Computational Discovery of Fast Interstitial Oxygen Conductors
- Categories: 2024 Publications, Publications
- Tags: Machine Learning, Machine Learning Interatomic Potential, Simulations
Meng, J., Sheikh, M.S., Jacobs, R., Liu, J., Nachlas, W.O., Li, X., and Morgan, D., 2024, Computational Discovery of Fast Interstitial Oxygen Conductors. Nature Materials. https://doi.org/10.1038/s41563-024-01919-8
Aging heat treatment design for Haynes 282 made by wire-feed additive manufacturing using high-throughput experiments and interpretable machine learning
- Categories: 2024 Publications, Publications
- Tags: Interpretable Machine Learning Modeling, Machine Learning
Want, X., Pizano, L.F.P., Sridar, S., Sudbrack, C., and Xiong, W., 2024, Aging heat treatment design for Haynes 282 made by wire-feed additive manufacturing using high-throughput experiments and interpretable machine learning. Science and Technology of Advanced Materials, 25(1). https://doi.org/10.1080/14686996.2024.2346067
Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations
- Categories: 2024 Publications, Publications
- Tags: Gradient-Boosted Decision Tree, Machine Learning
Mark-Moser, M., Romeo, L., Duran, R., Bauer, J. R., and K. Rose. April 29, 2024. “Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations” [Conference Paper]. Offshore Technology Conference 2024, Houston, Texas. https://doi.org/10.4043/35221-MS
Machine Learning Discrimination and Ultrasensitive Detection of Fentanyl Using Gold Nanoparticle-Decorated Carbon Nanotube-Based Field-Effect Transistor Sensors
- Categories: 2024 Publications, Publications
- Tags: Sensors, Supervised Machine Learning
Shao, W., Sorescu, D.C., Liu, Z., Star, A., 2024, Machine Learning Discrimination and Ultrasensitive Detection of Fentanyl Using Gold Nanoparticle-Decorated Carbon Nanotube-Based Field-Effect Transistor Sensors. Small, 2311835. https://doi.org/10.1002/smll.202311835
Lab Scale Demonstration of Pipeline Third-Party Damage Classification Using Convolutional Neural Networks
- Categories: 2024 Publications, Publications
- Tags: Convolutional Neural Networks, Deep Learning
Bukka, S. R.; Lalam, N.; Bhatta, H.; Wright, R. “Lab Scale Demonstration of Pipeline Third-Party Damage Classification Using Convolutional Neural Networks” [Conference Paper], SPIE Defense + Commercial Sensing, National Harbor, MD, April 24, 2024.
Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits
Liu, G., Wu, X., and Romanov, V., 2024, Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits. Applied Sciences 14(7), 2927. https://doi.org/10.3390/app14072927
UNet Performance with Wafer Scale Engine (Optimization Case Study)
- Categories: 2023 Publications, Publications
- Tags: Artificial Intelligence, UNet, Wafer-Scale Engine
Romanov, V. (2023). UNet Performance with Wafer Scale Engine (Optimization Case Study). 2023 IEEE High Performance Extreme Computing Conference (HPEC), 1–6. https://doi.org/10.1109/HPEC58863.2023.10363451
Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions
- Categories: 2023 Publications, Publications
- Tags: Artificial Intelligence, Deep Learning, Geospatial, Machine Learning, Subsurface Trend Analysis
Hoover, B., Zaengle, D., Mark-Moser, M., Wingo, P., Suhag, A., and Rose, K., (2023). Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions. Frontiers. Big Data 6:1227189. https://doi.org/10.3389/fdata.2023.1227189
Assessing Pore Network Heterogeneity Across Multiple Scales to Inform CO2 Injection Models
- Categories: 2023 Publications, Publications
