Computed Tomography Scanning and Geophysical Measurements of the Southeastern Pennsylvania Triassic Diabase Core
Schmitt, R., Paronish, T.J., Crandall, D., Moore, J.E., Nebaum, J., & Andrews, G. (2021). Computed Tomography Scanning and Geophysical Measurements of the Southeastern Pennsylvania Triassic Diabase Core (DOE.NETL-2021.2843). Morgantown, WV: National Energy Technology Laboratory, U.S. Department of Energy. https://doi.org/10.2172/1828864
Distilling data to drive carbon storage insights
Morkner, P., Bauer, J., Creason, C.G., Sabbatino, M., Wingo, P., Greenburg, R., Walker, S., Yeates, D., & Rose, K. (2021). Distilling data to drive carbon storage insights. Computers & Geosciences, 158, 104945. https://doi.org/10.1016/j.cageo.2021.104945
Alteration of fractured foamed cement exposed to CO2-saturated water: Implications for well integrity
Min, Y., Montross, S., Spaulding, R., Brandi, M., Huerta, N., Thomas, R., & Kutchko, B. (2021). Alteration of fractured foamed cement exposed to CO2-saturated water: Implications for well integrity. Environmental Science & Technology, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699
Reactivity of CO2 with Utica, Marcellus, Barnett, and Eagle Ford Shales and impact on permeability
Goodman, A., Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Haljasmaa, I., Spaulding, R., Crandall, D.C., Moore, J., & Burrows, L.C. (2021). Reactivity of CO2 with Utica, Marcellus, Barnett, and Eagle Ford Shales and impact on permeability. Energy & Fuels, 35(19), 15894–15917. https://doi.org/10.1021/acs.energyfuels.1c01995
Computed Tomography Scanning and Geophysical Measurements of the Wabash No.1 Core
Paronish, T.J., Schmitt, R., Crandall, D., Moore, J.E., Carman, C. H., Freiburg, J. T., Whittaker, S., & Korose, C. (2021). Computed Tomography Scanning and Geophysical Measurements of the Wabash No.1 Core (DOE.NETL-2021.2656). Morgantown, WV: National Energy Technology Laboratory, U.S. Department of Energy. https://doi.org/10.2172/1819826
Metal-organic framework thin films as versatile chemical sensing materials
Ellis, J.E., Crawford, S.E., & Kim, K.-J. (2021). Metal-organic framework thin films as versatile chemical sensing materials. Materials Advances, 2021(2), 6169-6196. http://dx.doi.org/10.1039/D1MA00535A
Synthesis of high-quality MG-mof-74 thin films via vapor-assisted crystallization
Kim, K.-J., Culp, J. T., Ohodnicki, P. R., Thallapally, P. K., & Tao, J. (2021). Synthesis of high-quality MG-mof-74 thin films via vapor-assisted crystallization. ACS Applied Materials & Interfaces, 13(29), 35223–35231. https://doi.org/10.1021/acsami.1c12000
Comparative analysis of carbon capture and storage finance gaps and the social cost of carbon
Harker Steele, A., Warner, T., Vikara, D., Guinan, A., & Balash, P. (2021). Comparative analysis of carbon capture and storage finance gaps and the social cost of carbon. Energies, 14(11) 2987. https://doi.org/10.3390/en14112987
Tracking Natural CO2 Migration Through a Sandstone Aquifer using Sr, U and C Isotopes: Chimayó, New Mexico
Gardiner, J., Capo, R.C., Newell, D.L., Stewart, B.W., Phan, T.T., Keating, E.H., Guthrie, G.D., & Hakala, J. A. (2021). Tracking natural CO2 migration through a sandstone aquifer using Sr, U and C isotopes: Chimayó, New Mexico. International Journal of Greenhouse Gas Control, 104. https://doi.org/10.1016/j.ijggc.2020.103209
Centimeter-Scale Pillared-Layer Metal-Organic Framework Thin Films Mediated by Hydroxy-Double Salt Intermediates for CO2 Sensor Applications
Jim, K.-J., Ellis, J. E., Howard, B. H., & Ohodnicki, P. R. (2020). Centimeter-Scale Pillared-Layer Metal–Organic Framework Thin Films Mediated by Hydroxy Double Salt Intermediates for CO₂ Sensor Applications. ACS Applied Materials & Interfaces, 13(1), 2062-2071. https://doi.org/10.1021/acsami.0c19621
A Knowledge-Data Framework and Geospatial Fuzzy Logic-Based Approach to Model and Predict Structural Complexity
Justman, D., Creason, C. G., Rose, K., & Bauer, J. (2020). A Knowledge-Data Framework and Geospatial Fuzzy Logic-Based Approach to Model and Predict Structural Complexity. Journal of Structural Geology, 141. https://doi.org/10.1016/j.jsg.2020.104153
Utilization of Produced Water Baseline as a Groundwater Monitoring Tool at a CO2-EOR Site in the Permian Basin, Texas, USA
Gardiner, J., Thomas, R. B., Phan, T.T., Stuckman, M., Wang, J., Small, M., Lopano, C., & Hakala, J. A. (2020). Utilization of produced water baseline as a groundwater monitoring tool at a CO₂-EOR site in the Permian Basin, Texas, USA. Applied Geochemisty, Volume 121 (C). https://doi.org/10.1016/j.apgeochem.2020.104688
User’s Manual for StrmtbFlow, the Stream Tube Multiphase Flow Part of the FE/NETL CO2 Prophet Model, Version 2
Morgan, D., Remson, D., & McGuire, T. (2020). User’s Manual for StrmtbFlow, the Stream Tube Multiphase Flow Part of the FE/NETL CO₂ Prophet Model, Version 2. Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1572937
CO₂ induced changes in Mount Simon sandstone: Understanding links to post CO₂ injection monitoring, seismicity, and reservoir integrity
Harbert, W., Goodman, A.L., Spaulding, R., Haljasmaa, I., Crandall, D.M., Sanguinito, S., Kutchko, B., Tkach, M., Fuchs, S.J., Werth, C. J., Tsotsis, T., Dalton, L., Jessen, K., Shi, Z., & Frailey, S. (2020). CO₂ induced changes in Mount Simon sandstone: Understanding links to post CO₂ injection monitoring, seismicity, and reservoir integrity. International Journal of Greenhouse Gas Control, 100. https://doi.org/10.1016/j.ijggc.2020.103109
Conceptual and Mathematical Foundation for the FE/NETL CO2 Prophet Model for Simulating CO2 Enhanced Oil Recovery, Version 2
Morgan, D., Remson, D. & McGuire, T. (2020). Conceptual and Mathematical Foundation for the FE/NETL CO2 Prophet Model for Simulating CO2 Enhanced Oil Recovery, Version 2. U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1572936.
