G/<<1> can be accurately estimated without knowing 
<~>. This can be seen by solving equation (11) for 
<l3>, substituting this result into equation (136), 
and then solving for ratio Gl<a> as follows: 

C E.<J.> <uB>-<E,> <J.> 2 

~- 1: - J, - <01: 
( 137) 

The only quantity on the right·ha~nd side of 
equation (137) that depends on knowing <(3> for its 
estimation is <<1>. However, if <J.> is small in 
comparison to J ,, then the last term in equation (137) 
is negligible; hence, the ratio Gl<a> can be accu· 
rately estimated from the first two terms. In this 
case, only <u> and routine experimental data are 
needed to estimate ratio Cl<a>. It should be noted 
that <J,> is usually small in comparison to Jy for 
diagonal generators opera~ing near their peak power 
condition and, of course, for all Faraday generators 
where <J,>•0. Of'1ce ratio Gl<a> is known, the 
internal resistance Ry can be easily estimated via 
equation (59). 

Estimating 1· 

The estimate for the optimal link parameter t' for 
diagonal connections given by equation (114) requires 
knowing <(3>. In many important applications, how· 
ever, this dependence on <(3> is fairly weak. This 
can be seen by rewriting equation (114) using 
equation (129) as follows: 

C+r 0 <a> [ G A,Ro][<J,> J .1 t••----• --+-- ---+J E 
<a> <!3> <a> H <13> Y • 

( 138) 

The first bracketed expression can be estimated 
accurately without knowing <13> when <J,>«J,. The 
same is true for the second bracketed expression when 
<J,>l<i3>«J,. \./hen both of these conditions occur, 
as is typical at peak power diagonal operation or any 
Faraday operation, t' can be accurately estimated by 
either equation (114) or equation (138) without know· 
ing <(3>, It should be noted that the optimal t for 
diagonal connections can be estimated from Faraday 
test data provided the appropriate diagonal ballast 
resistance is used in equations (114) and (138). 

COMPUTATIONAL RESULTS 

The for!TMJlas developed in the previous sections will 
now be applied to recent COIF experimental data. COIF 
tests 89-0IAG-11, 89•01AG·12, and 88-FARA-1 were 
selected for analysis since each test generated at 
least 2 hours of data with peak powers over 1.6 M\.I, 
and each test included a prepower conductivity test. 

Table 1 lists the nominal plasma properties and 
channel dimensions assuned for these tests at six 
selected axial locations (electrodes 40, 80, 120, 160, 
200, and 240). The average axial velocities in 
Table 1 are representative of those determined from 
link current cross-correlations8 and from 3-0 model 
calculations9 for the COIF channel. The average Hall 
parameters were taken from reference 9. Standard MKS 
units are assuned throughout this'paper. 

Table 1 •• Assuned plasma properties and channel 
dimensions. 

NUH p w H B <(3 > <u> 

40 .01524 .1158 .2414 2.38 .88 1385 
80 .01524 .1425 .2517 2.91 1.23 1420 

120 .01524 .1692 .2621 2.90 1.44 1420 
160 .01524 .1959 .2724 2.84 1.67 1405 
200 .01524 .2226 .2827 2.72 1.82 1390 
240 .01524 .2493 .2930 2.32 1.62 1370 

Tables 2 through 6 Sllllll8rize the measured inputs and 
computed outputs for each selected test condition. In 
the end regions (electrodes 40 and 240), the calcu
lated data is somewhat erratic and unreliable since 
the sil'l)lifying assUl'l)tions on which the models depend 
tend to fail there. In extreme cases, this results in 
calculated values that are physically impossible, such 
as a nonuniformity factor less than one. In such 
cases, each obviously erroneous value is replaced by 
an 11*11 in the tables. Even if an "*" does not appear 
in a given table, the entries in the end regions are 
suspect, especially at low Hall voltage conditions 
(primarily in Table 2). The notation used in the 
tables is the same as that used in the text, except 
that n' is introduced to denote the optimal link 
overlap. The optimal link overlap n' is computed from 
the optimal link parameter t' via equations (18) 
and (114). The first coll.JTlll in each table is the 
electrod~ nunber. 