- Tags: Convolutional Neural Network, Machine Learning, Random Forest, SMART, U-Net Segmentation
Butler, S.K., Barajas-Olalde, C., Yu, X., Mibeck, B.A.F., Burton-Kelly, M.E., Kong, L., Kurz, B., Crandall, D. (2023) Assessing Pore Network Heterogeneity Across Multiple Scales to Inform CO2 Injection Models, International Journal of Greenhouse Gas Control, 130, 104017 https://doi.org/10.1016/j.ijggc.2023.104017
Exploring the formation of gold/silver nanoalloys with gas-phase synthesis and machine-learning assisted simulations
- Categories: 2023 Publications, Publications
- Tags: Deep Learning, Machine Learning, Neural Networks, Simulation
Gromoff, Q., Benzo, P., Saidi, W.A., Andolina, C.M., Casanove, M.J., Hungria, T., Barre, S., Benoit, M., and Lam, J., (2023). Exploring the formation of gold/silver nanoalloys with gas-phase synthesis and machine-learning assisted simulations. Nanoscale, 16(1), 384-393. https://doi.org/10.1039/D3NR04471H
Enhanced CO2 Reactive Capture and Conversion Using Aminothiolate Ligand–Metal Interface
- Categories: 2023 Publications, Publications
- Tags: Machine Learning
Wan, M., Yang, Z., Morgan, H., Shi, J., Shi, F., Liu, M., Wong, H.W., Gu, Z., and Che, F., (2023). Enhanced CO2 Reactive Capture and Conversion Using Aminothiolate Ligand–Metal Interface. Journal of the American Chemical Society, 145(48), 26038-26051. https://doi.org/10.1021/jacs.3c06888
Machine-Learning-Based Rotating Detonation Engine Diagnostics: Evaluation for Application in Experimental Facilities
- Categories: 2023 Publications, Publications
- Tags: Computer Vision, Convolutional Neural Network, Data Acquisition, Machine Learning
Johnson, K. B., Ferguson, D., and Nix, A., (2023). Machine-Learning-Based Rotating Detonation Engine Diagnostics: Evaluation for Application in Experimental Facilities. Journal of Propulsion and Power, 1-14. https://doi.org/10.2514/1.B39287
Development of an equation-based parallelization method for multiphase particle-in-cell simulations
- Categories: 2022 Publications, Publications
- Tags: Artificial Intelligence, High-performance Computing, Machine Learning
Woo, M., Jordan, T., Nandi, T., Dietiker, J.F., Guenther, C., and Van Essendelft, D., (2022). Development of an equation-based parallelization method for multiphase particle-in-cell simulations. Engineering with Computers. https://doi.org/10.1007/s00366-022-01768-6
Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines
Woo, M., Jordan, T., Schreiber, R., Sharapov, I., Muhammad, S., Koneru, A., James, M., & Van Essendelft, D. (2022). Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines. arXiv. https://doi.org/10.48550/arxiv.2209.13768
Data-driven offshore CO2 saline storage assessment methodology
- Categories: 2022 Publications, Publications
- Tags: Capacity assessment, Carbon Storage, Geospatial
Romeo, L., Thomas, R., Mark-Moster, M., Bean, A., Bauer, J., & Rose, K., (2022). Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119. https://doi.org/10.1016/j.ijggc.2022.103736
High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures
- Categories: 2022 Publications, Publications
- Tags: Electrocatalysis, Simulation, Solid Oxide Fuel Cells
Hsu, T., Kim, H., Mason, J.H., Mahbub, R., Epting, W.K., Abernathy, H.W., Hackett, G.A., Litster, S., Rollett, A.D., & Salvador, P.A. (2022). High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures. Journal of Power Sources, 541, https://doi.org/10.1016/j.jpowsour.2022.231652
A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA
- Categories: 2022 Publications, Publications
- Tags: Carbon Storage, Geospatial, Multi-criteria evaluation