An Image-Based Equation for Estimating the CO2 Storage Resource Capacity of Organic-Rich Shale Formations
Azenkeng, A., Mibeck, B.A.F., Kurz, B.A., Gorecki, C.D., Myshakin, E.M., Goodman, A.L., Azzolina, N.A., Eylands, K.E., & Butler, S.K. (2020). An Image-Based Equation for Estimating the CO2 Storage Resource Capacity of Organic-Rich Shale Formations. International Journal of Greenhouse Gas Control, 98. https://doi.org/10.1016/j.ijggc.2020.103038
Contact Angle Measurements Using Sessile Drop and Micro-CT Data from Six Sandstones
Dalton, L. E., Tapriyal, D., Crandall, D.M., Goodman, A.L., Shi, F., & Haeri, F. (2020). Contact Angle Measurements Using Sessile Drop and Micro-CT Data from Six Sandstones. Transport in Porous Media, 133, 71-83. https://doi.org/10.1007/s11242-020-01415-y
U.S. DOE NETL Methodology for Estimating the Prospective CO2 Storage Resource of Residual Oil Zones at the National Scale
Sanguinito, S., Singh, H., Myshakin, E., Goodman, A. L., Dilmore, R., Grant, T., Morgan, D., & Bromhal, G. (2020). U.S. DOE NETL Methodology for Estimating the Prospective CO2 Storage Resource of Residual Oil Zones at the National Scale. International Journal of Greenhouse Gas Control, 96. https://doi.org/10.1016/j.ijggc.2020.103006
An 860 MHz Wireless Surface Acoustic Wave Sensor with a Metal-Organic Framework Sensing Layer for CO2 and CH4
Devkota, J., Greve, D. W., Hong, T., Kim, K.-J., & Ohodnicki, P. R. (2020). An 860 MHz Wireless Surface Acoustic Wave Sensor With a Metal-Organic Framework Sensing Layer for CO₂ and CH₄. IEEE Sensors, 20(17), 9740-9747. https://doi.org/10.1109/JSEN.2020.2990997
Quantifying Pore Scale and Matrix Interactions of SCCO2 with the Marcellus Shale
Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Culp, J. T., & Goodman, A.L. (2020). Quantifying pore scale and matrix interactions of SCCO₂ with Marcellus shale. Fuel, 266. https://doi.org/10.1016/j.fuel.2019.116928
CO2-Brine Contact Angle Measurement on Navajo, Nugget, Bentheimer, Bandera Brown, Berea, and Mt. Simon Sandstones
Haeri, F., Tapriyal, D., Sanguinito, S., Shi, F., Fuchs, S. J., Dalton, L. E., Baltrus, J., Howard, B., Crandall, D. M., Matranga, C., & Goodman, A.L. (2020). CO₂–Brine Contact Angle Measurements on Navajo, Nugget, Bentheimer, Bandera Brown, Berea, and Mt. Simon Sandstones. Energy Fuels, 34(5), 6085-6100. https://doi.org/10.1021/acs.energyfuels.0c00436
Shale Pore Alteration: Potential Implications for Hydrocarbon Extraction and CO2 Storage
Goodman, A.L., Sanguinito, S., Kutchko, B., Natesakhawat, S., Cvetic, P., & Allen, A. J. (2020). Shale pore alteration: Potential implications for hydrocarbon extraction and CO₂ storage. Fuel, 265. https://doi.org/10.1016/j.fuel.2019.116930
Computed Tomography Scanning and Geophysical Measurements of the T.R. McMillen #2 Core
Schmitt, R., Paronish, T., Crandall, D.M., Moore, J., Freiburg, J.T., & Whittaker, S. (2020). Computed Tomography Scanning and Geophysical Measurements of the T.R. McMillen #2 Core (NETL-TRS-4-2020). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1605344
Nanostructured copper sulfide thin film via a spatial successive ionic layer adsorption and reaction process showing significant surface-enhanced infrared absorption of CO₂
Zhang, Y., Chong, X., Sun, H., Kedir, M. M., Kim, K-J., Ohodnicki, P. R., Wang, A. X., & Chang, C. (2020) Nanostructured copper sulfide thin film via a spatial successive ionic layer adsorption and reaction process showing significant surface-enhanced infrared absorption of CO₂. Journal of Materials Chemistry C, 8(9), 3069-3078. https://doi.org/10.1039/C9TC06423K
Reactive Alteration of a Mt. Simon Sandstone due to CO2-Rich Brine Displacement
Dávila, G., Dalton, L., Crandall, D. M., Garing, C., Werth, C. J., & Druham, J. L. (2020). Reactive alteration of a Mt. Simon Sandstone due to CO₂ -rich brine displacement. Geochemica et Cosmochimica Acta, 271, 227-247. https://doi.org/10.1016/j.gca.2019.12.015
Computed Tomography Scanning and Geophysical Measurements of the Southeastern Pennsylvania Triassic Diabase Core
Schmitt, R., Paronish, T.J., Crandall, D., Moore, J.E., Nebaum, J., & Andrews, G. (2021). Computed Tomography Scanning and Geophysical Measurements of the Southeastern Pennsylvania Triassic Diabase Core (DOE.NETL-2021.2843). Morgantown, WV: National Energy Technology Laboratory, U.S. Department of Energy. https://doi.org/10.2172/1828864
Distilling data to drive carbon storage insights
Morkner, P., Bauer, J., Creason, C.G., Sabbatino, M., Wingo, P., Greenburg, R., Walker, S., Yeates, D., & Rose, K. (2021). Distilling data to drive carbon storage insights. Computers & Geosciences, 158, 104945. https://doi.org/10.1016/j.cageo.2021.104945
Alteration of fractured foamed cement exposed to CO2-saturated water: Implications for well integrity
