A machine learning approach for determining temperature-dependent bandgap of metal oxides utilizing Allen–Heine–Cardona theory and O’Donnell model parameterization
- Categories: 2024 Publications, Publications
- Tags: Bayesian approach, Gaussian process regression, Machine Learning
Nandi, T., Chong, L., Park, J., Saidi, W.A., Chorpening, B., Bayham, S., and Duan, Y. (2024) A machine learning approach for determining temperature-dependent bandgap of metal oxides utilizing Allen–Heine–Cardona theory and O’Donnell model parameterization. AIP Advances, 14, 035231. https://doi.org/10.1063/5.0190024
Offshore application of landslide susceptibility mapping using gradient-boosted decision trees: a Gulf of Mexico case study
- Categories: 2024 Publications, Publications
- Tags: Gradient-boosted decision trees, k-nearest neighbor, Machine Learning, XGBoost
Dyer, A.S., Mark-Moser, M., Duran, R., and Bauer, J.R., 2024, Offshore application of landslide susceptibility mapping using gradient-boosted decision trees: a Gulf of Mexico case study. Natural Hazards. https://doi.org/10.1007/s11069-024-06492-6
Machine Learning Design of Perovskite Catalytic Properties
- Categories: 2024 Publications, Publications
- Tags: Machine Learning, Neural Networks, Random Forest Model
Jacobs, R., Liu, J., Abernathy, H., and Morgan, D. (2024). Machine Learning Design of Perovskite Catalytic Properties. Advanced Energy Materials. https://doi.org/10.1002/aenm.202303684
Machine Learning Application to Assess Occurrence and Saturations of Methane Hydrate in Marine Deposits Offshore India
- Categories: 2024 Publications, Publications
- Tags: Artificial Neural Networks, Machine Learning, Well Log Data
Chong, L., Collett, T.S., Creason, C.G., Seol, Y., and Myshakin, E.M., (2024). Machine Learning Application to Assess Occurrence and Saturations of Methane Hydrate in Marine Deposits Offshore India. Interpretation, 0. https://doi.org/10.1190/int-2023-0056.1
Creation of Polymer Datasets with Targeted Backbones for Screening of High-Performance Membranes for Gas Separation
- Categories: 2024 Publications, Publications
- Tags: Machine Learning
Tiwari, S.P., Shi, W., Budhathoki, S., Baker, J., Sekizkardes, A.K., Zhu, L., Kusuma, V.A., Hopkinson, D.P., and Steckel, J.A., 2024, Creation of Polymer Datasets with Targeted Backbones for Screening of High-Performance Membranes for Gas Separation. Journal of Chemical Information and Modeling. https://doi.org/10.1021/acs.jcim.3c01232
High-throughput ab initio calculations and machine learning to discover SrFeO3-δ-based perovskites for chemical-looping applications
Ramanzi, A., Duell, B.A., Popczun, E.J., Natesakhawat, S., Nandi, T., Lekse, J.W., and Duan, Y. (2024). High-throughput ab initio calculations and machine learning to discover SrFeO3-δ-based perovskites for chemical-looping applications. Cell Reports Physical Science, 5(2), 101797. https://doi.org/10.1016/j.xcrp.2024.101797
UNet Performance with Wafer Scale Engine (Optimization Case Study)
- Categories: 2023 Publications, Publications
- Tags: Artificial Intelligence, UNet, Wafer-Scale Engine
Romanov, V. (2023). UNet Performance with Wafer Scale Engine (Optimization Case Study). 2023 IEEE High Performance Extreme Computing Conference (HPEC), 1–6. https://doi.org/10.1109/HPEC58863.2023.10363451
Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions
- Categories: 2023 Publications, Publications
- Tags: Artificial Intelligence, Deep Learning, Geospatial, Machine Learning, Subsurface Trend Analysis
Hoover, B., Zaengle, D., Mark-Moser, M., Wingo, P., Suhag, A., and Rose, K., (2023). Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions. Frontiers. Big Data 6:1227189. https://doi.org/10.3389/fdata.2023.1227189
Assessing Pore Network Heterogeneity Across Multiple Scales to Inform CO2 Injection Models
- Categories: 2023 Publications, Publications
- Tags: Convolutional Neural Network, Machine Learning, Random Forest, SMART, U-Net Segmentation
Butler, S.K., Barajas-Olalde, C., Yu, X., Mibeck, B.A.F., Burton-Kelly, M.E., Kong, L., Kurz, B., Crandall, D. (2023) Assessing Pore Network Heterogeneity Across Multiple Scales to Inform CO2 Injection Models, International Journal of Greenhouse Gas Control, 130, 104017 https://doi.org/10.1016/j.ijggc.2023.104017
