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Safe and Effective Injection > 50 years

Representative projects

Water and gas injection for secondary recovery

Well management, IWR, flood surveillance

1940

CO2 capture from gas plants and injection for EOR

1950 _ :
CO2 saline storage Sleipner
Skills in Monitoring CO, EOR Weyburn
cO2 1960
Injection Monitoring CO, Huff-n-puff West Pearl-Queen
and 1970 Monitoring CO, saline test Nagaoka
handling Monitoring CO, saline test Frio | and Il
1980 Monitoring Phase Il EOR tests (Cranfield, Zama, SACROC
Injectivity +Monitoring Phase Il saline tests
1990 Injection+ monitoring InSalah

. . Injection+ monitoring Ketzin

Adding Saline 2000

Monitoring Phase Il EOR + Saline Cranfield

Adding monitoring to Monitoring Phase Il Saline Decatdfjection+ monitoring Laq

demonstrate storage 2010

Monitoring Phase Il Saline Citronelle

| Nnitoring Phase Il EOR Michigan
Commercial storage 2020 Future-Gen, QUEST, Gorgon, AP-LLC,
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Transition From... To

Research Monitoring

Tests-

 Hypotheses about the
nature of the perturbation
created

— compare response modeled

to the response observed via
monitoring.

* Performance and sensitivity
of monitoring tools

sensitivity to the perturbation

conditions under which tool is
useful,

reliability under field
conditions.

Commercial Monitoring
Driven by regulation/busisness

Confirms -

Predictions of containment
based on site characterization
at the time of permitting are
correct

Confidence to continue
injection is gained
Monitoring frequency could
be diminished through the
life of the project

— eventually stopped, allowing
the project to be closed.



Regional Carbon Sequestration Partnership program
goal: Evaluate protocols to demonstrate that CO, is
retained

High confidence in storage permanence
through characterization

Material Risk
of fa-lllng to Uncertainty and risk assessment » Semi-quantitative assessment
retain via Certification Framework
b&A well perf Limited analogy
we errormance S
Research , P , between injected and
Questions in retention?

natural fluid retention

Off structure Response to pressure
migration? elevation?

shallow Well-pad PrOtOCOI
vadose Ground col
Selected gas water Se.nS|.t|_V|ty &
chem. J  azm| reliability
assessment o
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Characteristics of site change
monitoring need

Typical of EOR Typical of injection
operation into unused saline
formation
Well known volume May not accept planned
because of production mass at plannedrate
history

Area of plume and Uncertain plume size
amount of pressure @ and pressure response
change well known and

actively managed

Need for during- and
Demonstrated trapping Quality of Confinement post-injection

because of monitoring

hydrocarbon history




Site specific drivers of monitoring design

Project monitoring drivers:
Regulatory prescriptions

Regulatory choices
Supplier/Operator/Stakeholder needs

Site Specific Geotechnical Risks
Monitoring targets

Monitoring Design
I - g g

&£

Site specific technology limitations

EPA STAR Project using SECARB data



Regulator Expectation:
monitor plume & match to models

Proposed Operating

Site Characterization Data

N, [/

Computational Modeling/
AoR Delineation

l

Monitoring System
Design

Model Calibration

. Monitoring Data
US EPA Class VI Monitoring and Collection and Interpretation

Modeling Guidance




Modeled expectations repeatedly adjusted to match
Reservoir characterization measurements
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Value of a history-matched model|

Accomplishments Limits

 Improved understanding of ¢ Not “ the right” answer
reservoir and fluid * Only probes calibrated
properties conditions, not “in the

* Possible to make white space”
predictions Multi phase pressure

* Eliminate some scenarios ' bt

Presure (MPa)
= %

RETSL
Time (Date)

All models are wrong, but some are useful
GDP Box



Not all miss-matches are important to
the project

* Arange of outcomes can meet most project
objectives

 Need statement of what outcomes are
unacceptable
— “Failure”
— “Leakage”
— “Damage”

e Need a safe word: Assessment of low
probability material impact ALPMI
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“Risk assessment drives monitoring”
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How exactly does risk assessment
drive monitoring?
* Many mismatches between models and
observed geosystem response

* Modeling expected reservoir response cannot
predict response to low probability
unexpected outlier conditions

* Monitoring cannot assess all outcomes



Monitoring designer should play
antagonist role to armor the project

Quantitative statement of project goals
Assessment of material impact

For each case, monitoring asks project “ how
do | know this material impact is not occurring
and will not occur?”

A method of answering:

— Models created to illustrate material impact cases

— Characterization/monitoring designed to disprove
material impact scenarios.