Min, Y., Montross, S., Spaulding, R., Brandi, M., Huerta, N., Thomas, R., & Kutchko, B. (2021). Alteration of fractured foamed cement exposed to CO2-saturated water: Implications for well integrity. Environmental Science & Technology, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699
Reactivity of CO2 with Utica, Marcellus, Barnett, and Eagle Ford Shales and impact on permeability
Goodman, A., Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Haljasmaa, I., Spaulding, R., Crandall, D.C., Moore, J., & Burrows, L.C. (2021). Reactivity of CO2 with Utica, Marcellus, Barnett, and Eagle Ford Shales and impact on permeability. Energy & Fuels, 35(19), 15894–15917. https://doi.org/10.1021/acs.energyfuels.1c01995
Computed Tomography Scanning and Geophysical Measurements of the Wabash No.1 Core
Paronish, T.J., Schmitt, R., Crandall, D., Moore, J.E., Carman, C. H., Freiburg, J. T., Whittaker, S., & Korose, C. (2021). Computed Tomography Scanning and Geophysical Measurements of the Wabash No.1 Core (DOE.NETL-2021.2656). Morgantown, WV: National Energy Technology Laboratory, U.S. Department of Energy. https://doi.org/10.2172/1819826
Metal-organic framework thin films as versatile chemical sensing materials
Ellis, J.E., Crawford, S.E., & Kim, K.-J. (2021). Metal-organic framework thin films as versatile chemical sensing materials. Materials Advances, 2021(2), 6169-6196. http://dx.doi.org/10.1039/D1MA00535A
Synthesis of high-quality MG-mof-74 thin films via vapor-assisted crystallization
Kim, K.-J., Culp, J. T., Ohodnicki, P. R., Thallapally, P. K., & Tao, J. (2021). Synthesis of high-quality MG-mof-74 thin films via vapor-assisted crystallization. ACS Applied Materials & Interfaces, 13(29), 35223–35231. https://doi.org/10.1021/acsami.1c12000
Comparative analysis of carbon capture and storage finance gaps and the social cost of carbon
Harker Steele, A., Warner, T., Vikara, D., Guinan, A., & Balash, P. (2021). Comparative analysis of carbon capture and storage finance gaps and the social cost of carbon. Energies, 14(11) 2987. https://doi.org/10.3390/en14112987
Tracking Natural CO2 Migration Through a Sandstone Aquifer using Sr, U and C Isotopes: Chimayó, New Mexico
Gardiner, J., Capo, R.C., Newell, D.L., Stewart, B.W., Phan, T.T., Keating, E.H., Guthrie, G.D., & Hakala, J. A. (2021). Tracking natural CO2 migration through a sandstone aquifer using Sr, U and C isotopes: Chimayó, New Mexico. International Journal of Greenhouse Gas Control, 104. https://doi.org/10.1016/j.ijggc.2020.103209
Centimeter-Scale Pillared-Layer Metal-Organic Framework Thin Films Mediated by Hydroxy-Double Salt Intermediates for CO2 Sensor Applications
Jim, K.-J., Ellis, J. E., Howard, B. H., & Ohodnicki, P. R. (2020). Centimeter-Scale Pillared-Layer Metal–Organic Framework Thin Films Mediated by Hydroxy Double Salt Intermediates for CO₂ Sensor Applications. ACS Applied Materials & Interfaces, 13(1), 2062-2071. https://doi.org/10.1021/acsami.0c19621
A Knowledge-Data Framework and Geospatial Fuzzy Logic-Based Approach to Model and Predict Structural Complexity
Justman, D., Creason, C. G., Rose, K., & Bauer, J. (2020). A Knowledge-Data Framework and Geospatial Fuzzy Logic-Based Approach to Model and Predict Structural Complexity. Journal of Structural Geology, 141. https://doi.org/10.1016/j.jsg.2020.104153
Utilization of Produced Water Baseline as a Groundwater Monitoring Tool at a CO2-EOR Site in the Permian Basin, Texas, USA
Gardiner, J., Thomas, R. B., Phan, T.T., Stuckman, M., Wang, J., Small, M., Lopano, C., & Hakala, J. A. (2020). Utilization of produced water baseline as a groundwater monitoring tool at a CO₂-EOR site in the Permian Basin, Texas, USA. Applied Geochemisty, Volume 121 (C). https://doi.org/10.1016/j.apgeochem.2020.104688
User’s Manual for StrmtbFlow, the Stream Tube Multiphase Flow Part of the FE/NETL CO2 Prophet Model, Version 2
Morgan, D., Remson, D., & McGuire, T. (2020). User’s Manual for StrmtbFlow, the Stream Tube Multiphase Flow Part of the FE/NETL CO₂ Prophet Model, Version 2. Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1572937
CO₂ induced changes in Mount Simon sandstone: Understanding links to post CO₂ injection monitoring, seismicity, and reservoir integrity
Harbert, W., Goodman, A.L., Spaulding, R., Haljasmaa, I., Crandall, D.M., Sanguinito, S., Kutchko, B., Tkach, M., Fuchs, S.J., Werth, C. J., Tsotsis, T., Dalton, L., Jessen, K., Shi, Z., & Frailey, S. (2020). CO₂ induced changes in Mount Simon sandstone: Understanding links to post CO₂ injection monitoring, seismicity, and reservoir integrity. International Journal of Greenhouse Gas Control, 100. https://doi.org/10.1016/j.ijggc.2020.103109
Conceptual and Mathematical Foundation for the FE/NETL CO2 Prophet Model for Simulating CO2 Enhanced Oil Recovery, Version 2
Morgan, D., Remson, D. & McGuire, T. (2020). Conceptual and Mathematical Foundation for the FE/NETL CO2 Prophet Model for Simulating CO2 Enhanced Oil Recovery, Version 2. U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1572936.
