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OVERVIEW - Conventional versus Unconventional
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OVERVIEW - PROJECTIONS

Contribution of unconventional hydrocarbon sources to total production is projected to increase

Graphs below show contributions for various scenarios
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OVERVIEW - Caney Shale Contribution

Caney Shale is categorized
under Mississippian Shales
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in Okl ah oma Source: US Energy Information Administration
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PROBLEM

Recent statistics of unconventional shale
reserves in the USA are estimated at
approximately, 6 trillion barrels of oil
and 495 trillion cubic feet of gas
(Farrokhrouz et al., 2022)

Complex mineralogy and ultra-low
permeability of shale reservoir makes
development and production of these
reservoirs challenging (Swami et al.,
2012)

Current recovery from shale reservoirs is
just about 10% of original hydrocarbons
in place (Mukhina et al., 2021)

Current research aims to understand
these reservoirs to help create
technologies that will enhance recovery

10/22/2024
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PROBLEM - Specific Area

The Caney Shale is located in the Ardmore Basin of South-Central Oklahoma Oil Province (SCOOP)

It overlies the better-known
Woodford Shale which has been
the main target of drilling in the
area over the years

The Caney Shale, though replete
with hydrocarbons, is
characterized by high clay
content, complex mineralogy,
and ultra-low permeability

This makes hydraulic fracturing
the most viable option in
producing from this shale
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This study characterizes the long-term geochemical responses of the Caney Shale after hydraulic

fracturing
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OBJECTIVES

This work is designed to investigate the impact of
geochemical rock-fluid reactions on permeability of
Caney Shale

The following sub-objectives culminate in achieving
this objective:

1. Evaluating the mineralogy of Caney Shale in South Central
Oklahoma Province (SCOOP)

2. Understanding the microstructural configuration and spatial
heterogeneity of the Caney Shale

3. To evaluate potential geochemical rock-fluid interactions in
Caney Shale

4. To identify the mechanisms controlling geochemical rock-
fluid interaction in the Caney Shale and the factors that
enhance or reduce these mechanisms

5. To assess the impact of rock-fluid interactions on evolution
of petrophysical (permeability and porosity) and mechanical

Fracture
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Fracture and near-fracture Rock-Fluid Interaction
following hydraulic fracturing of reservoir
formation 8



MATERIALS AND METHODLOGY

Rock samples used for this experiment are recovered
from two different wells as follows:

 Well 1:
« Vertical well across entire Caney Shale
« Samples are recovered as cored-rock

 Well 2:
« Horizontal well drilled within Reservoir 3
« Samples are recovered as rock-cuttings at
1000ft intervals

Rock samples are prepared and ground into powders
with average particle size of 3oum

Field Fracturing Fluid and Field Produced Brines

r red from Can hal re the main reactin :

ﬂec.(zive ed. O. fa ey Shale we g € de g P S Samples V1 to V5 are cored-rocks from five (5) zones of
uids. Delonized water was used as a standard for the formation. H1 to H3 are rock cuttings spaced 1000ft

comparison horizontally at approximately the same vertical depth
10/22/2024 (Schematic not drawn to scale) 9

Relative positions of two wells and sample locations:



MATERIALS AND METHODLOGY

SAMPLE PREPARATION AND STATIC LABORATORY TECHNIQUES AND DATA ANALYSES, INTEGRATION AND
BATCH REACTOR EXPERIMENT DATA ACQUISITION INTERPRETATION
Rock Powder Before ™= After Microstructure
Vertical Well (Cored-Rock) +
Horizontal Well (Rock-Cuttings) . Chemical
Scanning Electron s
+ . Compositions
) Microscopy (SEM) +
L Mineralogical
Exp 1: Synthetic Fracturing Fluids ) Energy Dispersive 05
Exp 2: Field Fracturing Fluid Spectroscopy (EDS) CompOf.lthllS
Exp 3: Field Produced Fluid
Standard: Deionized Water Effluent Chemistry
X-ray Diffraction (XRD) 3

