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INTRODUCTION

• The Caney shale is a promising unconventional reservoir in South-Central Oklahoma Oil Province
(SCOOP)
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• It overlies the more brittle
Woodford Shale which has
been the target of drilling
over the years

• The Caney Shale has been
found to contain
substantial hydrocarbon
deposits

• Historically, the Caney
Shale has been considered
a seal or source rock due to
its high clay content

• Relatively less work has been done to fully characterize the geochemical and geomechanical 
responses of the formation to Hydraulic Fracturing Fluids (HFFs)



Investigate rock
responses to HFFs.
Key concerns are:

• Dissolution and
precipitation of
Minerals

• Clay swelling and
Migration of fines

• Impact of these on
reservoir
petrophysical
properties

4

OBJECTIVES
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Fluid Samples and Rock Samples

• Three Fluid Compositions: Deionized Water (Base, pH~7), 2% Potassium Chloride Solution
(pH~4), and 0.5% Choline Chloride Solution (pH~4)

• Three rock samples selected at different depths: High Quartz (HQ), Moderate Quartz,

Carbonate and Clay (MQ) and High Clay (HC)
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Sample HQ Sample MQ Sample HC

MATERIALS AND METHODLOGY



Which is the main driving force of geochemical reaction?

Fluid composition or Rock Composition?
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RESULTS

Impact of Fluid Composition on
elemental concentration in effluent

Impact of Rock Composition on Elemental
Concentration in effluent



• Ca elemental concentration distinguishable for each fluid type

• Ca from Calcite and Dolomite Dissolution

• Potassium Chloride>Choline Chloride>Deionized water

• HQ and MQ samples have higher concentrations than HC sample
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RESULTS
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RESULTS

• SO4 elemental concentration distinguishable for each fluid type

• SO4 from Dissolution of Pyrite

• Potassium Chloride>Choline Chloride>Deionized water

• HQ and MQ samples have higher concentrations than HC sample
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• Si elemental concentration for various fluids clearly distinguishable

• Si from Quartz and Clay minerals (Much from Clay Minerals)

• Potassium Chloride>Choline Chloride>Deionized Water

• Si ions most likely from the clay and feldspathic component of the rock

RESULTS
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Al and Mg are the only elements to show sharp drop in elemental concentrations with 
time: Precipitation? Possible substitution?

• Aluminum elements in solution are from dissolution and cation exchange in clay minerals

• Magnesium elemental concentration is mainly from dissolution of dolomite, but clay dissolution and cation 
exchange in clays also contribute 

RESULTS
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Three informal Divisions based on
XRF results:

• Upper Caney shows decreased Si
concentration through heavily
bioturbated intervals and Al and
Fe rich intervals (Clay and
Carbonate Rich Zone)

• For the middle Caney, Al and Si
concentrations remain consistent
whilst Ca is low (Quartz-rich shale
zone)

• In the lower Caney, sharp increase
in Ca is observed whilst Al and Si
constant (Carbonate zone
followed by High Quartz Shale)

RESULTS



CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

• Dissolution and precipitation of minerals during rock-
hydraulic fracturing fluid interaction are largely the
function of fluid composition

• Carbonates and Clays are more susceptible to
geochemical reactions whilst Quartz is relatively
unaffected by reactions

• Increasing clay composition of samples adversely
impact the dissolution of quartz and carbonate
minerals

• KCl and CCl stabilized clay minerals and promotes
dissolution of quartz and carbonates

• KCl effected greater stabilization of clay minerals thus
leaving initially leached elements in solution,
therefore higher concentrations

• Greater stabilizing effect of potassium chloride may be
explained by the greater ability of potassium cations
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to exchange for cations in clay interlayers and locking

of the interlayers from further interaction with

surrounding fluids

Recommendations:

• Working on improving geochemical and physical

characterization of the rocks and fluid samples for

modelling in our next work

• Further work will be conducted to explain trends of

Al and Mg elemental concentrations: Precipitation?

or substitution?

• Longer periods for experiments to determine the

time limits of KCl and CCl effectiveness in

preventing adverse clay-fluid reactions especially

considering pH values continued increasing

throughout the experiment
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