An Image-Based Equation for Estimating the CO2 Storage Resource Capacity of Organic-Rich Shale Formations
Azenkeng, A., Mibeck, B.A.F., Kurz, B.A., Gorecki, C.D., Myshakin, E.M., Goodman, A.L., Azzolina, N.A., Eylands, K.E., & Butler, S.K. (2020). An Image-Based Equation for Estimating the CO2 Storage Resource Capacity of Organic-Rich Shale Formations. International Journal of Greenhouse Gas Control, 98. https://doi.org/10.1016/j.ijggc.2020.103038
Contact Angle Measurements Using Sessile Drop and Micro-CT Data from Six Sandstones
Dalton, L. E., Tapriyal, D., Crandall, D.M., Goodman, A.L., Shi, F., & Haeri, F. (2020). Contact Angle Measurements Using Sessile Drop and Micro-CT Data from Six Sandstones. Transport in Porous Media, 133, 71-83. https://doi.org/10.1007/s11242-020-01415-y
U.S. DOE NETL Methodology for Estimating the Prospective CO2 Storage Resource of Residual Oil Zones at the National Scale
Sanguinito, S., Singh, H., Myshakin, E., Goodman, A. L., Dilmore, R., Grant, T., Morgan, D., & Bromhal, G. (2020). U.S. DOE NETL Methodology for Estimating the Prospective CO2 Storage Resource of Residual Oil Zones at the National Scale. International Journal of Greenhouse Gas Control, 96. https://doi.org/10.1016/j.ijggc.2020.103006
An 860 MHz Wireless Surface Acoustic Wave Sensor with a Metal-Organic Framework Sensing Layer for CO2 and CH4
Devkota, J., Greve, D. W., Hong, T., Kim, K.-J., & Ohodnicki, P. R. (2020). An 860 MHz Wireless Surface Acoustic Wave Sensor With a Metal-Organic Framework Sensing Layer for CO₂ and CH₄. IEEE Sensors, 20(17), 9740-9747. https://doi.org/10.1109/JSEN.2020.2990997
Quantifying Pore Scale and Matrix Interactions of SCCO2 with the Marcellus Shale
Kutchko, B., Sanguinito, S., Natesakhawat, S., Cvetic, P., Culp, J. T., & Goodman, A.L. (2020). Quantifying pore scale and matrix interactions of SCCO₂ with Marcellus shale. Fuel, 266. https://doi.org/10.1016/j.fuel.2019.116928
CO2-Brine Contact Angle Measurement on Navajo, Nugget, Bentheimer, Bandera Brown, Berea, and Mt. Simon Sandstones
Haeri, F., Tapriyal, D., Sanguinito, S., Shi, F., Fuchs, S. J., Dalton, L. E., Baltrus, J., Howard, B., Crandall, D. M., Matranga, C., & Goodman, A.L. (2020). CO₂–Brine Contact Angle Measurements on Navajo, Nugget, Bentheimer, Bandera Brown, Berea, and Mt. Simon Sandstones. Energy Fuels, 34(5), 6085-6100. https://doi.org/10.1021/acs.energyfuels.0c00436
Shale Pore Alteration: Potential Implications for Hydrocarbon Extraction and CO2 Storage
Goodman, A.L., Sanguinito, S., Kutchko, B., Natesakhawat, S., Cvetic, P., & Allen, A. J. (2020). Shale pore alteration: Potential implications for hydrocarbon extraction and CO₂ storage. Fuel, 265. https://doi.org/10.1016/j.fuel.2019.116930
Computed Tomography Scanning and Geophysical Measurements of the T.R. McMillen #2 Core
Schmitt, R., Paronish, T., Crandall, D.M., Moore, J., Freiburg, J.T., & Whittaker, S. (2020). Computed Tomography Scanning and Geophysical Measurements of the T.R. McMillen #2 Core (NETL-TRS-4-2020). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1605344
Nanostructured copper sulfide thin film via a spatial successive ionic layer adsorption and reaction process showing significant surface-enhanced infrared absorption of CO₂
Zhang, Y., Chong, X., Sun, H., Kedir, M. M., Kim, K-J., Ohodnicki, P. R., Wang, A. X., & Chang, C. (2020) Nanostructured copper sulfide thin film via a spatial successive ionic layer adsorption and reaction process showing significant surface-enhanced infrared absorption of CO₂. Journal of Materials Chemistry C, 8(9), 3069-3078. https://doi.org/10.1039/C9TC06423K
Reactive Alteration of a Mt. Simon Sandstone due to CO2-Rich Brine Displacement
Dávila, G., Dalton, L., Crandall, D. M., Garing, C., Werth, C. J., & Druham, J. L. (2020). Reactive alteration of a Mt. Simon Sandstone due to CO₂ -rich brine displacement. Geochemica et Cosmochimica Acta, 271, 227-247. https://doi.org/10.1016/j.gca.2019.12.015
Exploring Beneath the Basemap. GIS for Science
Bauer, J., Justman, D., Mark-Moser, M., Romeo, L., Creason, C.G., and Rose, K., “Exploring Beneath the Basemap: GIS for Science,” October 2020, https://www.gisforscience.com/chapter5/v2.
NETL CO2 Storage Prospective Resource Estimation Excel aNalysis (CO2-SCREEN) User’s Manual
Sanguinito, S., Goodman, A. L., & Haeri, F. (2020). NETL CO2 Storage Prospective Resource Estimation Excel aNalysis (CO2-SCREEN) User’s Manual (NETL-TRS-X-2016). Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1617640
Computed Tomography Scanning and Geophysical Measurements of the FutureGen FGA-1 Core
Mackey, P., Brown, S., Paronish, T., Crandall, D.M., & Moore, J. (2019). Computed Tomography Scanning and Geophysical Measurements of the FutureGen FGA-1 Core (NETL-TRS-6-2019). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1543132
Cumulative Spatial Impact Layers
Romero, L., Wingo, P., Nelson, J. Bauer, J. & Rose, K. (2019). Cumulative Spatial Impact Layers. [Data set]. U.S. Department of Energy, National Energy Technology Laboratory.
On the Interactions Between the Critical Dimensionless Numbers Associated with Multiphase Flow in 3D Porous Media
Fan, M., Dalton, L., McClure, J., Nipepi, N., Westman, E., Crandall, D.M., and Cheng, C., “On the Interactions Between the Critical Dimensionless Numbers Associated with Multiphase Flow in 3D Porous Media,” Fuel, Vol. 252 (2019), pp. 522–533, https://doi.org/10.1016/j.fuel.2019.04.098.