For test 89-DIAG-11, three test conditions·· 
representing a load sweep--were selected for analysis. 
The relevant data for this load sweep appears in 
Tables 2 through 4. The local Hall load factor k 
clearly increases at each location as the global 
loading increases. Furthermore, at each load condi
tion, the axial profile for the local load factor 
assumes approximately a parabolic shape with the 
maxil!MJm load factor occurring in the midchannel region 
and the minirrun load factor occurring in the end 
regions. This characteristic profile is essentially 
due to the use of a constant link overlap and a 
constant link resistance in a channel with axially 
varying magnetic fields and plasma/slag properties. 
From Tables 2 through 4, it is evident that the slag 
leakage current/, increases in magnitude with 
increasing Hall voltage, while the opposite trend 
holds for the plasma current Ip. Both currents are 
l_arge at the peak power condition (Table 3) due to the 
large transverse nonuniformities occurring in the 
channel (caused in part by cathode wall polarization). 
The severity of these transverse nonuniformities at 
any axial location is measured by the net nonunifor
mity factor G. However, the estimates for G and <a> 
appearing in the tables are somewhat erratic and 
unreliable in the end regions. Ratio Gl<a> appears 
to be more stable over a load sweep than either c or 
<a>. Consequently, the transverse resistance Ry at 
any axial location appears to be relatively insensi
tive to generator loading. Furthermore, Ry appears to 
be relatively constant along the entire length of the 

IX.4-11 

'--··- -·· . --···-·J 

SEAM #28 (1990), Session: Generators B

https://edx.netl.doe.gov/dataset/seam-28


Table 2 -- Measured electrical inputs and computed outputs for test 89-DIAG·11, condition 12 (iron test). 
Global electrical parameters were 1722 V, 350 A, and 0.93 MYe. 

NUH Ra <<1, > Ex <Ey> Jy 1. Ip I, G <<1> G 
Rx Ry k 

<G> 
n 

40 6 8.5 70 280 ·9000 175 238 ·63 * * 0.36 * 49.4 0.12 * 
80 6 6.0 ·520 780 ·7900 161 237 ·75 3.6 10.0 0.35 0.042 41'.1 0.30 55 
120 6 4.7 ·700 800 -6400 168 263 -94 3.2 7.7 0.41 0.044 41.5 0.33 43 
160 6 4. 1 ·880 875 ·5200 179 271 -92 2.5 6.1 0.42 0.047 38.4 0.32 32 
200 6 3.5 -795 700 -4000 201 283 ·82 2.5 5. 1 0.49 0·.047 40.7 0.28 29 
240 6 3.4 -480 500 -2900 229 224 5 1.3 3.3 0.39 0.064 29.9 0.13 18 

Table 3 -- Measured electrical inputs and computed outputs for test 89·DIAG·11, condi ti o·n 10 (iron test). 
Global electrical parameters were 4908 V, 208 A, and 1.47 MYe. 

NUM Ra E, <E y> Jy 1. lp I' G <<1> G Rx. Ry k <<1,> «> n 

40 6 8.5 -595 740 ·9100 31 82 ·51 3.1 11.6 0.27 0.047 37.1 0.47 66 
80 6 6.0 ·1280 1330 -8600 3 104 -101 2.7 ·8.2 0.32 0.052 37.6 0.58 41 
120 6 4.7 ·1560 1400 ·7300 1 141 -140 2.5 6.7 0.37 0.051 37.8 0.60 35 
160 6 4.1 ·1795 1500 ·6500 ·5 187 -192 2.4 6.1 0.39 0.047 35.3 0.62 30 
200 6 3.5 -1680 1340 -5500 3 260 ·257 2.6 5.9 0.44 0.041 36.8 0.63 31 
240 6 3.4 -1180 1035 ·4100 37 192 ·156 2.5 5.2 0.48 0.040 37.4 0.55 35 

Table 4 -- Measured electrical inputs and computed outputs for test 89·DIAG-11, condition 11 (iron test). 
Global electrical parameters were 7527 V, 79 A, and 1.15 MYe. 

