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Contributions from conventional and unconventional sources to total hydrocarbon production 
in USA

OVERVIEW – Conventional versus Unconventional

Source: US Energy Information Administration
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OVERVIEW - PROJECTIONS

Contribution of unconventional hydrocarbon sources to total production is projected to increase

Graphs below show contributions for various scenarios 

High Technology 
Development

Low Technology 
Development

High Petroleum 
Prices

Low Petroleum 
Prices

Source: US Energy Information Administration
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Contributions from various unconventional sources to total unconventional production in USA

Caney Shale is categorized 
under Mississippian Shales 
in Oklahoma Source: US Energy Information Administration

OVERVIEW – Caney Shale Contribution
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PROBLEM

• Recent statistics of unconventional shale 
reserves in the USA are estimated at 
approximately, 6 trillion barrels of oil 
and 495 trillion cubic feet of gas 
(Farrokhrouz et al., 2022) 

• Complex mineralogy and ultra-low 
permeability of shale reservoir makes 
development and production of these 
reservoirs challenging (Swami et al., 
2012)

• Current recovery from shale reservoirs is 
just about 10% of original hydrocarbons 
in place (Mukhina et al., 2021)

• Current research aims to understand 
these reservoirs to help create 
technologies that will enhance recovery 

Locations of unconventional hydrocarbon deposits in the United 
States of America (https://www.ireservoir.com/case_shale.html, 
accessed on May 12, 2023)

https://www.ireservoir.com/case_shale.html
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PROBLEM – Specific Area 

• The Caney Shale is located in the Ardmore Basin of South-Central Oklahoma Oil Province (SCOOP) 

• It overlies the better-known  
Woodford Shale which has been 
the main target of drilling in the 
area over the years

• The Caney Shale, though replete 
with hydrocarbons, is 
characterized by high clay 
content, complex mineralogy, 
and ultra-low permeability

• This makes hydraulic fracturing 
the most viable option in 
producing from this shale

• This study characterizes the long-term geochemical responses of the Caney Shale after hydraulic 
fracturing

Geological map of Oklahoma, showing SCOOP area (red ellipsoid) and 
well locations (red star) (after Johnson, 2008)
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OBJECTIVES

This work is designed to investigate the impact of 
geochemical rock-fluid reactions on permeability of 
Caney Shale

The following sub-objectives culminate in achieving 
this objective:

1. Evaluating the mineralogy of Caney Shale in South Central 

Oklahoma Province (SCOOP)

2. Understanding the microstructural configuration and spatial 

heterogeneity of the Caney Shale

3. To evaluate potential geochemical rock-fluid interactions in 

Caney Shale

4. To identify the mechanisms controlling geochemical rock-

fluid interaction in the Caney Shale and the factors that 

enhance or reduce these mechanisms

5. To assess the impact of rock-fluid interactions on evolution 

of petrophysical (permeability and porosity) and mechanical 

properties of Caney Shale
Fracture and near-fracture Rock-Fluid Interaction 
following hydraulic fracturing of reservoir 
formation
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MATERIALS AND METHODLOGY

Rock samples used for this experiment are recovered 
from two different wells as follows:

• Well 1: 
• Vertical well across entire Caney Shale
• Samples are recovered as cored-rock

• Well 2:
•  Horizontal well drilled within Reservoir 3
•  Samples are recovered as rock-cuttings at 

1000ft intervals

Rock samples are prepared and ground into powders 
with average particle size of 30µm

Field Fracturing Fluid and Field Produced Brines 
recovered from Caney Shale were the main reacting 
fluids. Deionized water was used as a standard for 
comparison

Relative positions of two wells and sample locations: 
Samples V1 to V5 are cored-rocks from five (5) zones of 
the formation. H1 to H3 are rock cuttings spaced 1000ft 
horizontally at approximately the same vertical depth 
(Schematic not drawn to scale)

V1

V2

V3

V4

V5

H1H2H3

Well 1 Well 2

Reservoir 1

Ductile 1

Reservoir 2

Reservoir 3

Ductile 2



1010/22/2024

MATERIALS AND METHODLOGY

Rock Powder

Fluids

Oven

X-ray Diffraction (XRD)

Scanning Electron 
Microscopy (SEM)

