
Evaluation and Implementation of the OGC
Web Processing Service for Use in Client-Side GIS

Christopher D. Michaelis & Daniel P. Ames

Received: 26 March 2007 /Revised: 1 February 2008 /
Accepted: 25 February 2008 / Published online: 1 April 2008
Springer Science + Business Media, LLC 2008

Abstract The Open Geospatial Consortium Web Processing Service specification is
intended as a solution for creating and distributing web-based functions. This paper seeks to
evaluate the WPS specification with respect to feasibility and utility, to identify areas for
improvement, and to provide a demonstration implementation approach including a client-
side tool and a server-side wrapping technique for exposing geoprocessing functionality
through WPS using an asynchronous approach. Challenges with the WPS specification,
some of which are already being addressed in the newest WPS revisions, are discussed
together with proposed solutions. Several potential enhancements to the WPS proposal are
introduced and considered, including a mechanism to guide client applications in prompting
for correct data and a means to list the data available on a server.

Keywords OGC .WPS . geoprocessing . geographic information systems

1 Introduction

The Open Geospatial Consortium (OGC) is a consensus standards organization concerned
primarily with the release of non-proprietary specifications to unite geographic information
software, bringing together a multitude of disjointed formats and communications
mechanisms to allow interoperability [8]. Rather than avoiding the OGC standardization
process and remaining fully proprietary, many geospatial technology developers “have
shown extraordinary cooperation in teaming to submit OpenGIS Specifications” [4] and
have actively embraced the standards, many participating in their development. As OGC is
composed of professionals in multiple fields, rather than a single committee in a single
corporate environment, the standards typically are of consistently high quality and are
suitable for any number of application areas.

Geoinformatica (2009) 13:109–120
DOI 10.1007/s10707-008-0048-1

C. D. Michaelis (*) :D. P. Ames
Department of Geosciences, Idaho State University, 199 Valleyview Drive, 921 South 8th Ave.,
Pocatello, ID 83209-8072, USA
e-mail: cmichaelis@happysquirrel.com

On June 8, 2007, version 1.0.0 was approved to become an official OGC standard called
the Web Processing Service (WPS) [10]. This standard specification describes a mechanism
by which geoprocessing may be performed on remote servers, principally using extensible
markup language (XML) for communication through the Internet. The specification is
authored in such a way that it should be fully language and platform independent. During
initial design, OGC requested public comments, with a cutoff date of February 4, 2006.
Although the forum for public comments has already closed, there have been, to date, few
real-world studies on the feasibility and utility of the specification from the client-side GIS
point of view. We seek to provide feedback on the specification, with tools based on the
state of WPS during the proposal period.

Prior to WPS, web-based geoprocessing systems and approaches similar to WPS were
implemented by various entities. Notably, the Environmental Systems Research Institute
(ESRI) product ArcInfo 8.3 [2] contains a feature called the Geoprocessing Server, which
used large-scale UNIX servers to perform geoprocessing on behalf of ESRI client software
which submitted jobs for processing. The ESRI Geoprocessing Server protocol is
proprietary such that only ESRI software is able to make use of the remote processing
capabilities. Interestingly, this feature was removed from the following version (ArcGIS
9.0). A similar but subtly different feature was introduced in ArcGIS Server 9.2, where a
“ModelBuilder” tool constructed from simpler ESRI geoprocessing components may be
served to ArcGIS Desktop [2] and ArcExplorer [3] clients. This was a substantial
contribution to the field, and added significantly to further developments in this area.
Unlike WPS, the ESRI implementation is not compatible with non-ESRI products and a
closed, proprietary communications protocol preventing it from being adopted at large, or
studied in a non-ESRI environment. In addition W3C service solutions, Java servlets, and
similar web processing services that are not specifically GIS oriented have contributed both
knowledge and strategy to web based geoprocessing attempts.

2 WPS overview

The Web Processing Service specification defines a mechanism by which a client may
submit a processing task to a server to be completed. The service defines a “server
instance”, or server, as an entity which may provide one or more processes, or individual
processing tasks (e.g., adding two raster datasets together could be one process). In this
manner, any given server may be able to perform multiple different, and not necessarily
related, processes.

The specification indicates that XML may be used for almost all communication, with
the notable exception that WPS version 0.4.0 does not allow XML to be used in the
GetCapabilities request. XML documents are made up of individual elements, which are
logical containers for related data. An element may contain other elements, and any given
element may contain attributes which describe that element.