Comprehensive study of the interactions between the critical dimensionless numbers associated with multiphase flow in 3D porous media
Fan, M., Dalton, L. E., McClure, J., Ripepi, N., Westman, E., Crandall, D.M., & Chen, C. (2019). Comprehensive study of the interactions between the critical dimensionless numbers associated with multiphase flow in 3D porous media. Fuel, 252, 522-533. https://doi.org/10.1016/j.fuel.2019.04.098
Alkylamine-Integrated Metal-Organic Framework-Based Waveguide Sensors for Efficient Detection of Carbon Dioxide from Humid Gas Streams
Kim, K.-J., Culp, J. T., Ohodnicki, P. R., Cvetic, P. C., Sanguinito, S., Goodman, A. L., & Kwon, H. T. (2019). Alkylamine-Integrated Metal–Organic Framework-Based Waveguide Sensors for Efficient Detection of Carbon Dioxide from Humid Gas Streams. ACS Applied Materials & Interfaces, 11(36), 33489-33496. https://doi.org/10.1021/acsami.9b12052
Quality Guidelines for Energy System Studies: Carbon Transport and Storage Costs in NETL Studies
Grant, T. (2019). Quality Guidelines for Energy System Studies. (DOE/NETL-2019/2044). Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1567183
Computed Tomography Scanning and Geophysical Measurements of Core from the State Charlton #4-30 Well
Vornlocher, J., Betters, C., Paronish, T., Crandall, D.M., Moore, J., Schmitt, R., & Harrison, W. B. (2019). Computed Tomography Scanning and Geophysical Measurements of Core from the State Charlton #4-30 Well (NETL-TRS-7-2019). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1575053
Flow Regimes and Storage Efficiency of CO2 Injected into Depleted Shale Reservoir
Myshakin, E. M., Singh, H., Sanguinito, S., Bromhal, G., & Goodman, A. L. (2019). Flow regimes and storage efficiency of CO₂ injected into depleted shale reservoirs. Fuel, 246, 169-177. https://doi.org/10.1016/j.fuel.2019.02.095
A Review of Geo-Chemical-Mechanical Impacts in Geological Carbon Storage Reservoirs
Akono, A.-T., Druhan, J. L., Davila, G., Tsotsis, T., Jessen, K., Fuchs, S.J., Crandall, D.M., Zhuofan, S., Dalton, L., Tkach, M.K., Goodman, A.L., Frailey, S., & Werth, C. J. (2019). A review of geochemical–mechanical impacts in geological carbon storage reservoirs. Greenhouse Gases: Science and Technology, 9(3), 474-504. https://doi.org/10.1002/ghg.1870
Expansion of the Petroleum Refinery Life Cycle Inventory Model to Support Characterization of a Full Suite of Commonly Tracked Impact Potentials
Young, B., Hottle, T., Hawkins, T., Jamieson, M., Cooney, G., Motazedi, K., & Bergerson, J. (2019). Expansion of the Petroleum Refinery Life Cycle Inventory Model (PRELIM) to Support Characterization of a Full Suite of Commonly Tracked Impact Potentials. Environmental Science and Technology, 53(4), 2238-2248. https://doi.org/10.1021/acs.est.8b05572
Foamed Cement: Correlation of Foam Quality with Mechanical and Physical Properties
Haljasmaa, I., Kutchko, B., Spaulding, R., Crandall, D.M., Moore, J., Gill, M., Benge, G., Hawthorne, S. B., Dockter, B. A., Beddoe, C., Sorensen, J., Fazio, J., & Gieger, C. (2019). Foamed Cement: Correlation of Foam Quality with Mechanical and Physical Properties (NETL-TRS-4-2019). Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1506981
Investigating the Role of Water on CO2-Utica Shale Interactions for Carbon Storage and Shale Gas Extraction Activities – Evidence for pore scale alterations
Goodman, A.L., Sanguinito, S., Tkach, M., Natesakhawat, S., Kutchko, B., Fazio, J., & Cvetic, P. (2019). Investigating the role of water on CO₂ -Utica Shale interactions for carbon storage and shale gas extraction activities – Evidence for pore scale alterations. Fuel, 242, 744-755. https://doi.org/10.1016/j.fuel.2019.01.091
CO2 Leakage During EOR Operations – Analog Studies to Geologic Storage of CO2
Vikara, D., Wendt, A., Marquis, M., Grant, T., Rassipour, R., Eppink, J., Heidrick, T. L., Alvarado, R., Kyle, A., Shih, C.Y., & Lin, S. (2019). CO₂ Leakage During EOR Operations – Analog Studies to Geologic Storage of CO₂. (DOE/NETL-2017/1865). U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1557141
Spatio-Temporal Analysis to Constrain Uncertainty in Wellbore Datasets: An Adaptable Analytical Approach in Support of Science-Based Decision Making
Glosser, D., Rose, K., & Bauer, J. (2019). Spatio-Temporal Analysis to Constrain Uncertainty in Wellbore Datasets: An Adaptable Analytical Approach in Support of Science-Based Decision Making. Journal of Sustainable Energy Engineering. 3(4), 299–317. https://doi.org/10.7569/JSEE.2016.62950
A Graph Theoretic Approach for Spatial Analysis of Induced Fracture Networks
Glosser, D., & Bauer, J. (2019). A Graph Theoretic Approach for Spatial Analysis of Induced Fracture Networks. Journal of Sustainable Energy Engineering. 4(3-4), 232–249. https://doi.org/10.7569/jsee.2016.629510
Development of a Subsurface LIBS Sensor for In Situ Groundwater Quality Monitoring with Applications in CO2 Leak Sensing in Carbon Sequestration
Hartzler, D. A., Jain, J. C., & McIntyre, D. L. (2019). Development of a subsurface LIBS sensor for in situ groundwater quality monitoring with applications in CO₂ leak sensing in carbon sequestration. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-41025-3
Underground Natural Gas Storage – Analog Studies to Geologic Storage of CO₂
Vikara, D., Zymroz, T., Withum, J. A., Shih, C. Y., Lin, S., Hoffman, H., Guinan, A., & Carr, T. (2019). Underground Natural Gas Storage – Analog Studies to Geologic Storage of CO₂. Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1492342
UIC Class I Injection Wells – Analog Studies to Geologic Storage of CO2
“UIC Class I Injection Wells – Analog Studies to Geologic Storage of CO2,” study posted to the NETL website, April 5, 2019. OSTI.GOV
Gouge Formation during Fracture Shearing and Impact to Flow
Gill, M., Moore, J., and Crandall, D.M., “Gouge Formation during Fracture Shearing and Impact to Flow,” American Rock Mechanics Association (ARMA) Letters.
Computed Tomography X-Ray Scanning Reveals the Transition from Planar to Sigmoidal En Énchelon Morphology in a Single Vein
Andrew, G.D.M., Brown, S.R., Moore, J., Crandall, D.M., and Mackey, P., “Computed Tomography X-Ray Scanning Reveals the Transition from Planar to Sigmoidal En Énchelon Morphology in a Single Vein,” Geosphere.
Correlating scCO2 Contact Angles to Sandstone Pore Networks using Shape Analysis, Transport in Porous Media
Dalton, L.E., Tapriyal, D., Crandall, D.M., Goodman, A., Shi, F., and Haeri, F., “Correlating scCO2 Contact Angles to Sandstone Pore Networks using Shape Analysis, Transport in Porous Media,” submitted.
Data-Driven Spatially Informed Offshore Carbon Storage Efficiency and Storage Resource Methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J., and Rose, K., “Data-Driven Spatially Informed Offshore Carbon Storage Efficiency and Storage Resource Methodology,” in preparation, International Journal of Greenhouse Gas Control.
Quantification of dissolved metals in high-pressure CO₂-water solutions by underwater laser-induced breakdown spectroscopy
Goueguel, C. L., Bhatt, C. R., Jain, J. C., Lopano, C.L., & McIntyre, D. L. (2018). Quantification of dissolved metals in high-pressure CO₂-water solutions by underwater laser-induced breakdown spectroscopy. Optics & Laser Technology, 108, 53–58. https://doi.org/10.1016/j.optlastec.2018.06.048
Methods to measure contact angles in scCO₂-brine-sandstone systems
Dalton, L. E., Klise, K. A., Fuchs, S. Crandall, D.M., & Goodman, A.L. (2018). Methods to measure contact angles in scCO₂-brine-sandstone systems. Advances in Water Resources, 122, 278–290. https://doi.org/10.1016/j.advwatres.2018.10.020
Numerical estimations for the prospective CO₂ storage resource of shales
Myshakin, E. M., Singh, H., Sanguinito, S., Bromhal, G., & Goodman, A. L. (2018). Numerical estimations for the prospective CO₂ storage resource of shales. International Journal of Greenhouse Gas Control. 76, 24–31. https://doi.org/10.1016/j.ijggc.2018.06.010
History, Sampling, Porosity and Permeability Testing of Salem Limestone, Oriskany Sandstone and Marcellus Shale (NETL-TRS-15-2018)
Borglum, S. J., Lindner, E. N., Soeder, D, J., Schrader, R., & Olsberg, S. B. (2018). History, Sampling, Porosity and Permeability Testing of Salem Limestone, Oriskany Sandstone and Marcellus Shale (NETL-TRS-15-2018). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1465140.
