Filter by Categories
Publications
Presentations

Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment

Bodenschatz, Cameron J., Wissam A. Saidi, Jamesa L. Stokes, Rebekah I. Webster, and Gustavo Costa. 2024. “Theoretical Prediction of Thermal Expansion Anisotropy for Y2Si2O7 Environmental Barrier Coatings Using a Deep Neural Network Potential and Comparison to Experiment” Materials 17, no. 2: 286. https://doi.org/10.3390/ma17020286

Machine Learning and Deep Learning for Mineralogy Interpretation and CO2 Saturation Estimation in Geological Carbon Storage: A Case Study in the Illinois Basin

Wang, H., Williams-Stroud, S., Crandall, D., and Chen, C. (2024). Machine learning and deep learning for mineralogy interpretation and CO2 saturation estimation in geological carbon Storage: A case study in the Illinois Basin. Fuel, 361(130586). https://doi.org/10.1016/j.fuel.2023.130586

TEA of the CO2 capture process in pre-combustion applications using thirty-five physical solvents: Predictions with ANN

Husain E. Ashkanani, Rui Wang, Wei Shi, Nicholas S. Siefert, Robert L. Thompson, Kathryn H. Smith, Janice A. Steckel, Isaac K. Gamwo, David Hopkinson, Kevin Resnik, Badie I. Morsi, 2023, TEA of the CO2 capture process in pre-combustion applications using thirty-five physical solvents: Predictions with ANN, International Journal of Greenhouse Gas Control, Volume 130, 104007, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.104007.

Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in the Illinois Basin

Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Crandall, D., Bromhal, G., and L. Cunha. Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in the Illinois Basin [Conference Paper]. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2023. https://doi.org/10.2118/214996-MS

Optimization of Process Families for Deployment of Carbon Capture Processes Using Machine Learning Surrogates

Stinchfield, G., Ammari, B., Morgan, J.C., Siirola, J.D., Zamarripa, M., and C.D. Laird, (2023). Optimization of Process Families for Deployment of Carbon Capture Processes Using Machine Learning Surrogates. Proceedings of the 33rd European Symposium on Computer Aided Process Engineering (ESCAPE33), June 18-21, 2023, Athens, Greece. https://doi.org/10.1016/B978-0-443-15274-0.50212-2

Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table

Andolina, C.M., and Saidi, W.A., (2023). Highly transferable atomistic machine-learning potentials from curated and compact datasets across the periodic table. Digital Discovery, 2, 1070-1077. https://doi.org/10.1039/D3DD00046J

Metal hydride composition-derived parameters as machine learning features for material design and H2 storage

Nations, S., Nandi, T., Ramazani, A., Wang, S., and Duan, Y., (2023). Metal hydride composition-derived parameters as machine learning features for material design and H2 storage. Journal of Energy Storage, 107980. https://doi.org/10.1016/j.est.2023.107980

Machine learning data analytics based on distributed fiber sensors for pipeline feature detection

Zhang, P.D., Venketeswaran, A., Bukka, S.R., Sarcinelli, E., Lalam, N., Wright, R.F., and Ohodnicki, P.R., (2023). Machine learning data analytics based on distributed fiber sensors for pipeline feature detection. Proc. SPIE 12532, Optical Waveguide and Laser Sensors II. https://doi.org/10.1117/12.2663225

Development of an equation-based parallelization method for multiphase particle-in-cell simulations

Woo, M., Jordan, T., Nandi, T., Dietiker, J.F., Guenther, C., and Van Essendelft, D., (2022). Development of an equation-based parallelization method for multiphase particle-in-cell simulations. Engineering with Computers. https://doi.org/10.1007/s00366-022-01768-6

Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines

Woo, M., Jordan, T., Schreiber, R., Sharapov, I., Muhammad, S., Koneru, A., James, M., & Van Essendelft, D. (2022). Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines. arXiv. https://doi.org/10.48550/arxiv.2209.13768

Data-driven offshore CO2 saline storage assessment methodology

Romeo, L., Thomas, R., Mark-Moster, M., Bean, A., Bauer, J., & Rose, K., (2022). Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119. https://doi.org/10.1016/j.ijggc.2022.103736

High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures

Hsu, T., Kim, H., Mason, J.H., Mahbub, R., Epting, W.K., Abernathy, H.W., Hackett, G.A., Litster, S., Rollett, A.D., & Salvador, P.A. (2022). High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures. Journal of Power Sources, 541, https://doi.org/10.1016/j.jpowsour.2022.231652

A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA

Wendt, A., Sheriff, A., Shih, C.Y., Vikara, D., & Grant, T. (2022). A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA. International Journal of Greenhouse Gas Control, 118. https://doi.org/10.1016/j.ijggc.2022.103688

Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques

Wenzlick, M., Mamun, O., Devanathan, R., Rose, K., & Hawk, J. (2022). Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques. JOM, 74, 2846-2859. https://doi.org/10.1007/s11837-022-05204-4

Latent Learning with pyroMind.2020

Romanov, V., (2021). Latent Learning with pyroMind.2020. 2021 IEE International Conference on Big Data, pp. 4624-4627, https://doi.org/10.1109/BigData52589.2021.9671643

Machine learning accelerated discrete element modeling of granular flows

Lu, L., Gao, X., Dietiker, J.F., Shahnam, M., & Rogers, W.A. (2021). Machine learning accelerated discrete element modeling of granular flows. Chemical Engineering Science, 245. https://doi.org/10.1016/j.ces.2021.116832

Machine learning approach to transform scattering parameters to complex permittivities