NUM Ra <<1 ,> E. <E y> Jy 1. lp I, G <<1> G R, Ry k ,., n 

40 . 6 8.5 -1195 1190 -8500 -86 -75 -11 2.5 8.8 0.28 0.062 38.8 0.78 52 
80. 6 6.0 ·2000 1830 -8700 ·129 -47 ·82 2.4 7.1 0.34 0.059 38.9 0.82 37 
120 6 4.7 ·2230 1845 -7800 -142 33 -176 2.5 6.5 0.38 0.053 38.9 0.85 34 
160 6 4.1 -2430 1970 -7500 ·167 137 -304 2.4 6.4 0.38 0.044 34.5 0.86 31 
200 6 3.5 -2285 1830 -6600 -167 253 -420 2.6 6.4 0.41 0.038 34.1 0.86 32 
240 6 3.4 -1715 1440 ·5200 • 138 189 ·328 2.6 6.0 0.43 0.035 33.3 0.84 36 

Table 5 -- Measured electrical inputs and computed outputs for test 89·DIAG-12, 
Global electrical parameters were 4979 V, 239 A, and 1.89 MYe. 

condition 5 (iron test). 

NUM Ra <<1, > E, <Ey> Jy 1. lp ,. G <<1 > G 
«> R, Ry k n 

40 6 9.3 ·700 1035 • 11000 25 89 -63 2.5 12.5 0.20 0.044 27.3 0.48 55 
80 6 6.8 · 1500 1600 • 10700 -17 106 ·123 2.2 9.1 0.24 0.047 28.1 0.60 36 
120 6 5.4 -1685 1600 ·9200 -22 184 ·206 2.3 8.2 0.28 0.042 28.8 0.63 33 
160 6 4.4 -1615 1485 ·7700 ·14 307 ·321 2.7 8.1 0.33 0.035 30.3 0.64 35 
200 6 3.9 ·1500 1315 ·6700 ·11 399 ·410 3.1 8.2 0.37 0.029 31.1 0.66 37 
240 6 3.7 -1060 1035 -5000 30 305 ·275 3.0 7.3 0.41 0.029 31.6 0.59 42 

Table 6 -· Measured electrical inputs and computed outputs for test 88·FARA·1, condition 5 (noniron test). 
Global electrical parameters were 4308 V and 1.60 MYe. 

NUM R1 <<1,> E, <E y> Jy ,. Ip ,. G <<1> G R, Ry k 
<f> 

n 

40 24.0 6.0 ·770 1320 ·7400 0 53 ·53 2.3 8.5 0.27 0.064 36.5 0.40 47 
80 27.5 5.4 ·1030 1785 -7500 0 131 ·131 2.8 9.0 0.31 0.047 36.3 0.43 44 
120 30.3 4.9 ·1145 1840 ·6100 0 141 • 141 2.9 7.7 0.37 0.045 38.0 0.45 40 
160 32.9 4.6 ·1445 1860 ·5100 0 100 ·100 2.5 5.9 0.42 0.04~ 38.1 0.47 30 
200 36.0 4.3 ·1420 1840 ·4500 0 131 ·131 2.5 5.8 0.43 0.042 35.9 0.49 30 
240 40.0 4.0 ·930 1440 ·2900 0 71 ·71 3.0 5.1 0.6 0.041 46.2 0.45 41 
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' h nnel. Finally, the estimated value for the optimal 
c.~k overlap n· at any axial location appears to be 
lllatively insensitive to generator loading, except in 
r~e end regions where all estimates are somewhat 
~reliable. 