Inductively Coupled 
Plasma Mass 

Spectroscopy (ICPMS)

Energy Dispersive 
Spectroscopy (EDS)

Before After

Mineralogical 
Compositions

Chemical 
Compositions

Effluent Chemistry

Microstructure

Characterization of 
Alterations caused by 

Geochemical 
Reaction

SAMPLE PREPARATION AND STATIC 
BATCH REACTOR EXPERIMENT

LABORATORY TECHNIQUES AND 
DATA ACQUISITION

DATA ANALYSES, INTEGRATION AND 
INTERPRETATION

Vertical Well (Cored-Rock)
Horizontal Well (Rock-Cuttings)

Exp 1: Synthetic Fracturing Fluids
Exp 2: Field Fracturing Fluid
Exp 3: Field Produced Fluid
Standard: Deionized Water

Conditions: 95oC (203oF), 14.7psi
(200mL:1g) Avg ps =30µm

Exp 2 & 3: 7 and 30 days
(150mL:1g) Avg ps =30µm

Flow chart of materials and methodology used in preliminary experiments, data acquisition and interpretation
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RESULTS – Mineralogical Alterations of Caney Shale Powders 
in Field Fracturing Fluids (HF)-XRD analysis

• Pyrite breakdown occurs mostly 
within the first 7 days of reaction 

• The amount of quartz drops after 7 
days but remains relatively constant 
after that.

• Feldspar presence generally shows a 
downward trend after reaction at both 7 
and 30 days 

• The amount of illite is increasing 
continuously at 7 and 30 days.
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V – Vertical Well

(7) – 7days reaction

(30) – 30days reaction
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RESULTS – Mineralogical Alterations of Caney Shale Powders 
in Field Fracturing Fluids (HF)-XRD analysis

• Pyrite breakdown occurs mostly within 
the first 7 days of reaction 

• The amount of quartz drops after 7 days 
but remains relatively constant after 
that.

• Feldspar presence generally shows a 
downward trend after reaction at both 7 and 
30 days 

• The amount of illite is increasing 
continuously at 7 and 30 days.
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RESULTS – Big Picture
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Ternary diagram showing Comparison of unreacted samples to 7 

days and 30 days reacted samples – Hydraulic Fracturing Fluids

• The ternary diagram shows the changes in 
mineralogy that occurred due to geochemical 
rock fluid interactions

• Mineralogy of rocks are originally closer to 
quartz, feldspar field which represents the 
brittle component of the formation

• The breakdown of feldspar, pyrite and 
carbonates after 7days of reaction shifts the 
mineralogy towards phyllosilicates

• After 30days of reaction, the mineralogy 
shifts moderately towards quartz-feldspar 
field but not enough to regain the original 
rigid and brittle characteristics

• Shift towards phyllosilicates introduces a 
ductile character into the rocks
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• Ca concentrations relatively stable 
because, fracturing fluid used for 
experiment had a circumneutral pH

• Dissolution of pyrite causes 
transient acidity which initiates 
dissolution of carbonates

• Cation exchange in clay sites also 
causes Ca concentration in effluent

• High concentrations of Si 
observed on the graphs cannot be 
explained by quartz dissolution at 
the given conditions

• Dissolution of feldspar contributes 
to Si concentration in effluent

• Dissolution of biogenic silica could 
explain high Si concentrations

• Al is mainly from the dissolution 
of feldspars

• Al entering solution is 
precipitated at a fast rate – 
Clays and Al-based minerals

• Similar trends observed for Mg 
and Fe
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Experiment (ICPMS)



1510/22/2024

Modeling of experiment 
shows most elemental 
concentrations in 
effluent matching with 
ICP-MS results

Due to limitations in 
complete 
characterization of rock 
and fluids, some 
assumptions were made 
in the model

These assumptions and 
limitations of model are 
captured in the next 
slide
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RESULTS – Model of Experiment (TOUGHREACT Simulator with Thermodderm 
Thermodynamic Database) by LBNL
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RESULTS – Model of Experiment

The following uncertainties and limitations are worth noting about modeling of experiment:

Thermodynamic data/models
Modeled minerals of mixed composition (e.g. clays) may not have the same composition as in the 
rock formation
Fluid salinity may exceed the validity range of the implemented ion activity model (extended Debye-
Hückel)

