Computational Discovery of Fast Interstitial Oxygen Conductors
- Categories: 2024 Publications, Publications
- Tags: Machine Learning, Machine Learning Interatomic Potential, Simulations
Meng, J., Sheikh, M.S., Jacobs, R., Liu, J., Nachlas, W.O., Li, X., and Morgan, D., 2024, Computational Discovery of Fast Interstitial Oxygen Conductors. Nature Materials. https://doi.org/10.1038/s41563-024-01919-8
Aging heat treatment design for Haynes 282 made by wire-feed additive manufacturing using high-throughput experiments and interpretable machine learning
- Categories: 2024 Publications, Publications
- Tags: Interpretable Machine Learning Modeling, Machine Learning
Want, X., Pizano, L.F.P., Sridar, S., Sudbrack, C., and Xiong, W., 2024, Aging heat treatment design for Haynes 282 made by wire-feed additive manufacturing using high-throughput experiments and interpretable machine learning. Science and Technology of Advanced Materials, 25(1). https://doi.org/10.1080/14686996.2024.2346067
Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations
- Categories: 2024 Publications, Publications
- Tags: Gradient-Boosted Decision Tree, Machine Learning
Mark-Moser, M., Romeo, L., Duran, R., Bauer, J. R., and K. Rose. April 29, 2024. “Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations” [Conference Paper]. Offshore Technology Conference 2024, Houston, Texas. https://doi.org/10.4043/35221-MS
Machine Learning Discrimination and Ultrasensitive Detection of Fentanyl Using Gold Nanoparticle-Decorated Carbon Nanotube-Based Field-Effect Transistor Sensors
- Categories: 2024 Publications, Publications
- Tags: Sensors, Supervised Machine Learning
Shao, W., Sorescu, D.C., Liu, Z., Star, A., 2024, Machine Learning Discrimination and Ultrasensitive Detection of Fentanyl Using Gold Nanoparticle-Decorated Carbon Nanotube-Based Field-Effect Transistor Sensors. Small, 2311835. https://doi.org/10.1002/smll.202311835
Lab Scale Demonstration of Pipeline Third-Party Damage Classification Using Convolutional Neural Networks
- Categories: 2024 Publications, Publications
- Tags: Convolutional Neural Networks, Deep Learning
Bukka, S. R.; Lalam, N.; Bhatta, H.; Wright, R. “Lab Scale Demonstration of Pipeline Third-Party Damage Classification Using Convolutional Neural Networks” [Conference Paper], SPIE Defense + Commercial Sensing, National Harbor, MD, April 24, 2024.
Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits
Liu, G., Wu, X., and Romanov, V., 2024, Unconventional Wells Interference: Supervised Machine Learning for Detecting Fracture Hits. Applied Sciences 14(7), 2927. https://doi.org/10.3390/app14072927
Multi-Parametric Gas Sensing for Transformer Monitoring Using an Optical Fiber Sensor Array
- Categories: 2023 Publications, Publications
- Tags: Machine Learning, Sensors, Support Vector Machines
Wuenschell, J., Kim, K.J., Lander, G., and Buric, M., (2023). Multi-Parametric Gas Sensing for Transformer Monitoring Using an Optical Fiber Sensor Array. Proc. SPIE 12532, Optical Waveguide and Laser Sensors II. https://doi.org/10.1117/12.2663804
The Kimberlina synthetic multiphysics dataset for CO2 monitoring investigations
- Categories: 2023 Publications, Publications
- Tags: Machine Learning, Neural Networks, Simulation, SMART
Alumbaugh, D., Gasperikova, E., Crandall, D., Commer, M., Feng, S., Harbert, W., Li, Y., Lin, Y., and Samarasinghe, S., (2023). The Kimberlina synthetic multiphysics dataset for CO2 monitoring investigations. Geoscience Data Journal. https://doi.org/10.1002/gdj3.191
Wave Detection and Tracking Within a Rotating Detonation Engine Through Object Detection
- Categories: 2023 Publications, Publications
- Tags: Computer Vision, Convolutional Neural Network, Machine Learning
Johnson, K.B., Ferguson, D.H., Nix, A.C., and Tallman, Z., (2023). Wave Detection and Tracking Within a Rotating Detonation Engine Through Object Detection. Journal of Propulsion and Power, 39(4). https://doi.org/10.2514/1.B38960
Convoluted Filtering for Process Cycle Modeling
- Categories: 2023 Publications, Publications
- Tags: Deep Learning, Deep-Freeze Graph, Latent Learning
Romanov, V. (2023). Convoluted Filtering for Process Cycle Modeling. Engineering Reports, 5(11), e12657. https://doi.org/10.1002/eng2.12657
Data-driven discovery of a formation prediction rule on high-entropy ceramics
Yan, Y., Pei, Z., Gao, M.C., Misture, S., Wang, K., (2023). Data-driven discovery of a formation prediction rule on high-entropy ceramics. Acta Materialia, 253, 118955, https://doi.org/10.1016/j.actamat.2023.118955
Application of unsupervised deep learning to image segmentation and in-situ contact angle measurements in a CO2-water-rock system
- Categories: 2023 Publications, Publications
- Tags: Computed Tomography, Machine Learning, Unsupervised Deep Learning
Wang, H., Dalton, L., Guo, R., McClure, J., Crandall, D., & Chen, C., (2023). Application of unsupervised deep learning to image segmentation and in-situ contact angle measurements in a CO2-water-rock system. Advances in Water Resources, 173(104385). https://doi.org/10.1016/j.advwatres.2023.104385
Development of an equation-based parallelization method for multiphase particle-in-cell simulations
- Categories: 2022 Publications, Publications
- Tags: Artificial Intelligence, High-performance Computing, Machine Learning