XML is designed to be “straightforwardly usable over the Internet,” “human-legible and
reasonably clear,” “formal and concise,” and “easy to create” [14]. XML is beneficial due to
its human-readability, which assists greatly in designing and debugging applications using
it. XML documents may be validated to ensure that they contain all needed elements and
attributes. Validation takes place against an XML schema, a specialized XML document for
validating other XML documents.

The main goal of the Web Processing Service is to define an XML based communication
protocol for remote geoprocessing. There are three key requests which may be made of a

110 Geoinformatica (2009) 13:109–120

WPS server: GetCapabilities, DescribeProcess, and Execute. The first of the requests asks
the server to list the individual processes which are available on that server, along with a
short abstract and keywords. The request does not require any parameters. Once a process
has been selected, a DescribeProcess request may be sent. The response to this request
includes the same information as the GetCapabilities response, plus more detailed
information about any needed input parameters for the process and whether the input is
simple (e.g., an integer) or complex (e.g., a data file). Complex outputs are typically
encoded as XML, using Geographic Markup Language (GML), an XML grammar, for
encoding and communicating geospatial content for vector data.

The third request (Execute) may be invoked, requesting the server to perform
the selected operation. Necessary parameters for the Execute request include the name
of the process as well as any applicable inputs for the particular process. The response to
the Execute request is an ExecuteResponse document, another XML document which
indicates process status, inputs that were used, and either simple literal value outputs or
links to complex outputs. The process status may be “ProcessAccepted”, indicating that the
process was received and is in queue to be processed; “ProcessStarted”, indicating that the
process is underway; “ProcessSucceeded”, meaning the process completed; or “Process-
Failed”, indicating that a problem occurred. If the status is ProcessAccepted or
ProcessStarted, the status is accompanied by an attribute which indicates where the next
ExecuteResponse document may be found. In this way, the client may check on the status
of the process by requesting the next ExecuteResponse document. In the case of
ProcessStarted, a status message and progress percentage may also be provided.

If the process status is ProcessFailed, the ExecuteResponse document also contains an
error code embedded in an XML ExceptionReport element, which may be one of five error
codes (MissingParameterValue, InvalidParameterValue, NoApplicableCode, ServerBusy or
FileSizeExceeded). If the process succeeded, the response document will also include either
the outputs (in the case of simple literal values) or URL links to complex outputs (such as a
file with raster data). If a single complex output is produced, that output may be returned
directly in lieu of an ExecuteResponse document. Together, these three operation requests
and their responses constitute the majority of the WPS protocol.

3 Application of WPS

Because the potential geoprocessing functionality supported by the WPS protocol is
unlimited in scope or nature [10], WPS holds great promise for using computational tools
without traditional concerns such as distributing bug fixes or checking for the most up-to-
date code version. However, some geoprocessing operations can be completed more
effectively locally (i.e., on a user’s desktop PC) than remotely (i.e., on a central server),
especially after factoring in time to upload input data (or transfer it from another server) and
subsequently download resulting outputs. When determining whether to use local or remote
data processing, a number of factors must be considered beyond the raw size of the datasets
involved. Computational complexity plays a large part; if the process takes several hours to
complete even on a small dataset, it can be better to process the data remotely. If the task is
not complex and the bulk of the work lies in pressing through large volumes of locally
stored data, it can be more efficient to perform the processing locally. Hence, an informed
decision needs to be made regarding whether to proceed with processing locally or
remotely for any particular task. Higher processing power in server farms can easily reduce
the cost of time-demanding and highly complex tasks, especially when combined with

Geoinformatica (2009) 13:109–120 111

high-throughput networks such as fibre channel or gigabit ethernet. Therefore, data should be
sent to servers typically having higher processing power, instead of using a slower local
computer, when the time to process the data locally would be greater than the combined time
to transmit the data, process it remotely, and download it again. Some of this time delay may
be offset by allowing a request to a WPS server to specify an alternate data source rather than
a direct upload, (e.g., a Web Feature Service GetFeature request). In this case, the WPS would
download the required data from another server rather than receiving it from the WPS client.
Such a process could become common in service-oriented architectures.

Remote processing is also appropriate for deployment of new algorithms and code that is
under active development. In this scenario, new version releases do not require software
upgrades by end users. Rather, only the server requires an update to reflect the new code or
algorithm. Subsequently all users automatically gain access to the most current and most
accurate version of the process simply by using the server-based processing service. This
single point of control over the process also creates the possibility of generating revenue
from the process.