Exploring the formation of gold/silver nanoalloys with gas-phase synthesis and machine-learning assisted simulations
- Categories: 2023 Publications, Publications
- Tags: Deep Learning, Machine Learning, Neural Networks, Simulation
Gromoff, Q., Benzo, P., Saidi, W.A., Andolina, C.M., Casanove, M.J., Hungria, T., Barre, S., Benoit, M., and Lam, J., (2023). Exploring the formation of gold/silver nanoalloys with gas-phase synthesis and machine-learning assisted simulations. Nanoscale, 16(1), 384-393. https://doi.org/10.1039/D3NR04471H
Enhanced CO2 Reactive Capture and Conversion Using Aminothiolate Ligand–Metal Interface
- Categories: 2023 Publications, Publications
- Tags: Machine Learning
Wan, M., Yang, Z., Morgan, H., Shi, J., Shi, F., Liu, M., Wong, H.W., Gu, Z., and Che, F., (2023). Enhanced CO2 Reactive Capture and Conversion Using Aminothiolate Ligand–Metal Interface. Journal of the American Chemical Society, 145(48), 26038-26051. https://doi.org/10.1021/jacs.3c06888
Machine-Learning-Based Rotating Detonation Engine Diagnostics: Evaluation for Application in Experimental Facilities
- Categories: 2023 Publications, Publications
- Tags: Computer Vision, Convolutional Neural Network, Data Acquisition, Machine Learning
Johnson, K. B., Ferguson, D., and Nix, A., (2023). Machine-Learning-Based Rotating Detonation Engine Diagnostics: Evaluation for Application in Experimental Facilities. Journal of Propulsion and Power, 1-14. https://doi.org/10.2514/1.B39287
Development of an equation-based parallelization method for multiphase particle-in-cell simulations
- Categories: 2022 Publications, Publications
- Tags: Artificial Intelligence, High-performance Computing, Machine Learning
Woo, M., Jordan, T., Nandi, T., Dietiker, J.F., Guenther, C., and Van Essendelft, D., (2022). Development of an equation-based parallelization method for multiphase particle-in-cell simulations. Engineering with Computers. https://doi.org/10.1007/s00366-022-01768-6
Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines
Woo, M., Jordan, T., Schreiber, R., Sharapov, I., Muhammad, S., Koneru, A., James, M., & Van Essendelft, D. (2022). Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines. arXiv. https://doi.org/10.48550/arxiv.2209.13768
Data-driven offshore CO2 saline storage assessment methodology
- Categories: 2022 Publications, Publications
- Tags: Capacity assessment, Carbon Storage, Geospatial
Romeo, L., Thomas, R., Mark-Moster, M., Bean, A., Bauer, J., & Rose, K., (2022). Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119. https://doi.org/10.1016/j.ijggc.2022.103736
High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures
- Categories: 2022 Publications, Publications
- Tags: Electrocatalysis, Simulation, Solid Oxide Fuel Cells
Hsu, T., Kim, H., Mason, J.H., Mahbub, R., Epting, W.K., Abernathy, H.W., Hackett, G.A., Litster, S., Rollett, A.D., & Salvador, P.A. (2022). High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures. Journal of Power Sources, 541, https://doi.org/10.1016/j.jpowsour.2022.231652
A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA
- Categories: 2022 Publications, Publications
- Tags: Carbon Storage, Geospatial, Multi-criteria evaluation
Wendt, A., Sheriff, A., Shih, C.Y., Vikara, D., & Grant, T. (2022). A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA. International Journal of Greenhouse Gas Control, 118. https://doi.org/10.1016/j.ijggc.2022.103688
Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques
- Categories: 2022 Publications, Publications
- Tags: Alloys, Machine Learning, Regression Analysis
Wenzlick, M., Mamun, O., Devanathan, R., Rose, K., & Hawk, J. (2022). Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques. JOM, 74, 2846-2859. https://doi.org/10.1007/s11837-022-05204-4
Kinetic Model Development and Bayesian Uncertainty Quantification for the Complete Reduction of Fe-based Oxygen Carriers with CH4, CO, and H2 for Chemical Looping Combustion
- Categories: 2021 Publications, Publications
- Tags: Bayesian approach, Kinetic models, Uncertainty quantification
