Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.
disCO2ver
Unlocking data-driven capabilities for the entire CCS community
Home » Bibliographies
Bibliographies
Automatic Waveform Quality Control for Surface Waves Using Machine Learning
NRAP-Open-IAM: Generic Aquifer Component Development and Testing
Bacon, D. H. NRAP-Open-IAM: Generic Aquifer Component Development and Testing. PNNL-32590, 2022, Pacific Northwest National Laboratory, Richland, WA. https://doi.org/10.2172/1845855.
Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales
Chai, C., Maceira, M., and EGS Collab Team, “Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales,” in Proceedings, 47th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 47, 635–645, (2022) https://www.osti.gov/biblio/1845768.
Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes
Gasperikova, E.; Appriou, D.; Bonneville, A.; Feng, Z.; Huang, L.; Gao, K.; Yang, X.; Daley, T. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control 2022, 114, Article 103585. https://doi.org/10.1016/j.ijggc.2022.103585.
Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction
Chen, B.; Zhou, Q. Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction. Journal of Geophysical Research – Solid Earth 2022, Research Article. https://doi.org/10.1029/2021JB022964.
Distilling Data to Drive Carbon Storage Insights
Morkner, P.; Bauer, J.; Creason, C.; Sabbatino, M.; Wingo, P.; Greenburg, R.; Walker, S.; Yeates, D.; Rose, K. Distilling Data to Drive Carbon Storage Insights. Computers & Geosciences 2022, 158, Article 104945. https://doi.org/10.1016/j.cageo.2021.104945.
Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers
Yang, X.; Chen, X.; Smith, M.M. Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers. Journal of Applied Geophysics 2022, 196(104507). https://doi.org/10.1016/j.jappgeo.2021.104507.
A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites
Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533
A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites
Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533
Development of Machine Learning Models for Full Field Reservoir Characterization
Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178
Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells
Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.
A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site
Mitchell, N.; Lackey, G.; Schwartz, B.; Strazisar, B.; Dilmore, R. A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site. Greenhouse Gases: Science and Technology 2023, 13(3), 320-339. https://doi.org/10.1002/ghg.2219.
Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network
Wang, Z.; Dilmore, R. M.; Bacon, D. H.; Harbert, W. Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network, Greenhouse Gases: Science and Technology, 2021, 11(2), 360-376. https://doi.org/10.1002/ghg.2056.
Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage
Chang, K.W., and Yoon, H., “Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage,” Seismological Research Letters, 49(3), 1447–1454, (2023) https://doi.org/10.1785/0220220365.
Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity
Liu, Y., Feng, S., Tsvankin, I., Alumbaugh, D., and Lin, Y., “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” Geophysics, (2022) doi.org/10.1190/geo2022-0050.1.
NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification
Thomas, R. B.; Schwartz, B.; Oldenburg, C.; Bacon, D. H.; Gasperikova, E.; Lackey. G.; Appriou, D.; Harp, D.; Chen, B.; Doughty, C.; Burghardt, J.; Pawar, R. J.; Brown, C. F.; Smith, M. M.; Van Voorhees, R.; Strazisar, B. R.; Dilmore, R. M. NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification; NRAP-TRS-I-002-2022; DOE.NETL-2022.3344; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 76. DOI: 10.2172/1906399 https://www.osti.gov/biblio/1906399/
Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership
Dilmore, R. M.; Appriou, D.; Bacon, D.; Brown, C.; Cihan, A.; Gasperikova, E.; Kroll, K.; Oldenburg, C. M.; Pawar, R. J.; Smith, M. M.; Strazisar, B. R.; Templeton, D.; Thomas, R. B.; Vasylkivska, V. S.; White, J. A. Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4298480
Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility
Brown, C. F.; Lackey, G.; Schwartz, B.; Deane, M.; Dilmore, R.; Blanke, H.; O’Brien, S.; Rowe, C. O’Brien, S.; Rowe, C. Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4297575
High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study
Fathi, E., Carr, T.R., Adenan, M.F., Panetta, B., Kumar, A., and Carney, B.J., ”High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study,” Machine Learning with Applications, Vol. 10 (2022), https://doi.org/10.1016/j.mlwa.2022.100421.
Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning
Kadeethum, T., Ballarin, F., O’Malley, D., Choi, Y., Bouklas, N., and Yoon, H., “Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning,” Scientific Reports, 12, Article 20654 (2022), https://doi.org/10.1038/s41598-022-24545-3.
Advanced Machine Learning and Computational Methods
Schuetter, J. Tartakovsky, A. Shih, C. (2023, August 31). Advanced Machine Learning and Computational Methods [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Schuetter.pdf
Overview of SMART Initiative
Siriwardane H. Mishra, S. (2023, August 31). Overview of SMART Initiative [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Siriwardane.pdf
Assessing Risks of Rapid Commercial-Scale Deployment of Geologic Carbon Storage
Bacon, D. Camargo, J. Kirol, A. Haagenson, R. Creason, C. Lackey, G. Morkner, P. Zhou, Q. Cihan, A. Eier, J. Schmidt, B. (2023, August 31). Assessing Risks of Rapid Commercial-Scale Deployment of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Bacon1.pdf
Developing a Tool to Quantify Liability of Geologic Carbon Storage
Morgan, D. Bello, K. Burghardt, J. Creason, C. Dilmore, R. Gasperikova, E. Grant, T. Huerta, N. Liu, G. Kroll, K. Mark-Moser, M. Oldenburg, C. Rasouli, P. Smith, M. Strazisar, B. Vasylkivska, V. Vikara, D. Warner, T. Wilson, K. (2023, August 31). Developing a Tool to Quantify Liability of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Morgan.pdf
Adaptive, Risk-Based Monitoring of Geologic Carbon Storage
Gasperikova, E. Vasylkivska, V. Yang, X. Huang, L. Hanna, A. Chen, B. Creasy, N. Li, D. Blatter, D. Kumar, A. Dilmore, R. Harbert, B. Morgan, D. Iyer, J.K. Smith, M. Kirol, A. Appriou, D. (2023, August 31). Adaptive, Risk-Based Monitoring of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Gasperikova.pdf
NRAP Phase III Overview: Objectives and Progress
Dilmore, R. (2023, August 31). NRAP Phase III Overview: Objectives and Progress [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Dilmore.pdf
Anonymizing Sensitive Carbon Storage Data Tool
Morkner, P. Bauer, J. Wingo, P. Gao, M. Sharma, M. Hoover, B. Neumann, C. Johnson, C. Schuetter, J. Rose, K. (2023, August 29). Anonymizing Sensitive Carbon Storage Data Tool [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Morkner.pdf
A Comprehensive Dashboard for CS Planning
Justman D. Pantaleone, S. Sharma, M. Romeo, L. Morkner, P. Bauer, J. (2023, August 29). A Comprehensive Dashboard for CS Planning [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Justman.pdf
EDX Cloud Optimization for Carbon Management
Rose, K. Baker, V. (2023, August 28). EDX Cloud Optimization for Carbon Management [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Rose.pdf
Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver
Zaengle, D. Sinclair, J. Wingo, P. Rowan, C. Rose, K. (2023, August 28). Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Zaengle.pdf