Solving the dilemma

Inventory
of material
impact
scenarios — Create (physical,
all in conceptual,
numerical)
models of material :
impact Defl.ne
conditions
precedent to
Characterize material
and monitor impact

those
conditions




Assessing Low Probability
Material Impact

Observation 2 Observation 1 Acceptable range
Observed material impact — | — — — — — — — — — — — —
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Predicted material impact Observation * Area Fluid composition
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* Trend




Using ALPMI to Design Monitoring

Characterization ALPMI Monitoring options

Uncertainty: Fault-seal? iage fiee pnase

with surface 4-D
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Three injection sites
completed in three —, _ I
injection zones Oo
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. ALPMI

Production wells
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ALPMI Case 1: Water saturation higher than
predicted: large plume during injection
I 80%

Result

Predicted model

0%

Models

Monitoring —

Measure saturation and/or breakthrough during injection




ALPMI Case 2: CO, residual saturation lower
than predicted: large plume during migration

I 80%

Predicted model Result

Models
-
o

0%

T

ure saturation and/or breakthrough during migration

Monitoring ,,...



ALPMI 2 physical model
Wrong imbibition curve: plume migrates too far




ALPMI Case 3: CO, plume strongly fingered
horizontally and/or vertically
I 80%

Result
0%

Predicted model

Models

Monitoring _— I

Measure saturation and time arrival many places during injection




ALMPI 3

Anisotropy such that plume migrates too far

CO2 SIMULATION (with acuifer)
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Seismic Sensitivity

Lumley, 201(

4D sensitivity to rocks & fluids

strong
4D
sweet spot

o rock compressibility s

fluid compressibility contrast g

Acoustic impedaﬁce (m/s*glcc)

g
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Modeled change in amplitude
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o ( - 0% CO,
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Seismic Amplitude

Zhang, 2012, 4-D survey
Cranfield reservoir
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Site specific seismic sensitivity:
velocity change with depth
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0
Rock physics model, self consistent 20 25 30 35 40
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and Harbert University of Pittsburg S

increasing depth

average elastic properties, Gassman (1951) theory, 30% porosity, 20%
fluid substitution CO2 for brine, not changes to minerals, fluids do not

Diana Sava
support shear, Reuss (1929) model



Diana Sava

Dry pore—space compressibility ( Pa'1)
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Site specific seismic sensitivity:
saturated zone thickness

Sergmic Ampitude vs. Reservor Thickness

Frio Model — 25 ft thick
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Value and limits of seismic and well-
based plume tracking

Amplitude changes

+—— apnyid we Bureanu |

~

Eikenetal, 2010 (GHGT10)




Using above AZMI pressure to assess storage permanence

surface
Injection
zone
Q
o
S |
wv)
(V)
Q
o
Q
AM/Z]|
Time
AZMI Above zone monitoring interval ‘
Cement to Confining = No fluid communication
isolate

IZ Injection
zone



AZMI Pressure sensitivity for leakage detection:
non parametric tables

Parameter
m, brine viscosity (Pa.s) )

I1Z formation compressibility (1/Pa)

1Z formation porosity (fraction)

k, 1Z formation permeability (m?)
h, 1Z formation thickness (m)

h, diffusivity (m2/s)

AZMI compressibility (1/Pa)

AZMI porosity (fraction)

k., AZMI permeability (m?)
h,, AZMI thickness (m)
h,, AZMI diffusivity (m?/s)

g, injection rate (Mt/year)

r,» injection well radius (m)

r, Leak radius (m)

h,, leakage interval (m)

hal™

B, CO, formation volume factor (Rm3/stm?3) r . NN y

Mehdi Zeidouni




Leakage rate
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AZMI thickness vs
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Thermal Sensitivity of AZMI to leakage

Well with thermal logging or DTS
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AZMI i € AZMI
20 _ 401 C
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Thermal sensitivity depth dependent
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Site Specific Freshwater Geochemical

Cumulative CO, amount (Metric Ton)

Changbing Yang
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Site Specific Freshwater Geochemical
Sensitivity-Alkalinity

Cumulative CO, amount (Metric Ton)

Changbing Yang
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Tt
200 300 400 500 600
Alkalinity (mg CaCO,/ Kg H,O)



Site Specific Freshwater Geochemical
Sensitivity- Dissolved CO,,

100000 — 10 — =

——— Carbonate bearing
——&—— Carbonate poor

Cumulative CO, amount (Metric Ton)
|
Time (years)
\

0— 0~ | | |

0 200 400 600
Dissolved CO, (mg CaCO,/ Kg H,O)

Changbing Yang



Conclusions

* Monitoring depends on goals and ALPMI

 Monitoring not used primarily for model
match but for ALPMI

* For each ALPMI, monitoring can show that
even though some uncertainties remain in
terms of geologic response to injection, there
is no trend to defined material impact
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