Estimating Carbon Storage Resources in Offshore Geologic Environments (NETL-TRS-14-2018)
Cameron, E., Thomas, R., Bauer, J., Bean, A., DiGiulio, J., Disenhof, C., Galer, S., Jones, K., Mark-Moser, M,; Miller, R., Romeo, L., & Rose, K. (2018). Estimating Carbon Storage Resources in Offshore Geologic Environments (NETL-TRS-14-2018). Albany, OR: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1464460.
Quantifying dry supercritical CO₂-induced changes of the Utica Shale
Sanguinito, S. Goodman, A.L., Tkach, M., Kutchko, B., Culp, J., Natesakhawat, S., Fazio, J., Fukai, I., & Crandall, D.M. (2018). Quantifying dry supercritical CO₂-induced changes of the Utica Shale. FUEL. 226(C). United States. https://doi.org/10.1016/j.fuel.2018.03.156
CO₂-SCREEN tool: Application to the oriskany sandstone to estimate prospective CO₂ storage resource
Sanguinito, S., Goodman, A. L., & Sams, J. I. III. (2018). CO₂-SCREEN tool: Application to the oriskany sandstone to estimate prospective CO₂ storage resource. International Journal of Greenhouse Gas Control. 75, 180-188. https://doi.org/10.1016/j.ijggc.2018.05.022
Nucleation and growth of oriented metal-organic framework thin films on thermal SiO₂ surface
Kim, K. J., Zhang, Y., Kreider, P. B., Chong, X., Wang, A. X., Ohodnicki, P. R., Baltrus, J. P., & Chang, C. H. (2018). Nucleation and growth of oriented metal-organic framework thin films on thermal SiO₂ surface. Thin Solid Films. 659, 24-35. https://doi.org/10.1016/j.tsf.2018.05.026
Insights into microbial community structure and function from a shallow, simulated CO2‐leakage aquifer demonstrate microbial selection and adaptation
Environmental Microbiology Reports, Volume 11, Issue 3, Special Issue on Ecophysiology of Aquatic Microbes June 2019, Pages 338-351, Djuna Gulliver, Daniel Lipus, Daniel Ross, Kyle Bibby. DOI: 10.1111/1758-2229.12675
Insights into microbial community structure and function from a shallow, simulated CO₂‐leakage aquifer demonstrate microbial selection and adaptation
Gulliver, D., Lipus, D., Ross, D., & Bibby, K. (2018). Insights into microbial community structure and function from a shallow, simulated CO₂‐leakage aquifer demonstrate microbial selection and adaptation. Environmental Microbiology Reports. 11(3), 338–351. https://doi.org/10.1111/1758-2229.12675
Computational Modeling of Hydraulic Properties of a Sheared Single Rock Fracture
Mofakham, A. A., Ahmadi, G., Stadelman, M. A., Shanley, K., & Crandall, D.M. (2018). Computational Modeling of Hydraulic Properties of a Sheared Single Rock Fracture. Transport in Porous Media. 124, 1–30. https://doi.org/10.1007/s11242-018-1030-5
Comparative analysis of transport and storage options from a CO₂ source perspective
Grant, T., Guinan, A., Shih, C.Y., Lin, S., Vikara, D., Morgan, D, & Remson, D. (2018). Comparative analysis of transport and storage options from a CO₂ source perspective. International Journal of Greenhouse Gas Control. 72, 175–191. https://doi.org/10.1016/j.ijggc.2018.03.012
Risk Reduction of CO₂ Storage with Stochastic Simulations (NETL-TRS-1-2018)
Madsen, L. J., Ossiander, M. E., Peszynska, M., Bromhal, G., & Harbert, W. (2018). Risk Reduction of CO₂ Storage with Stochastic Simulations (NETL-TRS-1-2018). Albany, OR: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432942
Experimental and Numerical Modeling Approach to Elucidating Damage Mechanisms in Cement-Well Casing-Host Rock Settings for Underground Storage of CO₂ (NETL-TRS-4-2018)
Ideker, J. H., Isgor, O. B., Li, C., Jafari, V., Verba, C., & Rodriguez, D. E. (2018). Experimental and Numerical Modeling Approach to Elucidating Damage Mechanisms in Cement-Well Casing-Host Rock Settings for Underground Storage of CO₂ (NETL-TRS-4-2018). Albany, OR: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432200
Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu–BTC) Metal–Organic Framework Thin Films on a Conductive Metal Oxide
Crawford, S. E., Kim, K.-J., Yu, Y., & Ohodnicki, P.R. (2018). Rapid, Selective, Ambient Growth and Optimization of Copper Benzene-1,3,5-Tricarboxylate (Cu–BTC) Metal–Organic Framework Thin Films on a Conductive Metal Oxide. Crystal Growth & Design. 18 (5), 2924–2931. https://doi.org/10.1021/acs.cgd.8b00016
A Multisensor Plume Monitoring Schema for Carbon Sequestration Sites in Subsurface Engineered-Natural Systems (NETL-TRS-2-2018)
Vincent, P., Bowles-Martinez, E., & Schultz, A. (2018). A Multisensor Plume Monitoring Schema for Carbon Sequestration Sites in Subsurface Engineered-Natural Systems (NETL-TRS-2-2018). Albany, OR: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432941
Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform
Kim, K. J., Lu, P., Culp, J. T., & Ohodnicki, P. R. (2018). Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform. ACS Sensors. 3(2). https://doi.org/10.1021/acssensors.7b00808
The Effect of Anisotropy on Multi-dimensional Pressure-Pulse-Decay Experiments
Hannon, M.J, Jr., & Finsterle, S. (2018). The Effect of Anisotropy on Multi-dimensional Pressure-Pulse-Decay Experiments. Transport Porous Media. 123, 545-562. https://doi.org/10.1007/s11242-017-0941-x
U.S. DOE’s Economic Approaches and Resources for Evaluating the Cost of Implementing Carbon Capture, Utilization, and Storage (CCUS)
Vikara, D., Shih, C. Y., Lin, S., Guinan, A., Grant, T., Morgan, D., & Remson, D. (2017). U.S. DOE’s Economic Approaches and Resources for Evaluating the Cost of Implementing Carbon Capture, Utilization, and Storage (CCUS). Journal of Sustainable Energy Engineering. 5(4), 307–340. https://www.degruyter.com/document/doi/10.7569/jsee.2017.629523/html
CT scanning and flow measurements of shale fractures after multiple shearing events
Crandall, D.M., Moore, J., Gill, M., & Stadelman, M. (2017). CT scanning and flow measurements of shale fractures after multiple shearing events. International Journal of Rock Mechanics and Mining Sciences. 100, 177-187. https://doi.org/10.1016/j.ijrmms.2017.10.016