Wendt, A., Sheriff, A., Shih, C.Y., Vikara, D., & Grant, T. (2022). A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA. International Journal of Greenhouse Gas Control, 118. https://doi.org/10.1016/j.ijggc.2022.103688
Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques
- Categories: 2022 Publications, Publications
- Tags: Alloys, Machine Learning, Regression Analysis
Wenzlick, M., Mamun, O., Devanathan, R., Rose, K., & Hawk, J. (2022). Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques. JOM, 74, 2846-2859. https://doi.org/10.1007/s11837-022-05204-4
Latent Learning with pyroMind.2020
- Categories: 2021 Publications, Publications
- Tags: Artificial Intelligence, Big Data, Latent Learning
Romanov, V., (2021). Latent Learning with pyroMind.2020. 2021 IEE International Conference on Big Data, pp. 4624-4627, https://doi.org/10.1109/BigData52589.2021.9671643
Machine learning accelerated discrete element modeling of granular flows
- Categories: 2021 Publications, Publications
- Tags: Discrete Element Modeling, Machine Learning, Neural Network
Lu, L., Gao, X., Dietiker, J.F., Shahnam, M., & Rogers, W.A. (2021). Machine learning accelerated discrete element modeling of granular flows. Chemical Engineering Science, 245. https://doi.org/10.1016/j.ces.2021.116832
Machine learning approach to transform scattering parameters to complex permittivities
- Categories: 2021 Publications, Publications
- Tags: Machine Learning, Neural Network, Supervised Learning
Tempke, R., Thomas, L., Wildefire, C., Shekhawat, D., & Musho, T., (2021). Machine learning approach to transform scattering parameters to complex permittivities. Journal of Microwave Power and Electromagnetic Energy, 55(4), 287-302, https://doi.org/10.1080/08327823.2021.1993046
Machine-Learning Microstructure for Inverse Material Design
- Categories: 2021 Publications, Publications
- Tags: Alloy Design, Inverse Problem, Machine Learning
Pei, Z., Rozman, K.A., Dogan, O.N., Wen, Y., Gao, N., Holm, E.A., Hawk, J.A., Alman, D.E., & Gao, M.C., (2021). Machine-Learning Microstructure for Inverse Material Design. Advanced Science, 8(23). https://doi.org/10.1002/advs.202101207
Neural network-based order parameter for phase transitions and its applications in high-entropy alloys
- Categories: 2021 Publications, Publications
- Tags: Alloys, Computational Methods, Neural Network
Yin, J., Pei, Z., & Gao, M.C., (2021). Neural network-based order parameter for phase transitions and its applications in high-entropy alloys. Nature Computational Science, 1, 686-693. https//doi.org/10.1038/s43588-021-00139-3
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys
- Categories: 2021 Publications, Publications
- Tags: Alloys, Computational Methods, Machine Learning
Steingrimsson, B., Fan, X., Yang, X., Gao, M.C., Zhang, Y., & Liaw, P.K., (2021). Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys. npj Computational Materials, 7, 152. https://doi.org/10.1038/s41524-021-00623-4
Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale
Vikara, D., Remson, D., & Khanna, V., (2020). Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale. Journal of Natural Gas Science and Engineering, 84(12). https://doi.org/10.1016/j.jngse.2020.103679
Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin
- Categories: 2024 Presentations, Presentations
Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Myshakin, E., Crandall, D., Cunha, L. (2024, June 23). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation]. 58th US Rock Mechanics/Geomechanics Symposium (ARMA). Golden, CO.