Reconstruction of the Fracturing compositions
Anion concentrations computed from assumptions
Organic compounds besides acetate were neglected (unknown potential effects on experimental 
results)

Rock formation mineralogy
Trace or amorphous minerals (undetected by XRD) impact the system geochemistry – amounts and 
types were assumed

Sampling effects
Interactions with atmosphere (O2, CO2 impact pH and redox)
Mineral reaction rates (kinetic constants, surface area)
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RESULTS - Mineralogical Alterations in Vertical Well Samples

• Pyrite dissolution occurs within the first 
7 days of reaction 

• Quartz reduces in the first 7 days but 
increases between 7 to 30 days whilst 
carbonate is relatively stable

• Feldspar composition reduces and 
completely breakdown after 30 days 

• Illite composition shows an increasing 
trend over 7 days but remains relatively 
the same between 7 days and 30 days
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RESULTS - Mineralogical Alterations in Horizontal Well 
Samples

• Pyrite breakdown occurs within the first 7 
days of reaction 

• Composition of quartz drops after 7 days 
but increases between 7 to 30 days

• Feldspar reduces continuously and mostly 
dissolve or transform by 30 days 

• Illite composition shows an increasing 
trend after 7 days reaction and decreases 
between 7 and 30 days

H – Horizontal Well 
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RESULTS – Big Picture

Comparison of unreacted samples to 7 days and 30 days reacted 

samples – Produced Fluids

• The ternary diagram gives a big picture of 
impacts of mineralogical changes on rock 
properties

• Mineralogy of rocks are originally closer to 
quartz and pyrite, indicating brittleness

• Rock-fluid reaction shifts the samples to 
phyllosilicate zone, indicating ductility

• Ductility promotes fracture healing thus loss of 
permeability

• Main reactions that promote shift include:
• Breakdown of pyrite and microcrystalline 

quartz
• Breakdown of feldspar and carbonates
• Formation of illite
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RESULTS - Elemental Composition of Caney-Produced Fluids  
after Experiment (ICPMS)

• Due to approximate neutral pH, Ca 
concentrations relatively stable

• Dissolution of carbonates occur 
due to transient acidity caused by 
dissolution of pyrite

• Precipitation or cation exchange in 
clay sites may lead to Ca uptake 
from effluent causing decreased Ca 
concentrations

• The high Si concentrations cannot 
be explained only by the dissolution 
of quartz at the experiment 
conditions

• Dissolved biogenic (microcrystalline 
quartz) or amorphous silica could 
explain high silica concentrations

• Dissolution of feldspar contributes 
to Si concentration in effluent

• Al is mainly from the 
dissolution of feldspars

• Al concentrations are very low 
due to uptake from fluid – 
illite and other Al-based 
mineral precipitation

• Similar trends observed for 
Magnesium (Mg) and Iron 
(Fe)
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RESULTS – Model of Experiment (TOUGHREACT Simulator with 
Thermodderm Thermodynamic Database) by LBNL
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Modeling of experiment 
shows most elemental 
concentrations in 
effluent matching with 
ICP-MS results

Due to limitations in 
complete 
characterization of rock 
and fluids, some 
assumptions were made 
in the model

These assumptions and 
limitations of model are 
captured in the next 
slide
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RESULTS – Model of Experiment

The following uncertainties and limitations are worth noting about modeling of experiment:

Thermodynamic data/models
Modeled minerals of mixed composition (e.g. clays) may not have the same composition as in the 
rock formation
Fluid salinity may exceed the validity range of the implemented ion activity model (extended Debye-
Hückel)

Reconstruction of the Produced Fluid compositions
Anion concentrations computed from assumptions
Organic compounds besides acetate were neglected (unknown potential effects on experimental 
results)

Rock formation mineralogy
Trace or amorphous minerals (undetected by XRD) impact the system geochemistry – amounts and 
types were assumed

Sampling effects
Interactions with atmosphere (O2, CO2 impact pH and redox)
Mineral reaction rates (kinetic constants, surface area)
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DISCUSSION  