The traditional view of remote processing requires that input data is uploaded, as in
Remote Procedure Calls (RPC) where input data and parameters are sent together with a
function call [1]. However, input data could also be stored on the server, requiring the client
only to specify the particular input which is desired. This creates the opportunity for a WPS
server to also serve raw or pre-processed data. This approach could be particularly useful
for processes requiring real-time data such as weather station observations or live traffic
observations. WPS services could be provided by the same entity that collects the data,
allowing the processes to have access to the latest available data at all times. For example, a
WPS could retrieve vehicle location data from a server, re-project it to a new coordinate
system, and return the result. Another WPS could perform advanced terrain analysis on
server side terrain data returning only the few desired derivative results. The motivations for
using a remote processing server are many, but ultimately the decision must lie with the
user whether remote processing is appropriate for the task.

4 WPS implementation considerations

The WPS protocol describes a mechanism by which a client computer may submit a job to
be processed on a server computer, using uploaded data or data provided via a WFS or
WCS service. This is classic client/server architecture, meaning that both a client
component and a server component are needed. For implementation and testing purposes
it is useful to build the client-side component on a geographic information system (GIS) to
take advantage of existing visualization features. However, initial testing may be performed
with command-line or spatially unaware tools. The client-side component is the portion
which handles XML communication through the internet with the server, ideally without
the user needing to directly see or work with the XML to discover available processes or to
make their request and retrieve results.

One approach to generic development of the client side component is to place a reusable
interface layer or a “wrapper” around existing or new geoprocessing routines written as
command-line Linux-based utilities, Windows services, or Windows applications. If the
application or algorithm implementation in question may be executed without user
interaction (e.g., through command-line arguments, network communication, or through
inter-application data transfer), then this thin communications layer is a useful option.

112 Geoinformatica (2009) 13:109–120

Wrappers may be placed around existing geoprocessing functionality and existing tools (or
newly developed tools) to enable them to be served using WPS, by providing XML that
meets the interface requirements of the WPS communication schema. Existing software will
likely only need minor modification to enable it to run in an unattended mode, ideally via
command-line arguments and log files. GRASS utilities [7] are an example of existing
command-line tools which may be wrapped using an approach such as this.

The server-side wrapper may initiate the tool as needed, and monitor a log file or a
return a status message to indicate whether the process succeeded, is still running, failed or
is in queue. Status percentages and relevant error messages may also be retrieved from log
files, and returned to the end user through appropriate communications, with this wrapping
technique. Placing a thin wrapper around standalone tools enables them to be used in
multiple places and for multiple purposes with minimum effort. In essence, the wrapper
becomes the “WPS Server”, because it handles all communications needed by WPS. The
WPS server could be implemented as a PHP web page, as an ASP.NET web page, as a
standalone application, or implemented using any other server technology.

Many of the operations needed by a WPS server are essentially metadata operations:
providing information about individual processes (i.e., required inputs) and listing processes
available on a server. The WPS server will ideally load information on available processes
from a configuration file (perhaps one per process) or from a database, thus making the code
written for the WPS server reusable by adding additional processes to configuration files or
to the database. These configuration files or this database may also indicate to the WPS
server how to launch the process and how to parse its output files.

In the following section, we describe a test implementation of the WPS protocol,
including a strategy for implementing services based on the considerations described above.
An alternative but similar approach followed by the 52°North Initiative [15] was used to
produce a Java-based implementation with support for all WPS 0.4.0 features.

5 test WPS implementation

With a plug-in architecture supporting the Visual Basic.NET and C# programming
languages (our preferred programming languages), MapWindow GIS [6] was a useful
environment in which to develop a test implementation of the WPS protocol. Specifically,
we constructed a MapWindow plug-in called the “WPS Gateway” that allows the end
user to browse a list of available WPS servers from a simple database-driven catalog
(used to store a listing of available WPS service URLs), as well as the processes available
on those servers. Any given remote process is referred to in this system as a “WPS Online
Plug-in”, which is accessed via the WPS Gateway component. The server-side interface
layer (process wrapper) described in the design is referred to as a “WPS Online Plug-in
Wrapper” in this implementation. For the purposes of this test, two unique wrappers were
constructed, one for use with Linux using PHP and one for use with Windows using ASP.
Net.