fr test 89·D1AG·12, only the peak power condition was 
0
1ected for analysis. Table 5 lists the relevant 

se h" nd. . . d ta for t is test co ition. Ratios Gl<<J> and 
:sistances Ry for this test appear to be signifi· 

~antlY smaller than those in the previous test, 
ssiblY accounting for the increased power observed 

~r this test over the previous test. Interestingly, 
the plasma and slag leakage currents also appear 
Larger than those for the corresponding condition in 
the previous test (Table 3). However, the estimates 
for currents Ip and I. are not as reliable as those for 
the ratio Gl<<J> and resistance Ry since the former 
depend on knowing both <13> and <<JP>. while the latter 
depend on knowing only <u> (and routine COIF data). 
The estimated values for the optimal link overlaps n· 
are similar to those computed from the previous test. 

for test 88·FARA·1 (the most recent Faraday test with 
prepower conductivity measurements at the time of this 
paper), the peak power condition was selected for 
analysis. Table 6 lists the relevant data for this 
test condition. The parameter estimates appear to be 
similar to those computed for test 89-0IAG-11 except 
that the slag leakage currents are somewhat smaller in 
the rear half of the channel for the Faraday test. 
There appears to be a good impedance match between the 
external resistance R1 and the internal resistance Ry 
for this test, with local load factors k near optimum. 
The optimal link overlaps n" for diagonal connections 
indicated by this Faraday test are similar to those 
calculated from the three diagonal tests. 

The estimated values for the axial currents/. and/ 
given in the tables appear to be excessively large in 
the rear half of the channel, especially at the higher 
Hall voltage conditions. These estimates depend 
strongly on knowing the average plasma conductivity 
<a,>, which in this paper was assuned to be the same 
as the average prepower conductivity. However, this 
assumption may not be a good one at the higher Hall 
voltage conditions since the MHO interaction (the 
mechanical power extracted) increases as the Hall 
voltage increases. 

CONCLUSIONS 

From a casual inspection of Tables 2 through 5, it is 
clear that the link overlap n• 11 .used in the diagonal 
tests is far from optimal for the COIF generator. 
From the tables, it appears that the optimal link 
?Verlap is approximately 30 at ·midchannel and 
increases to 40 or more in the end regions. Even the 
Fa~aday test.data when properly interpreted confirms , 
this conclusion (see Table 6). If the link overlaps 
rere i~creased ~0- their optimal values, the global 
oad line for d1agonal operation would shift to a 

higher short circuit current 1;, and a lower open 
circuit voltage v;, as shown in Figure 10. This 
c~ange should reduce axial stresses somewhat in the 
c annel but may increase transverse stresses by a 
~omparable amount. However, substantially more power 
ls lost through axial slag leakage than through 
transverse slag leakage, so the recooinended change to 
larger link overlaps should reduce slag power losses 
overall and increase the net power extracted from the 
channel. 

I 

~ - Ezperim.ental 

', y 

FIGURE to - OPTIMIZED GLOBAL HALL LOAD LINE 

A key aspect to optimizing diagonal channel perform
ance is matching reasonably well the local short 
circuit currents / 1" along the entire channel length. 
It is clear from the experimental data that this match 
was not achieved for the diagonal tests analyzed in 
this paper since there were Hall field reversals in 
the inlet region at low Hall voltages. It is the 
large mismatch in local short circuit currents that 
causes the Hall field reversals as indicated in 
Figure 9. A properly optimized diagonal channel 
should generate local short circuit currents that are 
nearly the same everywhere and, thus, approximately 
equal to the global short circuit current 1;, as · 
indicated in Figure 11. An exact match in local short 
circuit currents along the channel is not required-
only a reasonable match is needed so the diagonal 
generator can operate with local Hall load factors k 
in the range of 0.45 to 0.55 at nearly all locations. 
For load factors in this range, there is little 
degradation in power extracted from the optimal load 
factor k • O.S ( less than 1 percent degradation). 
Furthermore, operating the generator with local load 
factors in this range permits the entire generator to 
function near optimal at the same external load--a 
critical consideration for diagonal operation. 

