A machine learning approach for determining temperature-dependent bandgap of metal oxides utilizing Allen–Heine–Cardona theory and O’Donnell model parameterization
- Categories: 2024 Publications, Publications
- Tags: Bayesian approach, Gaussian process regression, Machine Learning
Nandi, T., Chong, L., Park, J., Saidi, W.A., Chorpening, B., Bayham, S., and Duan, Y. (2024) A machine learning approach for determining temperature-dependent bandgap of metal oxides utilizing Allen–Heine–Cardona theory and O’Donnell model parameterization. AIP Advances, 14, 035231. https://doi.org/10.1063/5.0190024
Offshore application of landslide susceptibility mapping using gradient-boosted decision trees: a Gulf of Mexico case study
- Categories: 2024 Publications, Publications
- Tags: Gradient-boosted decision trees, k-nearest neighbor, Machine Learning, XGBoost
Dyer, A.S., Mark-Moser, M., Duran, R., and Bauer, J.R., 2024, Offshore application of landslide susceptibility mapping using gradient-boosted decision trees: a Gulf of Mexico case study. Natural Hazards. https://doi.org/10.1007/s11069-024-06492-6
Machine Learning Design of Perovskite Catalytic Properties
- Categories: 2024 Publications, Publications
- Tags: Machine Learning, Neural Networks, Random Forest Model
Jacobs, R., Liu, J., Abernathy, H., and Morgan, D. (2024). Machine Learning Design of Perovskite Catalytic Properties. Advanced Energy Materials. https://doi.org/10.1002/aenm.202303684
Machine Learning Application to Assess Occurrence and Saturations of Methane Hydrate in Marine Deposits Offshore India
- Categories: 2024 Publications, Publications
- Tags: Artificial Neural Networks, Machine Learning, Well Log Data
Chong, L., Collett, T.S., Creason, C.G., Seol, Y., and Myshakin, E.M., (2024). Machine Learning Application to Assess Occurrence and Saturations of Methane Hydrate in Marine Deposits Offshore India. Interpretation, 0. https://doi.org/10.1190/int-2023-0056.1
Creation of Polymer Datasets with Targeted Backbones for Screening of High-Performance Membranes for Gas Separation
- Categories: 2024 Publications, Publications
- Tags: Machine Learning
Tiwari, S.P., Shi, W., Budhathoki, S., Baker, J., Sekizkardes, A.K., Zhu, L., Kusuma, V.A., Hopkinson, D.P., and Steckel, J.A., 2024, Creation of Polymer Datasets with Targeted Backbones for Screening of High-Performance Membranes for Gas Separation. Journal of Chemical Information and Modeling. https://doi.org/10.1021/acs.jcim.3c01232
High-throughput ab initio calculations and machine learning to discover SrFeO3-δ-based perovskites for chemical-looping applications
Ramanzi, A., Duell, B.A., Popczun, E.J., Natesakhawat, S., Nandi, T., Lekse, J.W., and Duan, Y. (2024). High-throughput ab initio calculations and machine learning to discover SrFeO3-δ-based perovskites for chemical-looping applications. Cell Reports Physical Science, 5(2), 101797. https://doi.org/10.1016/j.xcrp.2024.101797
TEA of the CO2 capture process in pre-combustion applications using thirty-five physical solvents: Predictions with ANN
- Categories: 2023 Publications, Publications
- Tags: Artificial Neural Networks, Deep Learning
Husain E. Ashkanani, Rui Wang, Wei Shi, Nicholas S. Siefert, Robert L. Thompson, Kathryn H. Smith, Janice A. Steckel, Isaac K. Gamwo, David Hopkinson, Kevin Resnik, Badie I. Morsi, 2023, TEA of the CO2 capture process in pre-combustion applications using thirty-five physical solvents: Predictions with ANN, International Journal of Greenhouse Gas Control, Volume 130, 104007, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.104007.
Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in the Illinois Basin
- Categories: 2023 Publications, Publications
- Tags: Cluster Analysis, Machine Learning, SMART, Unsupervised Learning
Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Crandall, D., Bromhal, G., and L. Cunha. Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in the Illinois Basin [Conference Paper]. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2023. https://doi.org/10.2118/214996-MS
Optimization of Process Families for Deployment of Carbon Capture Processes Using Machine Learning Surrogates
- Categories: 2023 Publications, Publications
Stinchfield, G., Ammari, B., Morgan, J.C., Siirola, J.D., Zamarripa, M., and C.D. Laird, (2023). Optimization of Process Families for Deployment of Carbon Capture Processes Using Machine Learning Surrogates. Proceedings of the 33rd European Symposium on Computer Aided Process Engineering (ESCAPE33), June 18-21, 2023, Athens, Greece. https://doi.org/10.1016/B978-0-443-15274-0.50212-2
Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table
Andolina, C.M., and Saidi, W.A., (2023). Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table. Digital Discovery, 2, 1070-1077. https://doi.org/10.1039/D3DD00046J
Metal hydride composition-derived parameters as machine learning features for material design and H2 storage
Nations, S., Nandi, T., Ramazani, A., Wang, S., and Duan, Y., (2023). Metal hydride composition-derived parameters as machine learning features for material design and H2 storage. Journal of Energy Storage, 107980. https://doi.org/10.1016/j.est.2023.107980
Machine learning data analytics based on distributed fiber sensors for pipeline feature detection
- Categories: 2023 Publications, Publications
- Tags: Machine Learning, Neural Networks, Supervised Learning
Zhang, P.D., Venketeswaran, A., Bukka, S.R., Sarcinelli, E., Lalam, N., Wright, R.F., and Ohodnicki, P.R., (2023). Machine learning data analytics based on distributed fiber sensors for pipeline feature detection. Proc. SPIE 12532, Optical Waveguide and Laser Sensors II. https://doi.org/10.1117/12.2663225
Development of an equation-based parallelization method for multiphase particle-in-cell simulations
- Categories: 2022 Publications, Publications
- Tags: Artificial Intelligence, High-performance Computing, Machine Learning
Woo, M., Jordan, T., Nandi, T., Dietiker, J.F., Guenther, C., and Van Essendelft, D., (2022). Development of an equation-based parallelization method for multiphase particle-in-cell simulations. Engineering with Computers. https://doi.org/10.1007/s00366-022-01768-6
Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines
Woo, M., Jordan, T., Schreiber, R., Sharapov, I., Muhammad, S., Koneru, A., James, M., & Van Essendelft, D. (2022). Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines. arXiv. https://doi.org/10.48550/arxiv.2209.13768
Data-driven offshore CO2 saline storage assessment methodology
- Categories: 2022 Publications, Publications
- Tags: Capacity assessment, Carbon Storage, Geospatial
Romeo, L., Thomas, R., Mark-Moster, M., Bean, A., Bauer, J., & Rose, K., (2022). Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119. https://doi.org/10.1016/j.ijggc.2022.103736
High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures
- Categories: 2022 Publications, Publications
- Tags: Electrocatalysis, Simulation, Solid Oxide Fuel Cells
Hsu, T., Kim, H., Mason, J.H., Mahbub, R., Epting, W.K., Abernathy, H.W., Hackett, G.A., Litster, S., Rollett, A.D., & Salvador, P.A. (2022). High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures. Journal of Power Sources, 541, https://doi.org/10.1016/j.jpowsour.2022.231652
A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA
- Categories: 2022 Publications, Publications
- Tags: Carbon Storage, Geospatial, Multi-criteria evaluation