The Linux implementation involved creating a PHP page to provide metadata
information in response to GetCapabilities and DescribeProcess requests and a PHP
page to provide response documents. Additionally a C++ process launcher application
was created. Each of these tools may be reused for other processes as well, because the
same PHP files may be reused for multiple processes. Adding a new process can be done
by adding a new section to each of the two PHP files which is customized to the new

Geoinformatica (2009) 13:109–120 113

process. This approach can be extended so that the utilities do not need to be modified for
new processes, but instead a configuration file is saved describing each process provided
by the server. The configuration files will then be read by the tools, making direct editing
of the source code files for each new process unnecessary. This has the benefit of keeping
WPS functionality centralized and abstracted from the geoprocessing tools, as well as
providing the convenience of having a single entry point for all WPS processes on a
given server. Taken together, these utilities constitute a “WPS Online Plug-in Wrapper”
for Linux.

To access the WPS server from MapWindow GIS, the user enables the WPS Gateway
plug-in from a menu. This causes several menu items to be added to MapWindow including
a “Browse Catalog” menu. Because there are currently no central catalog services available
online for listing available WPS processes, a simple database-driven catalog service has
been developed for use by this tool.

Upon choosing “Browse Catalog”, the gateway plug-in queries the catalog service on a
central server to fill a list of available servers. When the user selects one of these servers,
the gateway queries that server with a GetCapabilities request, which returns the server
capabilities listing the available processes. The gateway fills a list with these processes. The
user may then select one of these processes, causing the gateway plug-in to request
additional information on that process via a DescribeProcess request. If the user decides to
execute this process, the gateway plug-in first collects any needed input data or parameters
from the user. It then initiates the process on the server by sending an Execute request. The
server in turn triggers the specialized process launcher utility as designed. This process
launcher uses the “fork” operation to initiate the new process which is not connected to the
web page. The initially started process is then free to continue processing while the server
completes successfully to return an initial ExecuteResponse document to the gateway plug-
in, after which the user is informed that the process has been accepted by the server. The
user may continue using their computer while execution continues in the background on the
server past this point.

The newly created server side process resulting from the fork operation then proceeds to
launch the actual operation, which executes and writes a log file in the process. Periodically,
the gateway application will check on progress. This status check operation triggers another
web page, called “GetStatusUpdate”, which parses the contents of the log file being written
for the particular process request, returning an appropriate status message and progress
percentage. This occurs numerous times until the status indicates that the process has
completed or failed; in the case of failure, the error message is displayed to the user and the
process halts. If successful, the gateway plug-in downloads any output data and causes it to
be displayed in MapWindow GIS.

Two WPS processes were built for this test client implementation to consume. The first
was written for Linux using C++, and performs basic raster mathematic operations
(addition, subtraction, multiplication and division). A process such as this may benefit
greatly from the WCS (Web Coverage Service) draft standard [9], being aligned with the
WPS standard, as it focuses on transfer of raster data.

The second online plug-in used to demonstrate and test the WPS proposal is a watershed
delineation tool. This tool uses Terrain Analysis using Digital Elevation Models (TauDEM)
[13] to identify drainage area in terrain data. The process accepts a raster dataset with
elevations as input and produces several intermediate outputs as well as a stream network
shape collection and a watershed polygon shape collection representing flow patterns and
drainage area boundaries for the area. Implementation of the watershed delineation online

114 Geoinformatica (2009) 13:109–120

plug-in wrapper involved creating a new Windows service called “Delineation Listener”
which monitors a temporary path used to store input files. The ASP.NET web page accepts
the input files and returns an initial ExecuteResponse document, then terminates. When a
new input file is detected by the Windows listener service, the delineation tool begins
processing the new input files, writing to a log file while processing. Subsequent status
update requests from the gateway plug-in access a “GetStatusUpdate” ASP.NET web page
much like the Linux PHP equivalent. This GetStatusUpdate tool parses the log file written
by the Delineation Listener service and returns an appropriate ExecuteResponse document.
If the log file does not yet exist, it is assumed that the Delineation Listener service has not
yet begun processing the input, so the ExecuteResponse document indicates that the
process has been accepted but has not yet begun being processed.