Illitization – Increased illite composition due to breakdown of feldspars which provides the 
necessary elements for illitization. This phenomenon has been observed in earlier studies such as 
Guven et al., (1982), where they observed that illitization is favored by high Al concentrations at 
circum-neutral pH. This is similar to conditions of our experiment

Iron Oxides – The breakdown of pyrite and other iron-bearing minerals release mostly, Fe(II) into 
solution which is subsequently oxidized to Fe(III) oxyhydroxides that block pores within the 
formation and lead to permeability losses. The breakdown of pyrite in  this study points to high 
probability of iron oxides formation 

Fines Migration – Clay fines migration are occasioned by the deflocculation and dispersal of clay 
minerals. These subsequently aggregate within flow paths to cause significant permeability losses. 
High amorphous compositions after reaction observed in this study points to possible clay 
deflocculation

The cumulative impact of reactions described above is the loss of permeability of formation 
during long-term post-hydraulic fracturing rock-fluid interactions. 
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CONCLUSIONS AND RECOMMENDATIONS

• Carbonates, pyrite, feldspars and clays are susceptible to rapid geochemical reactions

• Oxidation is a major mechanism in rock-fluid interactions, it leads to breakdown of pyrites

• Breakdown of pyrite and other sulfides after exposure to oxygenated fluid leads to generation of acids which cause transient 
pH reductions, thus catalyzing breakdown of other minerals such as carbonates

• Reactions with fluids lead to increased illite content in rock samples suggesting the shift from initially brittle rock to more 
ductile rock in the long term

• Deflocculation of clay minerals leads to the generation of fines which can coalesce later within the fracture to cause blockage 
of pore-throat (Between 7 to 30 days)

•  Further work is being done to investigate the cause of illitization observed from XRD measurements

Recommendations:

• Longer periods for experiments to help improve model accuracy

• Experiment with cored rock samples over longer periods for better replication of rock-fluid reactions in the subsurface

• Investigate potential illitization and mechanism that may be responsible
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PLANS AND WORK CURRENTLY IN PROGRESS
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WORKFLOW FOR THE REMAINING EXPERIMENTS
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Experiment 4 Experiment 5 • Experiments designed to complement the 
initial experiments already undertaken 

• Experiments include flow-through 
experiments and extended static batch 
reactor experiments with cored rock

• These experiments are designed to be 
conducted with core-rock samples 

• Flow-through experiments will be conducted 
under dynamic conditions (fluid-flow, 
temperature, pressure)

• Crucial measurements such as pH will be 
measured at in-situ temperature and 
pressure conditions

• These experiments will provide a closer 
replication of conditions in the subsurface
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METHODOLOGY 

Flow chart of overall project direction and protocols established to achieve objectives
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CT-Scan – Sample D2H
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CT-Scan – Sample D2V
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Samples (D2V1)

Combination of CT-Scan, XRF and RBH
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• Low Ca throughout
• Si, and Al constant on left 

side and middle
• Si drops significantly on 

the right side
• Ca, Si and Fe drops 

significantly in middle
• Fe drops in middle and 

right side 
• Generally, ductile and 

more so in right side
• Highest RBH in the 

middle

Selected Spot for Raman
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CT-Scan – Sample R3H
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CT-Scan – Sample R3V
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Samples (R3V1)

Combination of CT-Scan, XRF and RBH
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• Si, Al, and K increase on 

left side
• Si, Al, and K increase in 

middle portion
• Si, Al, and K increase on 

right side
• Fe constant throughout
• High carbonate at top and 

lower portions
• Generally, grade from 

brittle to ductile 
throughout sample

• High RBH in middle

Selected Spot for Raman
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Samples (D2V)

• High clay content in 
ductile samples

• Particles of quartz, 
carbonates and 
felspars are 
encapsulated within 
high amounts of 
clay matrix

• Pyrite occurs as 
individual pieces 
and pyrite 
framboids in other 
locations
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Samples (R3V1)

• Reservoir is 
characterized by 
large grains

• Relatively Lower 
clay control on 
properties as in 
ductile samples

• Particles of quartz, 
carbonates and 
felspars are 
surrounded by clays

• Grain-to-grain 
contacts more 
prevalent in 
reservoir 
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For further enquiries, suggestions and questions, please reach out to us on:

gabriel.awejori@okstate.edu

mileva.radonjic@okstate.edu
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