Wendt, A., Sheriff, A., Shih, C.Y., Vikara, D., & Grant, T. (2022). A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA. International Journal of Greenhouse Gas Control, 118. https://doi.org/10.1016/j.ijggc.2022.103688
Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques
- Categories: 2022 Publications, Publications
- Tags: Alloys, Machine Learning, Regression Analysis
Wenzlick, M., Mamun, O., Devanathan, R., Rose, K., & Hawk, J. (2022). Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques. JOM, 74, 2846-2859. https://doi.org/10.1007/s11837-022-05204-4
Latent Learning with pyroMind.2020
- Categories: 2021 Publications, Publications
- Tags: Artificial Intelligence, Big Data, Latent Learning
Romanov, V., (2021). Latent Learning with pyroMind.2020. 2021 IEE International Conference on Big Data, pp. 4624-4627, https://doi.org/10.1109/BigData52589.2021.9671643
Machine learning accelerated discrete element modeling of granular flows
- Categories: 2021 Publications, Publications
- Tags: Discrete Element Modeling, Machine Learning, Neural Network
Lu, L., Gao, X., Dietiker, J.F., Shahnam, M., & Rogers, W.A. (2021). Machine learning accelerated discrete element modeling of granular flows. Chemical Engineering Science, 245. https://doi.org/10.1016/j.ces.2021.116832
Machine learning approach to transform scattering parameters to complex permittivities
- Categories: 2021 Publications, Publications
- Tags: Machine Learning, Neural Network, Supervised Learning
Tempke, R., Thomas, L., Wildefire, C., Shekhawat, D., & Musho, T., (2021). Machine learning approach to transform scattering parameters to complex permittivities. Journal of Microwave Power and Electromagnetic Energy, 55(4), 287-302, https://doi.org/10.1080/08327823.2021.1993046
Machine-Learning Microstructure for Inverse Material Design
- Categories: 2021 Publications, Publications
- Tags: Alloy Design, Inverse Problem, Machine Learning
Pei, Z., Rozman, K.A., Dogan, O.N., Wen, Y., Gao, N., Holm, E.A., Hawk, J.A., Alman, D.E., & Gao, M.C., (2021). Machine-Learning Microstructure for Inverse Material Design. Advanced Science, 8(23). https://doi.org/10.1002/advs.202101207
Neural network-based order parameter for phase transitions and its applications in high-entropy alloys
- Categories: 2021 Publications, Publications
- Tags: Alloys, Computational Methods, Neural Network
Yin, J., Pei, Z., & Gao, M.C., (2021). Neural network-based order parameter for phase transitions and its applications in high-entropy alloys. Nature Computational Science, 1, 686-693. https//doi.org/10.1038/s43588-021-00139-3
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys
- Categories: 2021 Publications, Publications
- Tags: Alloys, Computational Methods, Machine Learning
Steingrimsson, B., Fan, X., Yang, X., Gao, M.C., Zhang, Y., & Liaw, P.K., (2021). Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys. npj Computational Materials, 7, 152. https://doi.org/10.1038/s41524-021-00623-4
Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale
Vikara, D., Remson, D., & Khanna, V., (2020). Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale. Journal of Natural Gas Science and Engineering, 84(12). https://doi.org/10.1016/j.jngse.2020.103679
Cell and Stack Degradation Evaluation and Modeling
- Categories: 2024 Presentations, Presentations
Abernathy, H. (2024, May 7). Cell and Stack Degradation Evaluation and Modeling [Conference presentation]. 2024 Hydrogen Annual Merit Review. Crystal City, VA. https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review24/fe008_abernathy_2024_o.pdf?sfvrsn=85e66a06_3
AI-Driven Breakthroughs in Energy Systems from Vision to Design
- Categories: 2024 Presentations, Presentations
Weber, J. (2024, May 7). AI-Driven Breakthroughs in Energy Systems from Vision to Design [Conference presentation]. AI Expo. Washington, DC.
Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations
- Categories: 2024 Presentations, Presentations
Mark-Moser, M. K., Romeo, L., Duran, R., Bauer, J., Rose, K. (2024, May 6). Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations [Conference presentation]. Offshore Technology Conference 2024. Houston, TX. https://www.osti.gov/biblio/2352616
Rapid Assessment and Optimization of SOC Electrodes from Low Resolution Data Using Machine Learning and Computer Vision
- Categories: 2024 Presentations, Presentations
Epting, W. (2024, May 1). Rapid Assessment and Optimization of SOC Electrodes from Low Resolution Data Using Machine Learning and Computer Vision [Conference presentation]. 2024 DICE Digital Engineering Conference. Idaho Falls, ID.
AI/ML challenges and opportunities in materials development
- Categories: 2024 Presentations, Presentations
Wenzlick, M., Trehern, W., Saidi, W. (2024, April 30). AI/ML challenges and opportunities in materials development [Conference presentation]. 2024 DICE Digital Engineering Conference. Idaho Falls, ID.
Degradation modeling and electrode engineering of SOFCs, SOECs, and R-SOCs
- Categories: 2024 Presentations, Presentations
Abernathy, H., Epting, W., Lei, Y., Liu, J. (2024, April 25). Degradation modeling and electrode engineering of SOFCs, SOECs, and R-SOCs [Conference presentation]. 2024 FECM Spring R&D Project Review Meeting. Pittsburgh, PA. https://www.osti.gov/biblio/2342141
An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications
- Categories: 2023 Presentations, Presentations
Sharma, M., White, C., Cleaveland, C., Romeo, L., Rose, K., Bauer, J. (2023, December 11). An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications [Conference presentation]. American Geophysical Union (AGU) Fall Meeting 2023. San Francisco, CA.
Machine Learning for Oil and Gas Well Identification in Historic Maps
- Categories: 2023 Presentations, Presentations
Mundia-Howe, M., Houghton, B., Shay, J., Bauer, J. (2023, November 8). Machine Learning for Oil and Gas Well Identification in Historic Maps [Conference presentation]. University of Pittsburgh Infrastructure Sensor Collaboration 2023 Workshop. Pittsburgh, PA. https://www.netl.doe.gov/energy-analysis/details?id=5236c646-64e1-4846-be19-05138673c970
Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production
- Categories: 2023 Presentations, Presentations
Romanov, V., Vikara, D. M., Bello, K., Mohaghegh, S. D., Liu, G., Cunha, L. (2024, November 7). Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production [Conference presentation]. 2023 AIChE Annual Meeting. Orlando, FL. https://www.osti.gov/biblio/2336703
Heat Transfer Opportunities for Supercritical CO2 Power Systems
- Categories: 2023 Presentations, Presentations
Searle, M., Grabowski, O., Tulgestke, A., Weber, J., Straub, D. (2023, October 30). Heat Transfer Opportunities for Supercritical CO2 Power Systems [Conference presentation]. 2023 University Turbine Systems Research (UTSR) and Advanced Turbines Program Review. State College, PA. https://www.netl.doe.gov/energy-analysis/details?id=ec1106ec-bddb-4030-a176-ad20ca9f5ffd
Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin
- Categories: 2023 Presentations, Presentations
Liu, G., Kumar, A., Harbert, W., Myshakin, E., Siriwardane, H., Bromhal, G., Cunha, L. (2023, October 18). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation]. 2023 SPE Annual Technical Conference and Exhibition (ATCE). San Antonio, TX.
A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources
- Categories: 2023 Presentations, Presentations
Creason, C. G., Justman, D., Yesenchak, R., Montross, S., Wingo, P., Thomas, R. B., Rose, K. (2023, October 17). A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA.
An Introduction to NETL’s Science-based AI/ML Institute
- Categories: 2021 Presentations, Presentations
An Introduction to NETL’s Science-based AI/ML Institute [Presentation], (2021, May 13). https://netl.doe.gov/sites/default/files/netl-file/21AIML_Rose_0.pdf