Woo, M., Jordan, T., Nandi, T., Dietiker, J.F., Guenther, C., and Van Essendelft, D., (2022). Development of an equation-based parallelization method for multiphase particle-in-cell simulations. Engineering with Computers. https://doi.org/10.1007/s00366-022-01768-6
Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines
Woo, M., Jordan, T., Schreiber, R., Sharapov, I., Muhammad, S., Koneru, A., James, M., & Van Essendelft, D. (2022). Disruptive Changes in Field Equation Modeling: A Simple Interface for Wafer Scale Engines. arXiv. https://doi.org/10.48550/arxiv.2209.13768
Data-driven offshore CO2 saline storage assessment methodology
- Categories: 2022 Publications, Publications
- Tags: Capacity assessment, Carbon Storage, Geospatial
Romeo, L., Thomas, R., Mark-Moster, M., Bean, A., Bauer, J., & Rose, K., (2022). Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119. https://doi.org/10.1016/j.ijggc.2022.103736
High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures
- Categories: 2022 Publications, Publications
- Tags: Electrocatalysis, Simulation, Solid Oxide Fuel Cells
Hsu, T., Kim, H., Mason, J.H., Mahbub, R., Epting, W.K., Abernathy, H.W., Hackett, G.A., Litster, S., Rollett, A.D., & Salvador, P.A. (2022). High performance finite element simulations of infiltrated solid oxide fuel cell cathode microstructures. Journal of Power Sources, 541, https://doi.org/10.1016/j.jpowsour.2022.231652
A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA
- Categories: 2022 Publications, Publications
- Tags: Carbon Storage, Geospatial, Multi-criteria evaluation
Wendt, A., Sheriff, A., Shih, C.Y., Vikara, D., & Grant, T. (2022). A Multi-criteria CCUS Screening Evaluation of the Gulf of Mexico, USA. International Journal of Greenhouse Gas Control, 118. https://doi.org/10.1016/j.ijggc.2022.103688
Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques
- Categories: 2022 Publications, Publications
- Tags: Alloys, Machine Learning, Regression Analysis
Wenzlick, M., Mamun, O., Devanathan, R., Rose, K., & Hawk, J. (2022). Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques. JOM, 74, 2846-2859. https://doi.org/10.1007/s11837-022-05204-4
Latent Learning with pyroMind.2020
- Categories: 2021 Publications, Publications
- Tags: Artificial Intelligence, Big Data, Latent Learning
Romanov, V., (2021). Latent Learning with pyroMind.2020. 2021 IEE International Conference on Big Data, pp. 4624-4627, https://doi.org/10.1109/BigData52589.2021.9671643
Machine learning accelerated discrete element modeling of granular flows
- Categories: 2021 Publications, Publications
- Tags: Discrete Element Modeling, Machine Learning, Neural Network
Lu, L., Gao, X., Dietiker, J.F., Shahnam, M., & Rogers, W.A. (2021). Machine learning accelerated discrete element modeling of granular flows. Chemical Engineering Science, 245. https://doi.org/10.1016/j.ces.2021.116832
Machine learning approach to transform scattering parameters to complex permittivities
- Categories: 2021 Publications, Publications
- Tags: Machine Learning, Neural Network, Supervised Learning
Tempke, R., Thomas, L., Wildefire, C., Shekhawat, D., & Musho, T., (2021). Machine learning approach to transform scattering parameters to complex permittivities. Journal of Microwave Power and Electromagnetic Energy, 55(4), 287-302, https://doi.org/10.1080/08327823.2021.1993046
Machine-Learning Microstructure for Inverse Material Design
- Categories: 2021 Publications, Publications
- Tags: Alloy Design, Inverse Problem, Machine Learning
Pei, Z., Rozman, K.A., Dogan, O.N., Wen, Y., Gao, N., Holm, E.A., Hawk, J.A., Alman, D.E., & Gao, M.C., (2021). Machine-Learning Microstructure for Inverse Material Design. Advanced Science, 8(23). https://doi.org/10.1002/advs.202101207
Neural network-based order parameter for phase transitions and its applications in high-entropy alloys
- Categories: 2021 Publications, Publications
- Tags: Alloys, Computational Methods, Neural Network
Yin, J., Pei, Z., & Gao, M.C., (2021). Neural network-based order parameter for phase transitions and its applications in high-entropy alloys. Nature Computational Science, 1, 686-693. https//doi.org/10.1038/s43588-021-00139-3
Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys
- Categories: 2021 Publications, Publications
- Tags: Alloys, Computational Methods, Machine Learning
Steingrimsson, B., Fan, X., Yang, X., Gao, M.C., Zhang, Y., & Liaw, P.K., (2021). Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys. npj Computational Materials, 7, 152. https://doi.org/10.1038/s41524-021-00623-4
Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale
Vikara, D., Remson, D., & Khanna, V., (2020). Machine learning-informed ensemble framework for evaluating shale gas production potential: Case study in the Marcellus Shale. Journal of Natural Gas Science and Engineering, 84(12). https://doi.org/10.1016/j.jngse.2020.103679
Predicting Geologic Behavior in Carbon Storage Projects Using Graph Neural Network
- Categories: 2024 Presentations, Presentations
Shih, C. Y., Holcomb, P., Liu, G., Siriwardane, H., Sethi, H., Nabian, M. (2024, March 20). Predicting Geologic Behavior in Carbon Storage Projects Using Graph Neural Network [Conference presentation]. 2024 GTC AI Conference. San Jose, CA.
