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SUMMARY

• Geochemical reactions between rocks and engineered fluids impact petrophysical properties of a formation

• The impacts of these reactions are particularly prominent in micro-fractures and nano-fractures (scale) as opposed to

geomechanical forces which act more on macro-fractures more

• Micro-fractures and nano-fractures form extensive networks that reach deep into the reservoir thus very important

• They serve as conduits for hydrocarbon transport to the main fractures and then to the well

• Therefore, any adverse rock-fluid interactions in these zones can greatly reduce permeability thus, productivity from a

reservoir

• This research focuses on rock-fluid interactions and their adverse outcomes as well as geomechanical stress impacts on

fracture face

• Our work focuses on Caney Shale play South Central Oklahoma Oil Province
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INTRODUCTION

• The Caney shale is a newly discovered unconventional reservoir in South Central Oklahoma
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• Though known to contain
substantial amounts of
hydrocarbon, it was designated
a seal and/or source rock due
to its high clay content

• Advancements in hydraulic
fracturing technologies has
however unveiled the potential
of the Caney Shale

• Recent drilling and
exploitation has revealed
adverse rock-fluid interactions
in the formation

• Geochemical characterization is essential to  understanding these interactions and to improving 
recovery efficiency



Investigate rock responses
to HFFs. Key concerns are:

• Migration of fines (Caney
shale has high illite
composition)

• Swelling clays and
detachment of clay layers

• Dissolution and
precipitation of minerals

• Impact of these in
occluding fractures and
cutting of the connection
between well and
reservoir 5

OBJECTIVES
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Materials Used:

Three fluid samples of varying compositions:

• 2% Potassium Chloride Solution (pH~4)

• 0.5% Choline Chloride Solution (pH~4)

• Deionized Water (Base, pH~7)

Three rock samples selected at different depths:

• High Quartz (HQ)

[74.4% Quartz, 9.6% Carbonate and 16% Clay]

• Moderate Quartz, Carbonate and Clay (MQ)

[63.1% Quartz, 17.1% Carbonate and 19.8% Clay]

• High Clay (HC)

[41.5% Quartz, 14.1% Carbonate and 44.4%

Clay] 7

MATERIALS AND METHODLOGY

Batch Experiment
• Designed to mimic shut-in period

• Undertaken at Temperature of 90oC and
atmospheric pressure

• Initial Liquid to powdered sample ratio of 20:1
(140mL:0.7g)

• Sampling done on days: 1, 4, 7, 14, 21 and 28
(10mL sample)

Conductivity Test

• Proppant (40/70) sandwiched between half
piece of core sample

• Changing Stresses applied, 4000-12000 and
back to 4000

• Width, Permeability and Conductivity measured



Identifying the key driving force that can cause varying outcomes for rock-fluid 
interactions
Question: Is it the fluid or it is the rock?

Answer: Obviously the fluid
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RESULTS

Impact of Fluid Composition on
elemental concentration in effluent

Impact of Rock Composition on Elemental
Concentration in effluent



Calcium ion:

• Ca ion concentration distinguishable for each fluid type

• Ca ions in solution believed to be from Calcite and Dolomite Dissolution

• Potassium Chloride>Choline Chloride>Deionized water (In terms of ion concentration in solution)

• HQ and MQ samples have higher concentrations than HC sample
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RESULTS
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RESULTS
Sulphate ion:

• SO4 ion concentration distinguishable for each fluid type

• SO4 ions in solution believed to be mainly contributed from the Dissolution of Pyrite

• Potassium Chloride>Choline Chloride>Deionized water (In terms of ion concentration in solution)

• HQ and MQ samples have higher concentrations than HC sample
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Silicon ion:

• Si ion concentration for various fluids clearly distinguishable

• Si ions in solution believed to be from quartz and clay minerals

• Potassium Chloride>Choline Chloride>Deionized Water (In terms of ion concentration in solution)

• Si ions most likely from the clay and feldspathic component of the rock
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RESULTS
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Al and Mg ions show sharp decline in concentrations: Two theories exists:
• Precipitation
• Substitution or Adsorption

• Aluminum elements in solution are from dissolution and cation exchange in clay minerals

• Magnesium elemental concentration is mainly from dissolution of dolomite, but clay dissolution and cation 
exchange in clays may also contribute 

RESULTS



RESULTS
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Stress Impact on Width, Permeability and Conductivity
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RESULTS

40/70 + Ductile 2-2, 3B & 6A

Stress (psi) 2000 4000 6000 8000 10000 12000 6000 4000

Conductivity (md-ft) 1376 952 428 150 62 25 31 32

40/70 + Reservoir 3-1, 2B & 7A

Stress (psi) 2000 4000 6000 8000 10000 12000 6000 4000

Conductivity (md-ft) 1263 878 481 208 76 37 40 41

40/70 + Reservoir 3-2, 2B & 7A

Stress (psi) 2000 4000 6000 8000 10000 12000 6000 4000

Conductivity (md-ft) 1466 948 435 173 70 32 36 39

40/70 + Ductile 2-1, 2B & 7A

Stress (psi) 2000 4000 6000 8000 10000 12000 6000 4000

Conductivity (md-ft) 1451 744 301 118 43 20 22 23
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Stress Effect on Conductivity
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disparities
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Three informal Divisions based on
XRF results:

• Upper Caney shows decreased Si
concentration through heavily
bioturbated intervals and Al and
Fe rich intervals (Clay and
Carbonate Rich Zone)

• For the middle Caney, Al and Si
concentrations remain consistent
whilst Ca is low (Quartz-rich shale
zone)

• In the lower Caney, sharp increase
in Ca is observed whilst Al and Si
constant (Carbonate zone
followed by High Quartz Shale)

RESULTS



CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

• Rock-fluid interaction during hydraulic fracturing is
largely the function of fluid composition

• Carbonates and Clays are more susceptible to
geochemical interactions whilst Quartz is relatively
stable

• Increasing clay composition in samples impact
dissolution of quartz and carbonate minerals thus less
fracture opening

• Potassium Chloride and Choline Chloride stabilized
clay minerals

• Mechanism of stabilization is continuous exchange of
ions between clays and fluid

• This will help prevent swelling and disintegration of
clays thus micro and nano-fractures remain open

• Sustainability of stabilization looks unlikely??
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• Substitution of ions may be responsible for low Al

and Mg ion concentration since these ions are both

exchangeable cations

• Stress has an impact on permeability and

conductivity, though limited

• Conductivity of ductile samples is higher per unit

change in fracture width

Recommendations:

• Working on improving geochemical and physical

characterization for modelling in our next work

• Further work to be done to clearly understand Al

and Mg ion concentration trends

• Longer experiments to determine the limits of

effectiveness of temporary clay stabilizers considering pH

values continued increasing for entire batch experiment
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