Inductively Coupled Characterization of
Conditions: 95°C (203°F), 14.7psi Plasma Mass Alterations caused by
(200mL:1g) Avg ps =30pum
Exp 2 & 3: 7 and 30 days Spectroscopy (ICPMS) Geochemical

150ml:1g) A =30 .
(150mL:1g) Avg ps =30um Reaction

Flow chart of materials and methodology used in preliminary experiments, data acquisition and interpretation



RESULTS — Mineralogical Alterations of Caney Shale Powders
in Field Fracturing Fluids (HF)-XRD analysis

Comparison of Mineralogy at Odays, 7days and 30days (Well V)
100

80 {|

20 +

V2r  V2r(7) V2  V2(30) V3 V3(7)  V3r V3r(30)
Sample

10/22/2024

Pyrite breakdown occurs mostly
within the first 7 days of reaction

The amount of quartz drops after 7
days but remains relatively constant
after that.

Feldspar presence generally shows a
downward trend after reaction at both 7
and 30 days

The amount of illite is increasing
continuously at 7 and 30 days.

- | Il I'tE V - Vertical Well

(7) - 7days reaction
(30) - 30days reaction
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RESULTS — Mineralogical Alterations of Caney Shale Powders
in Field Fracturing Fluids (HF)-XRD analysis

Comparison of Mineralogy at Odays, 7days and 30days (Well H)

100 A

20 -

80 +f

Pyrite breakdown occurs mostly within
the first 7 days of reaction

The amount of quartz drops after 7 days
but remains relatively constant after
that.

Feldspar presence generally shows a
downward trend after reaction at both 7 and
30 days

The amount of illite 1is increasing
continuously at 7 and 30 days.

> Q
T F
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Sample

H - Horizontal Well

m P‘_Ip‘f'lTE (7) - 7days reaction

- Dolomite (30) - 30days reaction
E== Calcite

w .;:___ Quartz
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RESULTS — Big Picture

Phyllosilicates

(Ductile)
0 100

Unreacted
® Reacted 7-days
* Reacted 30-days

75

25

0

Quartz+Feldspar
(Rigid and Birittle)

10/22/2024

7
100

Carbonates
(Rigid and Brittle)

Ternary diagram showing Comparison of unreacted samples to 7
days and 30 days reacted samples — Hydraulic Fracturing Fluids

The ternary diagram shows the changes in
mineralogy that occurred due to geochemical
rock fluid interactions

Mineralogy of rocks are originally closer to
quartz, feldspar field which represents the
brittle component of the formation

The breakdown of feldspar, pyrite and
carbonates after 7days of reaction shifts the
mineralogy towards phyllosilicates

After 3o0days of reaction, the mineralogy
shifts moderately towards quartz-feldspar
field but not enough to regain the original
rigid and brittle characteristics

Shift towards phyllosilicates introduces a
ductile character into the rocks

13



RESULTS - Elemental Composition of Caney-HF Fluid after
Experiment (ICPMS)

Concentration (ppm)

Ca Concentration

8o
60
40
20
o 3 : :
Va2 V3 Hi1 H2 H3
Sample
z0o days =7days =30 days

Ca concentrations relatively stable
because, fracturing fluid used for

experiment had a circumneutral pH

Dissolution of pyrite causes
transient acidity which initiates
dissolution of carbonates

Cation exchange in clay sites also

causes Ca concentration in effluent
10/22/2024

Concentration (ppm)

Si Concentration
70
60
50
40
30
20
10

H3

Sample

# 0 days ®7days =30 days

High concentrations of Si
observed on the graphs cannot be
explained by quartz dissolution at
the given conditions

Dissolution of feldspar contributes
to Si concentration in effluent
Dissolution of biogenic silica could
explain high Si concentrations

Concentration (ppm)

Al Concentration

0.50
0.40
0-30 % o 3 9
§ - \% :
0.20 § 2 § :
' N N
0.10 .% . % ;
0.00 i N % =
V2 V3 Hi H2 H3
Sample