Feasibility of Biogeochemical Sealing of Wellbore Cements: Lab and Simulation Tests (NETL-TRS-12-2017)
Torres, M. E., Alleau, Y., Colwell, F., Koley, D., Peszynska. M., Thurber, A., & Verba, C. (2017). Feasibility of Biogeochemical Sealing of Wellbore Cements: Lab and Simulation Tests (NETL-TRS-12-2017). Albany, OR: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432943
Review of the Effects of CO₂ on Very-Fine-Grained Sedimentary Rock/Shale – Part III: Shale Response to CO₂ (NETL-TRS-11-2017)
Lindner, E. (2017). Review of the Effects of CO₂ on Very-Fine-Grained Sedimentary Rock/Shale – Part III: Shale Response to CO₂ (NETL-TRS-11-2017). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432945
Permeability and Mineral Composition Evolution of Primary Seal and Reservoir Rocks in Geologic Carbon Storage Conditions
Soong, Y., Howard, B. H., Crandall, D.M., Mclendon, R., Zhang, L., Lin, R., Dalton, L. E., Zhang, W., Shia, F., & Haljasmaa, I. (2017). Permeability and Mineral Composition Evolution of Primary Seal and Reservoir Rocks in Geologic Carbon Storage Conditions. Environmental Engineering Science. 35(5), 391–400. https://doi.org/10.1089/ees.2017.0197
Calibrated dilatometer exercise to probe thermoplastic properties of coal in pressurized CO₂
Romanov, V. N., Lynn, R. J., & Warzinski, R. P. (2017). Calibrated dilatometer exercise to probe thermoplastic properties of coal in pressurized CO₂. International Journal of Coal Science & Technology. 4(3). https://doi.org/10.1007/s40789-017-0171-4
Carbon Dioxide Induced Swelling of Unconventional Shale Rock and Effects on Permeability (NETL-TRS-9-2017)
Moore, J. E., Crandall, D.M., Lopano, C. L., & Verba, C. A. (2017). Carbon Dioxide Induced Swelling of Unconventional Shale Rock and Effects on Permeability (NETL-TRS-9-2017). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432946
In situ contact angle measurements of liquid CO₂, brine, and Mount Simon sandstone core using micro X-ray CT imaging, sessile drop, and Lattice Boltzmann modeling
Tudek, J., Crandall, D.M., Fuchs, S., Werth, C. J., Valocchi, A. J., Chen, Y., & Goodman, A.L. (2017). In situ contact angle measurements of liquid CO₂, brine, and Mount Simon sandstone core using micro X-ray CT imaging, sessile drop, and Lattice Boltzmann modeling. Journal of Petroleum Science and Engineering 155, 3–10. https://doi.org/10.1016/j.petrol.2017.01.047
NETL CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂-SCREEN) User’s Manual (NETL-TRS-6-2017)
Sanguinito, S., Goodman, A. L., & Levine, J. S. (2017). NETL CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂-SCREEN) User’s Manual (NETL-TRS-6-2017). Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432950
Predictive Modeling of CO₂ Sequestration and Storage in Deep Saline Sandstone Reservoirs: Sensitivity Analysis of Mineral Rates in Reactive Transport (NETL-TRS-5-2017)
Balashov, V. N., Brantley, S. L., Guthrie, G. D., Lopano, C. L., Hakala, J. A., & Rimstidt, J. D. (2017). Predictive Modeling of CO₂ Sequestration and Storage in Deep Saline Sandstone Reservoirs: Sensitivity Analysis of Mineral Rates in Reactive Transport (NETL-TRS-5-2017). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1433928
Computed Tomography Scanning to Understand Micro-to-Macro Controls on Multiphase Flow during Geologic Carbon Storage (NETL-TRS-3-2017)
Crandall, D.M., Moore, J., Gill, M., & Tudek, J. (2017). Computed Tomography Scanning to Understand Micro-to-Macro Controls on Multiphase Flow during Geologic Carbon Storage (NETL-TRS-3-2017). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1415448
Foamed Cement Interactions with CO₂ (NETL-TRS-2-2017)
Verba, C., Montross, S., Spaulding, R., Dalton, L., Crandall, D.M., Moore, J., Glosser, D., Huerta, N., & Kutchko, B. (2017). Foamed Cement Interactions with CO₂ (NETL-TRS-2-2017). Albany, OR: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432951
Assessment of Gas Potential in the Niobrara Formation, Rosebud Reservation, South Dakota (NETL-TRS-1-2017)
Soeder, D. J., Wonnell, C. S., Cross-Najafi, I., Marzolf, K., Freye, A., & Sawyer, J. F. (2017). Assessment of Gas Potential in the Niobrara Formation, Rosebud Reservation, South Dakota (NETL-TRS-1-2017). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432254
CO₂/brine/rock interactions in Lower Tuscaloosa Formation
Soong, Y., Howard, B. H., Dilmore, R. M., Haljasmaa, I., Crandall, D.M., Zhang, L., Zhang, W., Lin, R., Irdi, G. A., Romanov, V. N., & McLendon, T. R. (2016). CO₂/brine/rock interactions in Lower Tuscaloosa Formation. Greenhouse Gases: Science and Technology. 6(6), 824–837. https://doi.org/10.1002/ghg.1611
High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer (NETL-TRS-12-2016)
Wall, A. J., Capo, R. C., Stewart, B. W., Phan, T. T., Jain, J. C., Hakala, J. A., & Guthrie, G. D. High-Throughput Method for Strontium Isotope Analysis by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometer (NETL-TRS-12-2016). Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432273
Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite (NETL-TRS-11-2016)
Myshakin, E., Saidi, W., Romanov, V., Cygan, R., Jordan, K., & Guthrie, G. (2016). Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite (NETL-TRS-11-2016). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432985
Prospective CO₂ saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability
Goodman, A.L., Sanguinito, S., & Levine, J. (2016). Prospective CO₂ saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability. International Journal of Greenhouse Gas Control. 54, 242–249. https://doi.org/10.1016/j.ijggc.2016.09.009
Comparative Study of Effects of CO₂ Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer
Gulliver, D.., Lowry, G.V., & Gregory, K.B. (2016). Comparative Study of Effects of CO₂ Concentration and pH on Microbial Communities from a Saline Aquifer, a Depleted Oil Reservoir, and a Freshwater Aquifer. Environmental Engineering Science. 33(10), 806–816. https://doi.org/10.1089/ees.2015.0368