Ostace, A., Chen, Y.Y., Parker, R., Mebane, D.S., Okoli, C., Lee, A., Tong, A., Fan, L.S., Biegler, L.T., Burgard, A.P., Miller, D.C., & Bhattacharyya, D. (2021). Kinetic Model Development and Bayesian Uncertainty Quantification for the Complete Reduction of Fe-based Oxygen Carriers with CH4, CO, and H2 for Chemical Looping Combustion. Chemical Engineering Science, 252 (28), https://doi.org/10.1016/j.ces.2022.117512
Sensitivity Analysis of MFiX-PIC Parameters Using Nodeworks, PSUADE, and DAKOTA
- Categories: 2021 Publications, Publications
- Tags: MFiX, Multiphase flow, Nodeworks
Gel, A., Weber, J., & Vaidheeswaran, A., (2021). Sensitivity Analysis of MFiX-PIC Parameters Using Nodeworks, PSUADE, and DAKOTA, National Energy Technology Laboratory, DOE/NETL-2021.2652, Pittsburgh, PA. https://doi.org/10.2172/1809024
Evaluating proxies for the drivers of natural gas productivity using machine-learning models
- Categories: 2021 Publications, Publications
- Tags: Machine Learning, Microseismic, Predictive analytics
Kumar, A., Harbert, W., Hammack, R., Zorn, E., Bear, A., & Carr, T. (2021). Evaluating proxies for the drivers of natural gas productivity using machine-learning models. Interpretation, 9(4). https://doi.org/10.1190/INT-2020-0200.1
Evaluating Offshore Infrastructure Integrity
- Categories: 2021 Publications, Publications
- Tags: Big Data, Geospatial, Machine Learning
Nelson, J., Dyer, A., Romeo, L., Wenzlick, M., Zaengle, D., Duran, R,. Sabbatino, M., Wingo, P., Barkhurst, A., Rosse, K., & Bauer, J., (2021). Evaluating Offshore Infrastructure Integrity, National Energy Technology Laboratory, DOE/NETL-2021/2643, Albany, OR. https://doi.org/10.2172/1780656
Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels
- Categories: 2021 Publications, Publications
- Tags: Alloys, Machine Learning, XMAT
Mamun, O., Wenzlick, M., Sathanur, A., Hawk, J., & Devanathan, R., (2021). Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels. npj Materials Degradation, 5, 20. https://doi.org/10.1038/s41529-021-00166-5
Data science techniques, assumptions, and challenges in alloy clustering and property prediction
- Categories: 2021 Publications, Publications
- Tags: Alloys, Clustering, Machine Learning
Wenzlick, M., Mamun, O., Devanathan, R., Rose, K., & Hawk, J., (2021). Data science techniques, assumptions, and challenges in alloy clustering and property prediction. Journal of Materials Engineering and Performance 30, 823–838. https://doi.org/10.1007/s11665-020-05340-5
Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale
Vikara, D., Remson, D., & Khanna, V., (2020). Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale. Journal of Natural Gas Science and Engineering, 84(12). https://doi.org/10.1016/j.jngse.2020.103679
CARD: CFD for Advanced Reactor Design
- Categories: 2024 Presentations, Presentations
Dietiker, J. (2024, April 25). CARD: CFD for Advanced Reactor Design [Conference presentation]. 2024 FECM Spring R&D Project Review Meeting. Pittsburgh, PA. https://www.osti.gov/biblio/2339843
Lab Scale Demonstration of Pipeline Third-Party Damage Classification Using Convolutional Neural Networks
- Categories: 2024 Presentations, Presentations
Bukka, S. R., Lalam, N., Bhatta, H., Wright, R. (2024, April 24). Lab Scale Demonstration of Pipeline Third-Party Damage Classification Using Convolutional Neural Networks [Conference presentation]. SPIE Defense + Commercial Sensing. National Harbor, MD. https://www.osti.gov/biblio/2340060
Deploying a New AI Software Tool for Rapid Characterization & Quantification of Unconventional Sources of Critical Minerals
- Categories: 2024 Presentations, Presentations
Creason, C., Rose, K., Montross, S., Maymi, N., Jackson, Z., Obarr, S., Bishop, E., Wingo, P., Hazle, G., Skipwith, S., Moyes, A., Lindemann, G., Atkins, C., Hird, J., Taglia, F. (2024, April 4). Deploying a New AI Software Tool for Rapid Characterization & Quantification of Unconventional Sources of Critical Minerals [Conference presentation]. 2024 NETL Resource Sustainability Project Review Meeting. Pittsburgh, PA. https://www.osti.gov/biblio/2338061
Produced Water Research Partnership
- Categories: 2024 Presentations, Presentations
Siefert, N. (2024, April 3). Produced Water Research Partnership [Conference presentation]. 2024 NETL Resource Sustainability Project Review Meeting. Pittsburgh, PA.