Machine-Learned Force Field Modeling of Metal Organic Frameworks for CO2 Direct Air Capture
- Categories: 2024 Presentations, Presentations
Findley, J., Budhathoki, S., Steckel, J. (2024, June 19). Machine-Learned Force Field Modeling of Metal Organic Frameworks for CO2 Direct Air Capture [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL. https://www.osti.gov/biblio/2375046
Modeling and Optimization of Zeolites for Contaminant Removal from Coal Combustion Impoundment Leachates
- Categories: 2024 Presentations, Presentations
Findley, J., Grol, E., Granite, E., Steckel, J. (2024, June 18). Modeling and Optimization of Zeolites for Contaminant Removal from Coal Combustion Impoundment Leachates [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL. https://www.osti.gov/biblio/2375006
A Methodology for Simulating Supercritical CO2 Heat Transfer Experiments Using Machine Learning Models
- Categories: 2024 Presentations, Presentations
Grabowski, O., Searle, M., Straub, D. (2024, June 17). A Methodology for Simulating Supercritical CO2 Heat Transfer Experiments Using Machine Learning Models [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL.
The Advanced Scale Up Reactor Experiment (ASURE) Facility: A Testbed for Advancing the Art of Biomass and Waste Co-Gasification Systems
- Categories: 2024 Presentations, Presentations
Rowan, S., Breault, R. (2024, June 16). The Advanced Scale Up Reactor Experiment (ASURE) Facility: A Testbed for Advancing the Art of Biomass and Waste Co-Gasification Systems [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL. https://www.osti.gov/biblio/2377348
Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits
- Categories: 2024 Presentations, Presentations
Liu, G., Wu, X., Romanov, V. (2024, June 4). Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits [Conference presentation]. 5th Annual Appalachian Basin Geophysical Symposium. Canonsburg, PA. https://www.osti.gov/biblio/2370395
An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications
- Categories: 2023 Presentations, Presentations
Sharma, M., White, C., Cleaveland, C., Romeo, L., Rose, K., Bauer, J. (2023, December 11). An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications [Conference presentation]. American Geophysical Union (AGU) Fall Meeting 2023. San Francisco, CA.
Machine Learning for Oil and Gas Well Identification in Historic Maps
- Categories: 2023 Presentations, Presentations
Mundia-Howe, M., Houghton, B., Shay, J., Bauer, J. (2023, November 8). Machine Learning for Oil and Gas Well Identification in Historic Maps [Conference presentation]. University of Pittsburgh Infrastructure Sensor Collaboration 2023 Workshop. Pittsburgh, PA. https://www.netl.doe.gov/energy-analysis/details?id=5236c646-64e1-4846-be19-05138673c970
Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production
- Categories: 2023 Presentations, Presentations
Romanov, V., Vikara, D. M., Bello, K., Mohaghegh, S. D., Liu, G., Cunha, L. (2024, November 7). Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production [Conference presentation]. 2023 AIChE Annual Meeting. Orlando, FL. https://www.osti.gov/biblio/2336703
Heat Transfer Opportunities for Supercritical CO2 Power Systems
- Categories: 2023 Presentations, Presentations
Searle, M., Grabowski, O., Tulgestke, A., Weber, J., Straub, D. (2023, October 30). Heat Transfer Opportunities for Supercritical CO2 Power Systems [Conference presentation]. 2023 University Turbine Systems Research (UTSR) and Advanced Turbines Program Review. State College, PA. https://www.netl.doe.gov/energy-analysis/details?id=ec1106ec-bddb-4030-a176-ad20ca9f5ffd
Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin
- Categories: 2023 Presentations, Presentations
Liu, G., Kumar, A., Harbert, W., Myshakin, E., Siriwardane, H., Bromhal, G., Cunha, L. (2023, October 18). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation]. 2023 SPE Annual Technical Conference and Exhibition (ATCE). San Antonio, TX.
A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources
- Categories: 2023 Presentations, Presentations
Creason, C. G., Justman, D., Yesenchak, R., Montross, S., Wingo, P., Thomas, R. B., Rose, K. (2023, October 17). A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA.
An Introduction to NETL’s Science-based AI/ML Institute
- Categories: 2021 Presentations, Presentations
An Introduction to NETL’s Science-based AI/ML Institute [Presentation], (2021, May 13). https://netl.doe.gov/sites/default/files/netl-file/21AIML_Rose_0.pdf