I1sc 

I 

I 
\ ....._ Optimi:ed 

I 
I 

I 
....._ E:,;perimental 

yh 
"t:oc V,.oc 

Jnle! Region 

I 

,:c \ 
\ 

Ir.so \ 
\....._ Optimized 

~ 

yhoc yhoc 

Midchannel Region 

FIGURE If - OPTIMIZED LOCAL HALL LOAD LINES 

Basically, the presence of coal slag has forced the 
COIF generator to operate off-design. If there were 
no slag layers and no ballast resistors (none would be 
needed in the absence of coal-induced polarization) 
the net nonuniformity factor G would be considerably 
smaller and so would the optimal link parameter t' 
given by equation (114). For example, if G and <f3> 
were approximately 1.25 and 1.47, respectively, at 
midchannel, then n" would be approximately 15 at 
midchannel--in agreement with the way the channel was 
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originally designed. However, an all peg sidewall 
design would be needed to implement link overlaps n' 
as varied as those shown in Tables 2 through 6. \Jhen 
applying equation (114) to obtain the optimal link 
overlap, one should always bear in mind that an 
iterative procedure is really required since changing 
the generator connections will likely change the 
plasma/slag properties somewhat. The first attempt at 
generator optimization will probably need additional 
fine tuning. 

For Faraday connections, the end regions also pose 
special problems but for different reasons. Here, the 
main problem is obtaining the proper impedance match 
between the Faraday load R1 and the effective internal 
resistance R~. Up to this point, transverse leakage 
effects have been ignored. In the end regions, 
however, the combustor and diffuse~ provide highly 
conductive paths for substantial leakage currents 
between each anode-cathode pair. If this leakage 
current has effective resistance R, per pitch, then 
the effective internal resistance R~ per pitch is 
given by 

( 139) 

Clearly, R~ is the equivalent resistance for Ry and R, 
connected in parallel. In the midchannel region, R, 
is relatively large and probably can be ignored. In 
this case, R~ is approximately equal to Ry and 
matching R 1 to Ry is a good strategy. In the end 
regions, however, R, is relatively small and cannot .be 
ignored. In this case, one must match R 1 to R~. which 
is considerably smaller than R1 , to obtain the maximum 
power trans.fer to the external load. As the ends of 
the channel are approached, both R, and R~ can become 
quite small. For this reason, Faraday load profiles 
must taper to nearly zero at the channel ends. A 
remedy for this situation is to segment those portions 
of the combustor and diffuser adjacent to the channel 
ends. In this way, the effective transverse leakage 
at the channel ends can be reduced considerably and 
the effective transverse resistance R~ increased to 
the point that significantly greater amounts of power 
can be extracted in the end regions. A properly 
segmented combustor and diffuser should increase power 
extraction in the end regions for a diagonal generator 
as well, since any reduction in transverse shorting 
would be beneficial. 

The net nonuniformity factor approach devel~ped in 
this paper offers several advantages over previous 
closed-form solutions: 

- the effects of plasma/slag transverse nonuniformi· 
ties are automatically included in the model; 

axial leakage currents are implicitly included in 
the model; 

- the nl.lllber of primary unknown_s in the basic model 
is reduced by two since explicit terms for axial 
leakage currents and transverse voltage drops are 
not needed; 

- the model corresponds well with channel measure· 
ments that realistically can be taken at the COIF; 
and 

- the model explains many of the trends observed for 
the COIF generator during power generation. 

Axial nonuniformities and transverse slag leakage 
effects are generally ignored in this model. However, 
with the increasing use of i-ron dopants in the COIF 
testing program, axial nonunif9rmities are becoming 
much less of a problem. Despite these disadvantages, 
the model developed in this paper provides a practical 
tool for analyzing COIF test data and evaluating the 
performance of the COIF generator. 
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