# 0 days #7days =30 days

« Alis mainly from the dissolution
of feldspars

« Al entering solution is
precipitated at a fast rate —
Clays and Al-based minerals

» Similar trends observed for Mg
and Fe
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Concentration (molal)

Concentration (molal)

RESULTS — Model of Experiment (TOUGHREACT Simulator with Thermodderm
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N ™
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Modeling of experiment
shows most elemental
concentrations in
effluent matching with
ICP-MS results

Due to limitations in
complete
characterization of rock
and fluids, some
assumptions were made
in the model

These assumptions and
limitations of model are

captured in the next
slide
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RESULTS — Model of Experiment

The following uncertainties and limitations are worth noting about modeling of experiment:

Thermodynamic data/models
Modeled minerals of mixed composition (e.g. clays) may not have the same composition as in the
rock formation

Fluid salinity may exceed the validity range of the implemented ion activity model (extended Debye-
Hiuckel)

Reconstruction of the Fracturing compositions
Anion concentrations computed from assumptions
Organic compounds besides acetate were neglected (unknown potential effects on experimental
results)

Rock formation mineralogy
Trace or amorphous minerals (undetected by XRD) impact the system geochemistry — amounts and
types were assumed

Sampling effects
Interactions with atmosphere (02, CO2 impact pH and redox)
Mineral reaction rates (kinetic constants, surface area)



RESULTS - Mineralogical Alterations in Vertical Well Samples

Comparlson of Mlneralogy at Odays, 7days and 30days (WeII V)

100  Pyrite dissolution occurs within the first

7 days of reaction

80 4|

* Quartz reduces in the first 7 days but
increases between 7 to 30 days whilst
carbonate is relatively stable

* Feldspar composition reduces and
completely breakdown after 30 days

 Illite composition shows an increasing
trend over 7 days but remains relatively
the same between 7 days and 30 days

20 -

Halite (%) V — Vertical Well
E== Andradite (%) erheat e
. ' | ! =1 Ankerite (%)
S R S D AN A T N A N N A R g ==
SO L O L OSSO L DS EEa
,_-_.;.-} Albite (% .
ST et Pt WY et mmpiee | (3030 daysreaction

-Dnlmmte (%)
Sample E==5 Calcite (%)

| Quartz (%)

(7) — 7 days reaction




RESULTS - Mineralogical Alterations in Horizontal Well

Samples

- Comparison of Mineralogy at Odays, 7days and 30days (Well H)
100 H[=

80

20

10/22/2024

Pyrite breakdown occurs within the first 7
days of reaction

Composition of quartz drops after 7 days
but increases between 7 to 30 days

Feldspar reduces continuously and mostly
dissolve or transform by 30 days

Illite composition shows an increasing
trend after 7 days reaction and decreases
between 7 and 30 days

g 1alile (%) H — Horizontal Well
E== Andradite (%)

= Ankerite (%)
== |llite (%)
~. i}i Albite (%) _ o
b Py rite (%) (30) — 30 days reaction

Dolomite (%
-

(7) — 7 days reaction

Calmte{%}

- | Quartz (%)
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RESULTS - Big Picture

Phyllosilicates « The ternary diagram gives a big picture of

(Ductile) impacts of mineralogical changes on rock
100

properties
Unreacted . L
® Reacted 7-days * Mineralogy of rocks are originally closer to
* Reacted 30-days quartz and pyrite, indicating brittleness
o * Rock-fluid reaction shifts the samples to
phyllosilicate zone, indicating ductility
\25 * Ductility promotes fracture healing thus loss of
/ permeability
/
[ cm \O « Main reactions that promote shift include:
75 100 . . .
Quartz+Feldspar Carbonates « Breakdown of pyrite and microcrystalline
(Rigid and Brittle) (Rigid and Brittle) quartz

« Breakdown of feldspar and carbonates
Comparison of unreacted samples to 7 days and 30 days reacted e Formation of illite
samples — Produced Fluids