Project PARETO – DOE’s Produced Water Optimization Initiative
- Categories: 2024 Presentations, Presentations
Shamlou, E., Zamarripa, M., Arnold, T., Tominac, P., Shellman, M., Drouven, M. (2024, April 3). Project PARETO – DOE’s Produced Water Optimization Initiative [Conference presentation]. 2024 NETL Resource Sustainability Project Review Meeting. Pittsburgh, PA. https://www.osti.gov/biblio/2341292
Critical Minerals: Systems Analysis Tasks
- Categories: 2024 Presentations, Presentations
Fritz, A., Pickenpaugh, G., Creason, C., Suter, J., Krynock, M., Able, C. (2024, April 2). Critical Minerals: Systems Analysis Tasks [Conference presentation]. 2024 NETL Resource Sustainability Project Review Meeting. Pittsburgh, PA. https://www.osti.gov/biblio/2337611
An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications
- Categories: 2023 Presentations, Presentations
Sharma, M., White, C., Cleaveland, C., Romeo, L., Rose, K., Bauer, J. (2023, December 11). An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications [Conference presentation]. American Geophysical Union (AGU) Fall Meeting 2023. San Francisco, CA.
Machine Learning for Oil and Gas Well Identification in Historic Maps
- Categories: 2023 Presentations, Presentations
Mundia-Howe, M., Houghton, B., Shay, J., Bauer, J. (2023, November 8). Machine Learning for Oil and Gas Well Identification in Historic Maps [Conference presentation]. University of Pittsburgh Infrastructure Sensor Collaboration 2023 Workshop. Pittsburgh, PA. https://www.netl.doe.gov/energy-analysis/details?id=5236c646-64e1-4846-be19-05138673c970
Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production
- Categories: 2023 Presentations, Presentations
Romanov, V., Vikara, D. M., Bello, K., Mohaghegh, S. D., Liu, G., Cunha, L. (2024, November 7). Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production [Conference presentation]. 2023 AIChE Annual Meeting. Orlando, FL. https://www.osti.gov/biblio/2336703
Heat Transfer Opportunities for Supercritical CO2 Power Systems
- Categories: 2023 Presentations, Presentations
Searle, M., Grabowski, O., Tulgestke, A., Weber, J., Straub, D. (2023, October 30). Heat Transfer Opportunities for Supercritical CO2 Power Systems [Conference presentation]. 2023 University Turbine Systems Research (UTSR) and Advanced Turbines Program Review. State College, PA. https://www.netl.doe.gov/energy-analysis/details?id=ec1106ec-bddb-4030-a176-ad20ca9f5ffd
Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin
- Categories: 2023 Presentations, Presentations
Liu, G., Kumar, A., Harbert, W., Myshakin, E., Siriwardane, H., Bromhal, G., Cunha, L. (2023, October 18). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation]. 2023 SPE Annual Technical Conference and Exhibition (ATCE). San Antonio, TX.
A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources
- Categories: 2023 Presentations, Presentations
Creason, C. G., Justman, D., Yesenchak, R., Montross, S., Wingo, P., Thomas, R. B., Rose, K. (2023, October 17). A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA.
An Introduction to NETL’s Science-based AI/ML Institute
- Categories: 2021 Presentations, Presentations
An Introduction to NETL’s Science-based AI/ML Institute [Presentation], (2021, May 13). https://netl.doe.gov/sites/default/files/netl-file/21AIML_Rose_0.pdf