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SUMMARY

Geochemical reactions between rocks and engineered fluids impact petrophysical properties of a formation

The impacts of these reactions are particularly prominent in micro-fractures and nano-fractures (scale) as opposed to

geomechanical forces which act more on macro-fractures more

Micro-fractures and nano-fractures form extensive networks that reach deep into the reservoir thus very important

They serve as conduits for hydrocarbon transport to the main fractures and then to the well

Therefore, any adverse rock-fluid interactions in these zones can greatly reduce permeability thus, productivity from a

reservoir

This research focuses on rock-fluid interactions and their adverse outcomes as well as geomechanical stress impacts on

fracture face

Our work focuses on Caney Shale play South Central Oklahoma Oil Province



INTRODUCTION

The Caney shale is a newly discovered unconventional reservoir in South Central Oklahoma

Though known to contain
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OBJECTIVES

Investigate rock responses
to HFFs. Key concerns are:  Fracture and near-fracture clay-fluid reactions after hydraulic fracturing
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 Dissolution and
precipitation of minerals

* Gas flow into fracture * Water-phase trapping of gas * Proppant blockage to gas
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MATERIALS AND METHODLOGY

Three-Pronged Approach: Experiment, Simulation and Logging

X-Ray Diffraction-
Mineralogical
Composition

Inductively
Coupled Plasma-
Mass
Spectrometry —
Effluent Analysis

Scanning Electron
Microscopy - Dissolution
and Precipitation Patterns



MATERIALS AND METHODLOGY

Batch Experiment

Designed to mimic shut-in period

Undertaken at Temperature of 90°C and
atmospheric pressure

Initial Liquid to powdered sample ratio of 20:1
(140mL:0.7g)

Sampling done on days: 1, 4, 7, 14, 21 and 28
(1omL sample)

Conductivity Test

Proppant (40/70) sandwiched between half
piece of core sample

Changing Stresses applied, 4000-12000 and
back to 4000

Width, Permeability and Conductivity measured

Materials Used:

Three fluid samples of varying compositions:
« 2% Potassium Chloride Solution (pH~4)
* 0.5% Choline Chloride Solution (pH~4)

* Deionized Water (Base, pH~7)

Three rock samples selected at different depths:
High Quartz (HQ)

[74.4% Quartz, 9.6% Carbonate and 16% Clay]
Moderate Quartz, Carbonate and Clay (MQ)

[63.1% Quartz, 17.1% Carbonate and 19.8% Clay]
High Clay (HC)

[41.5% Quartz, 14.1% Carbonate and 44.4%
Clay] 7



RESULTS

Identifying the key driving force that can cause varying outcomes for rock-fluid

interactions
Question: Is it the fluid or it is the rock?

Answer: Obviously the fluid

Impact of Fluid Composition on Impact of Rock Composition on Elemental
elemental concentration in effluent Concentration in effluent
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RESULTS

Calcium ion:

« Caion concentration distinguishable for each fluid type
« Caions in solution believed to be from Calcite and Dolomite Dissolution
« Potassium Chloride>Choline Chloride>Deionized water (In terms of ion concentration in solution)

 HQ and MQ samples have higher concentrations than HC sample
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Sulphate ion:

SO4 ion concentration distinguishable for each fluid type

RESULTS

SO4 ions in solution believed to be mainly contributed from the Dissolution of Pyrite

Potassium Chloride>Choline Chloride>Deionized water (In terms of ion concentration in solution)

HQ and MQ samples have higher concentrations than HC sample
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RESULTS

Silicon ion:

 Siion concentration for various fluids clearly distinguishable

 Siions in solution believed to be from quartz and clay minerals

« Potassium Chloride>Choline Chloride>Deionized Water (In terms of ion concentration in solution)

 Siions most likely from the clay and feldspathic component of the rock
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RESULTS

Al and Mg ions show sharp decline in concentrations: Two theories exists:
* Precipitation
 Substitution or Adsorption

* Aluminum elements in solution are from dissolution and cation exchange in clay minerals

» Magnesium elemental concentration is mainly from dissolution of dolomite, but clay dissolution and cation
exchange in clays may also contribute

HQ MQ HC
1.0 1.0 1.0
0.9 0.9 0.9
0.8 0.8 0.8
0.7 0.7 0.7
= 06 = <
3 06 | 3 0.6 £ 0.6
a0 . a 0.5 Y = 0.5 &
= 0.4 . z 0.4 =z 04 ®
0.3 o . 0.3 L] 0.3 .
L ]
r x : . 02 | . . . . 0.2 . 1 . .
A 0.1 0.1 m A
» 0 : 5 : 10 .15 2[:-. 25 : 30 . - - : ‘ ‘ o0 - - - g :
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Days Days Days

o MODI m MOKClI 4 MQCC
e¢HODI wHQKC aHQCC e HCDI m HCKCl & HCCCI

12



RESULTS

Stress Impact on Width, Permeability and Conductivity

Permeability Comparison
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RESULTS

Stress Effect on Conductivity

40/70 + Ductile 2-2, 3B & 6A

Stress (psi) 4000 6000 8000 10000 12000 6000 4000
Conductivity (md-ft) 952 428 150 62 25 31 32

40/70 + Reservoir 3-1, 2B & 7A

4000 6000 8000 10000 12000 6000 4000

Conductivity (md-ft) 878 481 208 76 37 40 41

40/70 + Reservoir 3-2, 2B & 7A
4000 6000 8000 10000 12000 6000 4000
Conductivity (md-ft) 948 435 173 70 32 36 39

40/70 + Ductile 2-1, 2B & 7A

Stress (psi) 4000 6000 8000 10000 12000 6000 4000

Conductivity (md-ft) 744 301 118 43 20 22 23
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RESULTS
Except pH values, modelled values and experimental values showed significant

disparities
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RESULTS

Three informal Divisions based on
XRF results:
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

Rock-fluid interaction during hydraulic fracturing is
largely the function of fluid composition

Carbonates and Clays are more susceptible to
geochemical interactions whilst Quartz is relatively
stable

Increasing clay composition in samples impact
dissolution of quartz and carbonate minerals thus less
fracture opening

Potassium Chloride and Choline Chloride stabilized
clay minerals

Mechanism of stabilization is continuous exchange of
ions between clays and fluid

This will help prevent swelling and disintegration of
clays thus micro and nano-fractures remain open

Sustainability of stabilization looks unlikely??

« Substitution of ions may be responsible for low Al
and Mg ion concentration since these ions are both
exchangeable cations

« Stress has an impact on permeability and
conductivity, though limited

* Conductivity of ductile samples is higher per unit

change in fracture width

Recommendations:
 Working on improving geochemical and physical
characterization for modelling in our next work

« Further work to be done to clearly understand Al
and Mg ion concentration trends

the limits of

effectiveness of temporary clay stabilizers considering pH
values continued increasing for entire batch experiment

 Longer experiments to determine
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