10/22/2024 19



RESULTS - Elemental Composition of Caney-Produced Fluids
after Experiment (ICPMS)

Ca Concentration : :

500 7o Si Concentration Al Concentration
— ~
§_4oo ‘g 60 g_

B g 50 Ehe

E 300 g 40 5 012

L - :

N )

£ 200 = 30 £ 0.08

o ?, 20 o

% - g 1o % 0.04
=)

o S o © 0.00

0 Vi v2  v3 va v H1 H2 H3
Vi V2 Vv3 VvV 5 HL H2 H3

Sample Sample

m (0 days m7 days ®m30 days m (0 days m7 days ®m30 days

Sample
m (0 days m7 days ®30 days

» Due to approximate neutral pH, Ca * The high Si concentrations cannot , ,;

concentrations relatively stable be explained only by the dissolution
of quartz at the experiment
conditions » Al concentrations are very low
due to uptake from fluid —
illite and other Al-based

mineral precipitation

is mainly from the
dissolution of feldspars

e Dissolution of carbonates occur

due to transient acidity caused by
dissolution of pyrite  Dissolved biogenic (microcrystalline

Precinitats : b : quartz) or amorphous silica could
recipitation or cation exchange in explain high silica concentrations

clay sites may lead to Ca uptake « Similar trends observed for
from effluent causing decreased Ca e« Dissolution of feldspar contributes Magnesium (Mg) and Iron

concehtrations to Si concentration in effluent (Fe)



Concentration (molal)

Concentration (molal)

RESULTS — Model of Experiment (TOUGHREACT Simulator with
Thermodderm Thermodynamic Database) by LBNL
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Modeling of experiment
shows most elemental
concentrations in
effluent matching with
ICP-MS results

Due to limitations in
complete
characterization of rock
and fluids, some
assumptions were made
in the model

These assumptions and
limitations of model are
captured in the next

slide
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RESULTS — Model of Experiment

The following uncertainties and limitations are worth noting about modeling of experiment:

Thermodynamic data/models
Modeled minerals of mixed composition (e.g. clays) may not have the same composition as in the
rock formation

Fluid salinity may exceed the validity range of the implemented ion activity model (extended Debye-
Hiuckel)

Reconstruction of the Produced Fluid compositions
Anion concentrations computed from assumptions
Organic compounds besides acetate were neglected (unknown potential effects on experimental
results)

Rock formation mineralogy
Trace or amorphous minerals (undetected by XRD) impact the system geochemistry — amounts and
types were assumed

Sampling effects
Interactions with atmosphere (02, CO2 impact pH and redox)
Mineral reaction rates (kinetic constants, surface area)



DISCUSSION

Illitization — Increased illite composition due to breakdown of feldspars which provides the
necessary elements for illitization. This phenomenon has been observed in earlier studies such as
Guven et al., (1982), where they observed that illitization is favored by high Al concentrations at
circum-neutral pH. This is similar to conditions of our experiment

Iron Oxides — The breakdown of pyrite and other iron-bearing minerals release mostly, Fe(II) into
solution which is subsequently oxidized to Fe(III) oxyhydroxides that block pores within the
formation and lead to permeability losses. The breakdown of pyrite in this study points to high
probability of iron oxides formation

Fines Migration — Clay fines migration are occasioned by the deflocculation and dispersal of clay
minerals. These subsequently aggregate within flow paths to cause significant permeability losses.
High amorphous compositions after reaction observed in this study points to possible clay
deflocculation

The cumulative impact of reactions described above is the loss of permeability of formation
during long-term post-hydraulic fracturing rock-fluid interactions.