Near-infrared absorption gas sensing with metal-organic framework on optical fibers
Chong, X., Kim, K. J., Li, E., Zhang, Y., Ohodnicki, P. R., Chang, C. H., & Wang, A. X. (2016). Near-infrared absorption gas sensing with metal-organic framework on optical fibers. Sensors and Actuators B: Chemical. 232, 43–51. https://doi.org/10.1016/j.snb.2016.03.135
An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites (NETL-TRS-8-2016)
Wilson, B., Mordensky, S., Verba, C., Rabjohns, K., & Colwell, F. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites (NETL-TRS-8-2016). Albany, OR: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432987
U.S. DOE NETL methodology for estimating the prospective CO₂ storage resource of shales at the national and regional scale
Levine, J. S., Fukai, I., Soeder, D. J., Bromhal, G., Dilmore, R. M., Guthrie, G. D., Rodosta, T., Sanguinito, S., Frailey, S., Gorecki, C., Peck, W., & Goodman, A. L. (2016). U.S. DOE NETL methodology for estimating the prospective CO₂ storage resource of shales at the national and regional scale. International Journal of Greenhouse Gas Control. 51, 81–94. https://doi.org/10.1016/j.ijggc.2016.04.028
A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes
Azad, J. V., Li, C., Verba, C., Ideker, J., & Isgor, B. (2016). A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes. Computers & Geosciences. 92, 79–89. https://doi.org/10.1016/j.cageo.2016.04.002
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
Ahn, C., Dilmore, R., & Wang, J. (2016). Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model. Journal of Energy Resources Technology. 139(1). https://doi.org/10.1115/1.4033856
Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage
Gulliver, D. M., Gregory, K. B., and Lowry, G. V. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage. United States: N. p., 2016. Web. doi:10.18141/1432990.
Impact of CO₂ on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO₂ Leakage (NETL-TRS-7-2016)
Gulliver, D. M., Gregory, K. B., & Lowry, G. V. (2016). Impact of CO₂ on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO₂ Leakage (NETL-TRS-7-2016). Pittsburgh, PA: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.2172/1344489
Investigation of uncertainty in CO₂ reservoir models: A sensitivity analysis of relative permeability parameter values
Yoshida, N., Levine, J., & Stauffer, P. M. (2016). Investigation of uncertainty in CO₂ reservoir models: A sensitivity analysis of relative permeability parameter values. International Journal of Greenhouse Gas Control. 49, 161–178. https://doi.org/10.1016/j.ijggc.2016.03.008
Review of the Effects of CO₂ on Very-Fine-Grained Sedimentary Rock/Shale -Part II: Clay Mineral & Shale Response to Hydration (NETL-TRS-10-2016)
Lindner, E. (2016). Review of the Effects of CO₂ on Very-Fine-Grained Sedimentary Rock/Shale -Part II: Clay Mineral & Shale Response to Hydration (NETL-TRS-10-2016). Morgantown, WW: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432988
An investigation of factors affecting the interaction of CO₂ and CH₄ on shale in Appalachian Basin
Hong, L., Jain, J., Romanov, V., Lopano, C., Disenhof, C., Goodman, A.L., Hedges, S., Soeder, D., Sanguinito, S., & Dilmore, R. (2016). An investigation of factors affecting the interaction of CO₂ and CH₄ on shale in Appalachian Basin. Journal of Unconventional Oil and Gas Resources. 14, 99–112. https://doi.org/10.1016/j.juogr.2016.02.003.
In-situ measurements of calcium carbonate dissolution under rising CO₂ pressure using underwater laser-induced breakdown spectroscopy
Goueguel, C. L., Jain, J., McIntyre, D., & Edenborn, H. M. (2016). In-situ measurements of calcium carbonate dissolution under rising CO₂ pressure using underwater laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry. 31, 1374–1380. https://doi.org/10.1039/C6JA00086J
The effect of ionic species on pH dependent response of silica coated optical fibers
Elwood, J., & Ohodnicki, P. R. (2016). The effect of ionic species on pH dependent response of silica coated optical fibers. Micro- and Nanotechnology Sensors, Systems, and Applications VIII. https://doi.org/10.1117/12.2224959
Evaluation of a commercially available passively Q-switched Nd:YAG laser with LiF:F2- saturable absorber for laser-induced breakdown spectroscopy
Carson, C., Goueguel, C. L., Sanghapi, H. K., & McIntyre, D. (2016). Evaluation of a commercially available passively Q-switched Nd:YAG laser with LiF:F2- saturable absorber for laser-induced breakdown spectroscopy. Optics & Laser Technology. 79, 146–152. https://doi.org/10.1016/j.optlastec.2015.12.004
Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Carbonate Dissolution
Wen, H., Li, L., Crandall, D.M., & Hakala, J. A. (2016). Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Carbonate Dissolution. Energy & Fuels. 30(5), 4197–4208. https://doi.org/10.1021/acs.energyfuels.5b02932
Ultra-sensitive near-infrared fiber-optic gas sensors enhanced by metal-organic frameworks
Chong, X., Kim, K. J., Li, E., Zhang, Y., Ohodnicki, P. R., Chang, C. H., & Wang, A. X. (2016). Ultra-sensitive near-infrared fiber-optic gas sensors enhanced by metal-organic frameworks. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI. https://doi.org/10.1117/12.2214021
Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO₂ sequestration conditions: a numerical simulation approach
Zhang, L., Soong, Y., & Dilmore, R. M. (2016). Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO₂ sequestration conditions: a numerical simulation approach. Greenhouse Gases: Science and Technology. 6(4), 574–597. https://doi.org/10.1002/ghg.1584
Review of the Effects of CO₂ on Very-Fine-Grained Sedimentary Rock/Shale – Part I: Problem Definition (NETL-TRS-1-2016)
Lindner, E. (2016). Review of the Effects of CO₂ on Very-Fine-Grained Sedimentary Rock/Shale – Part I: Problem Definition (NETL-TRS-1-2016). Morgantown, WV: U.S. Department of Energy, National Energy Technology Laboratory. https://doi.org/10.18141/1432993