Modeling the Cost of Onshore CO2 Pipeline Transport and Onshore CO2 Saline Storage
- Categories: 2024 Presentations, Presentations
Morgan, D., Sheriff, A., Mark-Moser, M. K., Liu, G., Grant, T., Creason, C., Vikara, D., Cunha, L. (2024, March 13). Modeling the Cost of Onshore CO2 Pipeline Transport and Onshore CO2 Saline Storage [Conference presentation]. CCUS 2024. Houston, TX. https://www.osti.gov/biblio/2328141
An Insight-Centric Paradigm for Data Reduction and Inference Speed Improvement at the Scurry Area Canyon Reef Operator’s Committee (SACROC) Unit
- Categories: 2024 Presentations, Presentations
Shih, C. Y., Wu, X., Liu, G., Siriwardane, H. (2024, March 11). An Insight-Centric Paradigm for Data Reduction and Inference Speed Improvement at the Scurry Area Canyon Reef Operator’s Committee (SACROC) Unit [Conference presentation]. CCUS 2024. Houston, TX. https://www.osti.gov/biblio/2324889
Physics-informed creep rupture life modeling of high temperature alloys for energy applications
- Categories: 2024 Presentations, Presentations
Wenzlick, M., Trehern, W., Soares Chinen, A., Gao, M., Saidi, W. (2024, March 4). Physics-informed creep rupture life modeling of high temperature alloys for energy applications [Conference presentation]. Minerals, Metals, and Materials Society (TMS) Conference 2024. Orlando, FL.
Complementing the CCS Class VI Well Permit Process with DOE-NETL’s SMART Initiative Tools & Workflows
- Categories: 2024 Presentations, Presentations
Siriwardane, H., Viswanathan, H., Hosseini, S. (2024, February 27). Complementing the CCS Class VI Well Permit Process with DOE-NETL’s SMART Initiative Tools & Workflows [Conference presentation]. Ground Water Protection Council (GWPC) 2024 Underground Injection Control (UIC) Conference. Oklahoma City, OK.
Quantifying Fracture Networks in CO2 Injection Zones: An Unsupervised Machine Learning Approach
- Categories: 2024 Presentations, Presentations
Harbert, W., Myshakin, E., Liu, G., Siriwardane, H. (2024, January 11). Quantifying Fracture Networks in CO2 Injection Zones: An Unsupervised Machine Learning Approach [Conference presentation]. Machine Learning in Solid Earth Geoscience Conference. Santa Fe, NM.
A Machine Learning Approach For Well Integrity Prediction Using Cement Bond Logs
- Categories: 2023 Presentations, Presentations
Grabowski, O., Houghton, B., Pfander, I., Dilmore, R., Lackey, G. (2023, October 17). A Machine Learning Approach for Well Integrity Prediction Using Cement Bond Logs [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://www.netl.doe.gov/energy-analysis/details?id=a8f6f8e3-954d-415c-b8af-06eda014050c
Carbon Storage Technical Viability Approach (CS TVA): Multi-Factor Data Assessment Workflow to Determine Geologic Sequestration Feasibility
- Categories: 2023 Presentations, Presentations
Mulhern, J., Mark-Moser, M. K., Creason, C., Shay, J., Rose, K. (2023, October 15). Carbon Storage Technical Viability Approach (CS TVA): Multi-Factor Data Assessment Workflow to Determine Geologic Sequestration Feasibility [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA.
Process Cycle Modeling with AI
- Categories: 2023 Presentations, Presentations
Romanov, V. (2023, October 1). Process Cycle Modeling with AI [Conference Presentation]. Materials Science & Technology (MS&T) 2023 Annual Meeting. Columbus, OH. https://www.osti.gov/servlets/purl/2337518.
An Introduction to NETL’s Science-based AI/ML Institute
- Categories: 2021 Presentations, Presentations
An Introduction to NETL’s Science-based AI/ML Institute [Presentation], (2021, May 13). https://netl.doe.gov/sites/default/files/netl-file/21AIML_Rose_0.pdf