The two ASP.NET web pages (the page handling WPS GetCapabilities, DescribePro-
cess and Execute requests, and the page handling status updates) along with the
Delineation Listener comprise the “WPS Online Plug-in Wrapper” for Windows. Similar
to the Linux approach, the same set of web pages can handle multiple different processes
by adding a section to the pages for each new process. The Delineation Listener is
customized tightly to the delineation process, so with the present architecture a new
Windows service needs to be authored for each new process. Future enhancements might
include using configuration files for each process as with the Linux approach, and
creating a generic Windows listener service for launching actual processing tasks. A
generic listener service will eliminate the need to create a completely new listener service
for each new process running on Windows.

6 Problems, solutions, and proposed enhancements

Our implementation effort resulted in the identification of six key changes that could
improve the WPS protocol. These changes include two additional elements in the
DescribeProcess response provided by a server which describes a given process’s inputs
and outputs, as well as a mechanism by which a client may cancel a request which is
pending or processing. Potential changes also include correcting some inconsistencies in
behavior, providing additional exception types for error handling, and having only a single
entry point for each process and a single entry point for each server.

The first suggested change is to add an element to the extensible markup language
(XML) document which is returned by a DescribeProcess request. Currently, the needed
inputs are listed by this document, but no clear description of how the client should prompt
the user for this input is provided. The needed data may come in the form of selecting a
shape on a map, providing a literal value, browsing for a file of a given type, or other
methods for collecting data. The most recent revision of the WPS DescribeProcess element
has additional metadata that may provide an implementing application with enough data to
prompt for input meaningfully; however, the following suggestion may still be useful for
allowing an implementing application to behave more intelligently while keeping WPS
application independent. In our test implementation, we introduce a new XML element
called “PromptMethod” to help an application prompt for data. The element may contain
the values “browseforvector”, “browseforraster”, “getboundingbox”, or “getmatchingre-
gex”. These will cause the client application to prompt for a vector file, prompt for a raster
file, retrieve a bounding box (e.g., by asking the user to draw it) or collect a piece of
information matching a particular pattern, respectively.

Geoinformatica (2009) 13:109–120 115

The last option, getmatchingregex, will accept a user-entered value which matches the
provided regular expression. A regular expression is a rule defined by special characters,
such as “^[a-zA-Z][a-zA-Z]$”. This regular expression would look for the beginning of the
input (symbolized by ^), followed by two letters, from A to Z, independent of case,
followed by the end of the input (symbolized by a dollar sign). Some variations for syntax
in regular expressions exist due to differing regular expression processing engines [5],
hence care should be taken to ensure expressions are designed in such a way that they may
be interpreted in the same way on both clients and the server. An example of the suggested
addition to WPS is shown in Fig. 1, where the regular expression is defined as “^\d{8}$”.
This expression indicates that the start of the string (^) should be followed by eight digits (d
{8}) and the end of the string ($), following Microsoft’s regular expression processor
syntax. A regular expression can be easily defined as needed, depending on the service and
does not require an exhaustive analysis of possible data types during specification design.
However, specific XML data types are still useful and needed for core and frequently used
data types, particularly for non-string data.

The second suggested change is another addition to the DescribeProcess response.
Currently there is no mechanism by which a WPS may list the data that is available on the
server for use by a given process. An example where this may be useful is in the processes
of watershed delineation—defining stream networks and watersheds based on raster
elevation datasets [11], [12]. Elevation raster datasets are typically very large, so it is
inefficient and often impossible to upload the entire input file to the server, and can be time
consuming to transfer the data from another server. Datasets such as elevation data typically
do not change often, and may be stored directly on the WPS server to improve performance
and efficiency. In our test implementation, we address this by introducing an XML element
entitled “AvailableData”, with a child element for each data item containing a name and a
brief description as shown in Fig. 2. This approach reduces processing by removing the
need to upload or transfer the input data, and also creates a means by which a WPS server
may act as a data repository as well as processing it and returning results.

Our third suggested change considers that the WPS protocol includes an inconsistency
after submitting a job to a server with regards to what should occur next. If the process

Fig. 1 Suggested PromptMethod element in DescribeProcess response

116 Geoinformatica (2009) 13:109–120

will result in a single return value and the Execute request was made with the “store”
parameter set to false, WPS will allow the process to immediately return the output, rather
than an XML ExecuteResponse document. If there is more than one output, or if the
process has been asked to store the results, then an ExecuteResponse document is
generated. This behavior is inconsistent, since any given process might return either
multiple outputs or a single output, depending on the parameters provided to the process.
Instead, it is simpler to always return an ExecuteResponse document, storing any
complex output data (e.g., vector or raster files) on the server until downloaded by the
client. Simple value outputs (e.g., a single number) may be returned directly embedded in
the ExecuteResponse document, with links pointing to complex outputs. Hence we
suggest always returning an ExecuteResponse document to provide greater consistency
and to simplify client implementation.

