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Figure 1: Caney core on display at workshop in OKC, February 2020.
This was recovered from over 650ft interval of drilled well
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INTRODUCTION

 The Caney shale is a promising unconventional reservoir located in South-Central Oklahoma Oil
Province (SCOOP)
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» Relatively less work has been done to fully characterize the geochemical responses of the formation
to HFFs for this area



OBJECTIVES

Investigate Rock-HFF interactions relative to:

+ Dissolution and precipitation of minerals

+ Clay swelling and Migration of fines

 Petrophysical Impact of Rock-Fluid Interactions
Fracture and near-fracture clay-fluid reactions after hydraulic fracturing
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* Water-blocking effect sets in » Multi-phase flow * Embedment of Proppants

* Gas flow into fracture * Water-phase trapping of gas * Proppant blockage to gas
restricted flow flow 3




MATERIALS AND METHODS

Experimental and Simulation Design
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MATERIALS AND METHODS

Mineralogical Compositions of Rock Samples
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Fluids Used:

Deionized  Water (Base,
pH~7)

2%  Potassium  Chloride
Solution (pH~4)

0.5% Choline Chloride
Solution (pH~4)

Rock Samples Designation:

HQ — High Quartz

MQ — Medium Quartz,
Carbonate and Clay

HC - High Clay



MATERIALS AND METHODS

Static Batch Experiments
« Static batch  experiments at

temperature of 95°C and
atmospheric pressure

 Designed to mimic shut-in period

e Initial fluid to rock powder ratio of
200mL/g (140mL: 0.7g)

« Sampling undertaken on days 1, 3,
7,14 and 28 (~10ml each sampling)

« Sampling period approximately 10
minutes

Modelling

« Simple geochemical model of the
batch reactor experiment was
constructed and modelled using
TOUGHREACT, a numerical

simulation program

« Assumptions in model included:

* No fluid flow or chemical transport

 Constant temperature and chemical
reactions occur with kinetic rates

» Fluid/Rock Powder ratios changed over
time due to sampling
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MATERIALS AND METHODS

X-Ray Diffraction (XRD)
« Mineralogical compositions of samples
Scanning Electron Microscopy (SEM)

« Dissolution and precipitation patterns

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

« Elemental analysis of effluent

Computed Tomography

 Voxel resolution for scans was 0.43 x 0.43 mm in the XY plane and 0.5 mm along the core axis
« 3D volumes are re-sliced along the XZ axis and used as image log

X-ray Fluorescence

« To measure relative elemental abundances along core z-axis

« Mining-Plus suite was run at 6 cm resolution for 60 seconds of exposure time per beam through
the entire 650 feet of core



RESULTS

In general, fluid composition is the main driving force for dissolution and precipitation
kinetics in rock-fluid interaction for the Caney shale

Ca-Rich Minerals Dissolution by Rock Type and HFF
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RESULTS

Si-Rich Minerals Dissolution by Rock Type and

HFF
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Higher Si concentration in effluent

HC and MQ samples having higher Si
concentration than HQ

An indication Si in solution is not
from dissolution of quartz

Si may be from clay sites or from less
stable SiO polymorphs

KCl produces more Si in solution
relative to other fluids for all the rock

types

Ability of KClI to stabilize clay
prevents further elemental exchange
between fluid clay sites thus released
Si remains in solution
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RESULTS

Al-Rich Minerals Dissolution by
Rock Type and HFF « Al and Mg are the only elements to show

sharp drop in elemental concentrations with

0.5 - .
time

> rroe o

* The amount of Al released in solution is very

low compared to Si or Ca

>pooe »

* The main dynamic causing very low Al

00> &>

>r >

concentration in sample is still under

o

N

|
oree » »

o P >

* investigation

0.0 == | . _— | - * Aluminium decrease could be caused by ion
0 5 10 15 20 25 30 . . . .
Days exchange at clay sites of precipitation of Al-

based minerals
KCI ccl DI Red -HQ Blue - MQ Black - HC



10.00
9.00
8.00

T 7.00
6.00
5.00

4.00

RESULTS — Initial Modelling versus Experimental Results
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RESULTS — Subsequent modelling versus Experimental Results
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In this experiment, all
assumptions  were  regarded
including the period of sampling
Assumption was that during
sampling, extra atmospheric
oxygen is introduced into the
sample

When sampling is considered,
almost all values of modelling are
in consonance with experimental
information except Sodium

Variations in modelled and
experimental  information is
almost insignificant

Sodium exchange at clay sites
during experiments far exceeds
what model data provides thus the
variation 13



RESULTS

CasMg s Three informal Divisions based on
XRF Lithofacies  TOC (% w) s 5 %3 >4 _ XRF results:
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« Upper Caney shows decreased Si
concentration through heavily

bioturbated intervals and Al and
" Fe rich intervals (Clay and
ay cutoff .
22%, Carbonate Rich Zone)

Clay “rich”

QC Ratio

* For the middle Caney, Al and Si
concentrations remain consistent
whilst Ca is low (Quartz-rich shale
zone)

Clay “lean”

« In the lower Caney, sharp increase
in Ca is observed whilst Al and Si

constant (Carbonate zone
followed by High Quartz Shale)
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

Carbonates and Clays are more susceptible to
geochemical reactions whilst Quartz is relatively
unaffected by reactions

High Si concentration in effluent are from Si
adsorbed on clay surfaces and from less stable
silica polymorphs

Increasing clay composition of samples
adversely impact the dissolution of quartz and
carbonate minerals

KCl and CCl stabilized clay minerals and
promotes dissolution of quartz and carbonates

KClI effected greater stabilization of clay minerals
thus leaving initially leached elements in
solution, therefore higher concentrations

Greater stabilizing effect of potassium chloride may be
explained by the greater ability of potassium cations to
exchange for cations in clay interlayers and locking of
the further with
surrounding fluids

interlayers from interaction

Recommendations:

 Working on improving geochemical and physical
characterization of the rocks and fluid samples for
modelling in our next work

» Longer periods for experiments to determine the
time limits of KCl and CCI effectiveness in preventing
adverse clay-fluid reactions especially considering
pH values continued increasing throughout the
experiment
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