Tempke, R., Thomas, L., Wildefire, C., Shekhawat, D., & Musho, T., (2021). Machine learning approach to transform scattering parameters to complex permittivities. Journal of Microwave Power and Electromagnetic Energy, 55(4), 287-302, https://doi.org/10.1080/08327823.2021.1993046

Machine-Learning Microstructure for Inverse Material Design

Pei, Z., Rozman, K.A., Dogan, O.N., Wen, Y., Gao, N., Holm, E.A., Hawk, J.A., Alman, D.E., & Gao, M.C., (2021). Machine-Learning Microstructure for Inverse Material Design. Advanced Science, 8(23). https://doi.org/10.1002/advs.202101207

Neural network-based order parameter for phase transitions and its applications in high-entropy alloys

Yin, J., Pei, Z., & Gao, M.C., (2021). Neural network-based order parameter for phase transitions and its applications in high-entropy alloys. Nature Computational Science, 1, 686-693. https//doi.org/10.1038/s43588-021-00139-3

Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys

Steingrimsson, B., Fan, X., Yang, X., Gao, M.C., Zhang, Y., & Liaw, P.K., (2021). Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys. npj Computational Materials, 7, 152. https://doi.org/10.1038/s41524-021-00623-4

Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale

Vikara, D., Remson, D., & Khanna, V., (2020). Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale. Journal of Natural Gas Science and Engineering, 84(12). https://doi.org/10.1016/j.jngse.2020.103679

Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin

Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Myshakin, E., Crandall, D., Cunha, L. (2024, June 23). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation]. 58th US Rock Mechanics/Geomechanics Symposium (ARMA). Golden, CO.

Machine-Learned Force Field Modeling of Metal Organic Frameworks for CO2 Direct Air Capture

Findley, J., Budhathoki, S., Steckel, J. (2024, June 19). Machine-Learned Force Field Modeling of Metal Organic Frameworks for CO2 Direct Air Capture [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL. https://www.osti.gov/biblio/2375046

Modeling and Optimization of Zeolites for Contaminant Removal from Coal Combustion Impoundment Leachates

Findley, J., Grol, E., Granite, E., Steckel, J. (2024, June 18). Modeling and Optimization of Zeolites for Contaminant Removal from Coal Combustion Impoundment Leachates [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL. https://www.osti.gov/biblio/2375006

A Methodology for Simulating Supercritical CO2 Heat Transfer Experiments Using Machine Learning Models

Grabowski, O., Searle, M., Straub, D. (2024, June 17). A Methodology for Simulating Supercritical CO2 Heat Transfer Experiments Using Machine Learning Models [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL.

The Advanced Scale Up Reactor Experiment (ASURE) Facility: A Testbed for Advancing the Art of Biomass and Waste Co-Gasification Systems

Rowan, S., Breault, R. (2024, June 16). The Advanced Scale Up Reactor Experiment (ASURE) Facility: A Testbed for Advancing the Art of Biomass and Waste Co-Gasification Systems [Conference presentation]. Clearwater Clean Energy Conference. Clearwater, FL. https://www.osti.gov/biblio/2377348

Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits

Liu, G., Wu, X., Romanov, V. (2024, June 4). Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits [Conference presentation]. 5th Annual Appalachian Basin Geophysical Symposium. Canonsburg, PA. https://www.osti.gov/biblio/2370395

An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications

Sharma, M., White, C., Cleaveland, C., Romeo, L., Rose, K., Bauer, J. (2023, December 11). An Environmental, Energy, Economic, and Social Justice Database for Carbon Capture and Storage Applications [Conference presentation]. American Geophysical Union (AGU) Fall Meeting 2023. San Francisco, CA.

Machine Learning for Oil and Gas Well Identification in Historic Maps

Mundia-Howe, M., Houghton, B., Shay, J., Bauer, J. (2023, November 8). Machine Learning for Oil and Gas Well Identification in Historic Maps [Conference presentation]. University of Pittsburgh Infrastructure Sensor Collaboration 2023 Workshop. Pittsburgh, PA. https://www.netl.doe.gov/energy-analysis/details?id=5236c646-64e1-4846-be19-05138673c970

Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production

Romanov, V., Vikara, D. M., Bello, K., Mohaghegh, S. D., Liu, G., Cunha, L. (2024, November 7). Integrating Public and Private Data for Modeling and Optimization of Shale Oil and Gas Production [Conference presentation]. 2023 AIChE Annual Meeting. Orlando, FL. https://www.osti.gov/biblio/2336703

Heat Transfer Opportunities for Supercritical CO2 Power Systems

Searle, M., Grabowski, O., Tulgestke, A., Weber, J., Straub, D. (2023, October 30). Heat Transfer Opportunities for Supercritical CO2 Power Systems [Conference presentation]. 2023 University Turbine Systems Research (UTSR) and Advanced Turbines Program Review. State College, PA. https://www.netl.doe.gov/energy-analysis/details?id=ec1106ec-bddb-4030-a176-ad20ca9f5ffd

Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin

Liu, G., Kumar, A., Harbert, W., Myshakin, E., Siriwardane, H., Bromhal, G., Cunha, L. (2023, October 18). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation]. 2023 SPE Annual Technical Conference and Exhibition (ATCE). San Antonio, TX.

A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources

Creason, C. G., Justman, D., Yesenchak, R., Montross, S., Wingo, P., Thomas, R. B., Rose, K. (2023, October 17). A Multi-scale, Geo-data Science Method for Assessing Unconventional Critical Mineral Resources [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA.

An Introduction to NETL’s Science-based AI/ML Institute

An Introduction to NETL’s Science-based AI/ML Institute [Presentation], (2021, May 13).  https://netl.doe.gov/sites/default/files/netl-file/21AIML_Rose_0.pdf