After submitting a job to a WPS server, it may be desirable to cancel the requested
operation; this eventuality is not supported by the current WPS protocol. In our test
implementation, and as our fourth suggested change, we introduce the use of a “cancel
request URL” in the ExecuteResponse document, along with the existing URL indicating
where the next ExecuteResponse document may be found. In this manner a client needing
to cancel a process accesses the URL to trigger a cancellation of the requested process,
preventing wasted server processing time.

Our fifth suggested change to the WPS protocol is to have a single entry point for each
possible request (GetCapabilities, DescribeProcess, and Execute) on a given process.
Ideally, a single entry point (e.g., a single PHP web page) could be used not only for every
request on a process, but also for every process available on that server. Presently, each of
the requests that a process supports may have a different URL to perform that request. By
using the same URL for each request (GetCapabilities, DescribeProcess, andExecute),
maintenance and implementation are simplified, whereas confusion or errors can easily
arise with differing URLs for these operations.

Our sixth suggested change is to implement a more highly structured exception system.
Presently there are only a few exception types (MissingParameterValue, InvalidParame-
terValue, NoApplicableCode, ServerBusy and FileSizeExceeded), which are limiting—

Fig. 2 Suggested AvailableData element in DescribeProcess response

Geoinformatica (2009) 13:109–120 117

particularly when attempting to parse the error automatically. With a small number of
exception types or codes, there is no generic way in which to handle errors on behalf of the
user, other than to display the error to the user. A more structured exception hierarchy
would allow client applications to understand the nature of the error that occurred, perhaps
recovering or retrying automatically as needed. The ability to insulate the end user from
errors and recover gracefully is an important part of any standard design, and this ability
would be made possible with a more detailed exception hierarchy. (Note: The most recent
version of the WPS specification includes more options for error handling.)

7 Conclusion

Overall, the WPS proposal was found to be workable as currently designed, and is indeed
suitable for many GIS tasks as indicated by our successful tests performing watershed
delineation and raster mathematics operations. Implementation of the client component and
the server-based WPS processes revealed several opportunities for enhancement including
the six specific recommendations provided here. Our test implementation is a simple
wrapping approach to expose current and new geoprocessing functionality using the WPS
strategy efficiently on the server-side, and it provides a client implementation for an
existing open-source GIS platform, MapWindow GIS. This effort should be informative to
others working to implement the WPS proposed specification on other GIS platforms, and
that our specific test implementation should be immediately beneficial to current
MapWindow GIS users. In its present form, our client tool is compatible with version
0.4.0 WPS services (including GML data transfer), and is being updated to function with
the newer version 1.0.0 specification.

Any geoprocessing activity may be presented in an “online plug-in” format. This allows
the developers of the algorithm to continuously improve the algorithm while still allowing
users at any location to use the code, without installing updated code. This also ensures that
code and algorithms being used are of high quality; if a bug is detected in a released version
of an algorithm which is distributed on CD, no easy way exists to ensure that all users
successfully upgrade to the corrected version. With a web-based processing architecture,
this problem is alleviated by publishing the new algorithm to the processing server.
Processor intensive and time consuming geoprocessing may be performed on remote
servers, freeing the user’s desktop to work on other tasks. Large datasets may be stored on
the server and processed according to the user’s particular parameters, combining data
repository and data processing aspects into one system.

The WPS protocol introduces a standard which will allow diverse developers at various
locations to produce geoprocessing offerings and provide them to a variety of client
platforms. In these tests, the WPS 0.4.0 protocol has been shown to be workable in its
current design. The additional enhancements proposed here should improve WPS
implementation and usability significantly.

Acknowledgements This research was funded by the Pacific Northwest Regional Collaboratory as part of a
Pacific Northwest National Laboratory project, funded by NASA through Grant No. AGRNNX06AD43G.
The authors express gratitude to Trish Mercer for her editing assistance. The manuscript was improved
significantly through the feedback from three anonymous reviewers.