CONCLUSIONS AND RECOMMENDATIONS

» Carbonates, pyrite, feldspars and clays are susceptible to rapid geochemical reactions
* Oxidation is a major mechanism in rock-fluid interactions, it leads to breakdown of pyrites

» Breakdown of pyrite and other sulfides after exposure to oxygenated fluid leads to generation of acids which cause transient
pH reductions, thus catalyzing breakdown of other minerals such as carbonates

» Reactions with fluids lead to increased illite content in rock samples suggesting the shift from initially brittle rock to more
ductile rock in the long term

» Deflocculation of clay minerals leads to the generation of fines which can coalesce later within the fracture to cause blockage
of pore-throat (Between 7 to 30 days)

» Further work is being done to investigate the cause of illitization observed from XRD measurements
Recommendations:

» Longer periods for experiments to help improve model accuracy

« Experiment with cored rock samples over longer periods for better replication of rock-fluid reactions in the subsurface

» Investigate potential illitization and mechanism that may be responsible



PLANS AND WORK CURRENTLY IN PROGRESS
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Accumulator

WORKFLOW FOR THE REMAINING EXPERIMENTS

Experiment 4

Split Core Plugs

Experiment 5

Solid Core Plugs
CT Scanning

Indentation Test

Rebound
Hardness

Raman
Spectroscopy

Re-assemble
Cored-Rock

3-months 6-months

Fluid

Piston Forward-Flow
3-days with HF

Reverse-Flow Regulator
21-days with PE |

CT Scanning

Indentation Test

Raman Rebound
Spectroscopy Hardness

Back

10/22/2024

v

s

Experiments designed to complement the
initial experiments already undertaken

Experiments include flow-through
experiments and extended static batch
reactor experiments with cored rock

These experiments are designed to be
conducted with core-rock samples

Flow-through experiments will be conducted
under dynamic conditions (fluid-flow,
temperature, pressure)

Crucial measurements such as pH will be
measured at in-situ temperature and
pressure conditions

These experiments will provide a closer

replication of conditions in the subsurface
26



METHODOLOGY

Rock Powders and . Co.red Rocks
Cored Rocks (Artificially Fractured)
Rebound Rebound

Hardness

Hardness Mo de]jng Mode]ing

Electron, X-ray
Microscopies

Electron, X-ray

Microscopies
X-ray " I X-ray
Diffraction Diffraction
Energy | Static BatCh IROCk-Fl}l ld « COI'e FlOOding | Energy
Dispersive | Experiment nteractions Experiment Dispersive
Spectroscopy f Spectroscopy
Raman Raman
Spectroscopy Spectroscopy
Handheld X-ray Handheld X-ray
Fluorescence Fluorescence
Inductively CT Scan and X-ray CT Scan and X-ray Coilmi::i:tli";:ls};na
Coupled Plasma Fluorescence Fluorescence p Macs
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CT-Scan — Sample D2H
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CT-Scan — Sample D2V
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Samples (D2V1)

Combination of CT-Scan, XRF and RBH
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Low Ca throughout

Si, and Al constant on left
side and middle

Si drops significantly on
the right side

Ca, Si and Fe drops
significantly in middle

Fe drops in middle and
right side

Generally, ductile and
more so in right side
Highest RBH in the
middle
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CT-Scan — Sample R3H
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CT-Scan — Sample R3V
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Samples (R3V1)

Combination of CT-Scan, XRF and RBH
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« Si, Al, and K increase in
middle portion

 Si, Al, and K increase on
right side

* Fe constant throughout

« High carbonate at top and
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lower portions
* Generally, grade from
brittle to ductile

throughout sample
« High RBH in middle
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Samples (D2V)

High clay content in
ductile samples

Particles of quartz,
carbonates and
felspars are
encapsulated within
high amounts of
clay matrix

Pyrite occurs as
individual pieces
and pyrite
framboids in other
locations




Samples (R3V1)

« Reservoiris
characterized by
large grains

Relatively Lower
clay control on
properties as in
ductile samples

Particles of quartz,
carbonates and
felspars are
surrounded by clays

Grain-to-grain
contacts more
prevalent in
reservoir
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THANK YOU

For further enquiries, suggestions and questions, please reach out to us on:

gabriel.awejori@okstate.edu

mileva.radonjic@okstate.edu
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