Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.
disCO2ver
Unlocking data-driven capabilities for the entire CCS community
Home » Bibliographies
Bibliographies
Automatic Waveform Quality Control for Surface Waves Using Machine Learning
NRAP-Open-IAM: Generic Aquifer Component Development and Testing
Bacon, D. H. NRAP-Open-IAM: Generic Aquifer Component Development and Testing. PNNL-32590, 2022, Pacific Northwest National Laboratory, Richland, WA. https://doi.org/10.2172/1845855.
Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales
Chai, C., Maceira, M., and EGS Collab Team, “Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales,” in Proceedings, 47th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 47, 635–645, (2022) https://www.osti.gov/biblio/1845768.
Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes
Gasperikova, E.; Appriou, D.; Bonneville, A.; Feng, Z.; Huang, L.; Gao, K.; Yang, X.; Daley, T. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control 2022, 114, Article 103585. https://doi.org/10.1016/j.ijggc.2022.103585.
Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction
Chen, B.; Zhou, Q. Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction. Journal of Geophysical Research – Solid Earth 2022, Research Article. https://doi.org/10.1029/2021JB022964.
Distilling Data to Drive Carbon Storage Insights
Morkner, P.; Bauer, J.; Creason, C.; Sabbatino, M.; Wingo, P.; Greenburg, R.; Walker, S.; Yeates, D.; Rose, K. Distilling Data to Drive Carbon Storage Insights. Computers & Geosciences 2022, 158, Article 104945. https://doi.org/10.1016/j.cageo.2021.104945.
Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers
Yang, X.; Chen, X.; Smith, M.M. Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers. Journal of Applied Geophysics 2022, 196(104507). https://doi.org/10.1016/j.jappgeo.2021.104507.
A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites
Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533
A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites
Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533
Development of Machine Learning Models for Full Field Reservoir Characterization
Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178
Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells
Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.
A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site
Mitchell, N.; Lackey, G.; Schwartz, B.; Strazisar, B.; Dilmore, R. A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site. Greenhouse Gases: Science and Technology 2023, 13(3), 320-339. https://doi.org/10.1002/ghg.2219.
Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network
Wang, Z.; Dilmore, R. M.; Bacon, D. H.; Harbert, W. Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network, Greenhouse Gases: Science and Technology, 2021, 11(2), 360-376. https://doi.org/10.1002/ghg.2056.
Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage
Chang, K.W., and Yoon, H., “Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage,” Seismological Research Letters, 49(3), 1447–1454, (2023) https://doi.org/10.1785/0220220365.
Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity
Liu, Y., Feng, S., Tsvankin, I., Alumbaugh, D., and Lin, Y., “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” Geophysics, (2022) doi.org/10.1190/geo2022-0050.1.
NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification
Thomas, R. B.; Schwartz, B.; Oldenburg, C.; Bacon, D. H.; Gasperikova, E.; Lackey. G.; Appriou, D.; Harp, D.; Chen, B.; Doughty, C.; Burghardt, J.; Pawar, R. J.; Brown, C. F.; Smith, M. M.; Van Voorhees, R.; Strazisar, B. R.; Dilmore, R. M. NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification; NRAP-TRS-I-002-2022; DOE.NETL-2022.3344; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 76. DOI: 10.2172/1906399 https://www.osti.gov/biblio/1906399/
Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership
Dilmore, R. M.; Appriou, D.; Bacon, D.; Brown, C.; Cihan, A.; Gasperikova, E.; Kroll, K.; Oldenburg, C. M.; Pawar, R. J.; Smith, M. M.; Strazisar, B. R.; Templeton, D.; Thomas, R. B.; Vasylkivska, V. S.; White, J. A. Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4298480
Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility
Brown, C. F.; Lackey, G.; Schwartz, B.; Deane, M.; Dilmore, R.; Blanke, H.; O’Brien, S.; Rowe, C. O’Brien, S.; Rowe, C. Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4297575
High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study
Fathi, E., Carr, T.R., Adenan, M.F., Panetta, B., Kumar, A., and Carney, B.J., ”High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study,” Machine Learning with Applications, Vol. 10 (2022), https://doi.org/10.1016/j.mlwa.2022.100421.
Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning
Kadeethum, T., Ballarin, F., O’Malley, D., Choi, Y., Bouklas, N., and Yoon, H., “Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning,” Scientific Reports, 12, Article 20654 (2022), https://doi.org/10.1038/s41598-022-24545-3.
Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403)
Hammack, R. (2021, August 5). Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Hammack5.pdf
Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube
Morkner, P., Bauer, J., Rose, K., Rowan, C., Barkhurst, A. (2021, July 27). Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube. [Conference presentation]. Invited talk at the CCUS Database Virtual Symposium. https://www.osti.gov/servlets/purl/1844394
AI/ML Forecasting of Offshore Platform Integrity to Improve Safety and Reliability
Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. 2021. Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://www.osti.gov/servlets/purl/1845120
Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk
Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. (2021, April 9). Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk [Conference presentation]. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://edx.netl.doe.gov/sites/offshore/forecasting-offshore-platform-integrity-applying-machine-learning-algorithms-to-quantify-lifespan-and-mitigate-risk/
ML Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities
Bauer, J., Justman, D., and Rose. K. Invited presentation. Machine Learning Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities. Department of Homeland Security Science & Technology Directorate 2021 Big Data Series Workshop, March 24, 2021. https://www.osti.gov/biblio/1814179
Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel
Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel
Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights
Mark-Moser, M., Rose, K., Baker, V. D. (2020, December 17). Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights. [Conference presentation]. Session: IN042 – Utilizing unstructured data in Earth Science Poster Session. https://ui.adsabs.harvard.edu/abs/2020AGUFMIN0140002M/abstract
NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk
Vasylkivska, V., Bacon D., Chen, Bailian, Dilmore R., Harp D., King S., Lackey G., Lindner E., Liu Guoxiang, Mansoor K., Zhang Yingqi. NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk. AGU Annual Fall Meeting (Virtual), 2020 Session: GC110. Advances in Computational Methods for Geologic CO2 Sequestration I eLightning. https://ui.adsabs.harvard.edu/abs/2020AGUFMGC110..10V/abstract
Developing a structured seafloor sediment database from disparate datasets using SmartSearch
Mark-Moser, M., Rose, K., Baker, V. D. 2020. Developing a structured seafloor sediment database from disparate datasets using SmartSearch. AGU Annual Fall Meeting (Virtual), 2020. Session: IN042 – Utilizing unstructured data in earth science https://www.osti.gov/servlets/purl/1776797
Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment
Ghanem, R., Zhang, R., Rose, K., invited talk, Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment, AGU Annual Meeting 2020, Session: H027 – Artificial Intelligence and Machine Learning for Multiscale Model-Experimental Integration https://agu.confex.com/agu/fm20/prelim.cgi/Session/103051