118 Geoinformatica (2009) 13:109–120

References

1. J. Bloomer. Power Programming with RPC. O’Reilly Media: Cambridge, MA, 1992.
2. Environmental Systems Research Institute (ESRI). ArcGIS Desktop Products Data Sheet. WWW

document, http://www.esrichina-bj.cn/produce/esri/arcgisdesktopsheet.pdf, 2003.
3. Environmental Systems Research Institute (ESRI). ArcGIS 9.2 Webinar—ArcGIS Server: Publishing a

Geoprocessing Model. WWW document, http://events.esri.com/info/index.cfm?fuseaction=seminar
RegForm&shownumber=9919 2006.

4. GIS Competitors Cooperate on OpenGIS Specs. Information Today, Vol. 14(2):15, 1997.
5. Goyvaerts, Jan. Regular Expression Tutorial. WWW document, http://www.regular-expressions.info/

tutorial.html, 2006.
6. MapWindow Open Source Team. MapWindow GIS 4.0 Open Source Software. WWW document, http://

www.mapwindow.org/, 2006.
7. M. Neteler. The GRASS GIS software. Presented at a GIS Seminar at Politecnico di Milano, Polo

Regionale di Como, November 2006.
8. Open Geospatial Consortium, Inc. Vision and Mission. WWW document, http://www.opengeospatial.

org/about/?page=vision, 2006.
9. Open Geospatial Consortium, Inc. OpenGIS® Web Coverage Service (WCS). WWW document, http://

www.opengeospatial.org/standards/wcs, 2007.
10. Open Geospatial Consortium, Inc. OpenGIS® Web Processing Service (WPS) Specification. WWW

document, http://portal.opengeospatial.org/files/?artifact_id=24151, 2007.
11. O. Planchon and F. Darboux. “A fast, simple and versatile algorithm to fill the depressions of digital

elevation models,” Catena, Vol. 46:159–176, 2001.
12. G. Savant, L. Wang, and D. Traux. “Remote Sensing and Geospatial Applications for Watershed

Delineation. Conference Proceedings: Integrated Remote Sensing at the Global, Regional and Local
Scale.” IAPRS, Vol. XXXIV, Part 1, ISSN 1682-1750, 2002.

13. D. Tarboton. Terrain Analysis Using Digital Elevation Models (TauDEM). WWW document, http://
hydrology.neng.usu.edu/taudem/, 2005.

14. W3C. Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation, 6 October 2000.
15. Initiative. Web Processing Service (WPS). WWW document, http://52north.org/index.php?option=

com_projects&task=showProject&id=21&Itemid=127

Christopher D. Michaelis received a Bachelor’s degree in computer science from Utah State University in
2005 and a Master’s degree in geographic information science from Idaho State University in 2007. His
background includes programming for database systems, internet based and client/server communication,
and geospatial software. He is currently a software consultant and the lead software developer for the
MapWindow project (http://www.MapWindow.org) at Idaho State University.

Geoinformatica (2009) 13:109–120 119

http://www.esrichina-bj.cn/produce/esri/arcgisdesktopsheet.pdf
http://events.esri.com/info/index.cfm?fuseaction=seminarRegForm&shownumber=9919
http://events.esri.com/info/index.cfm?fuseaction=seminarRegForm&shownumber=9919
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.mapwindow.org/
http://www.mapwindow.org/
http://www.opengeospatial.org/about/?page=vision
http://www.opengeospatial.org/about/?page=vision
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wcs
http://portal.opengeospatial.org/files/?artifact_id=24151
http://hydrology.neng.usu.edu/taudem/
http://hydrology.neng.usu.edu/taudem/
http://52north.org/index.php?option=com_projects&task=showProject&id=21&Itemid=127
http://52north.org/index.php?option=com_projects&task=showProject&id=21&Itemid=127
http://www.MapWindow.org

Daniel P. Ames received a Ph.D. in Civil and Environmental Engineering from Utah State University with
an emphasis in watershed management using Bayesian decision networks. He also received a Master’s
degree from Utah State University in the area of time series forecasting using nonlinear methods. He is
currently an assistant professor at Idaho State University, where he is the program coordinator for the Master
of Science in geographic information science. He is also the project leader for the open source MapWindow
GIS (http://www.MapWindow.org) project.

120 Geoinformatica (2009) 13:109–120

http://www.MapWindow.org

	Evaluation and Implementation of the OGC Web Processing Service for Use in Client-Side GIS
	Abstract
	Introduction
	WPS overview
	Application of WPS
	WPS implementation considerations
	test WPS implementation
	Problems, solutions, and proposed enhancements
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

