disCO2ver

Unlocking data-driven capabilities for the entire CCS community

Bibliographies

Filter by Categories

Automatic Waveform Quality Control for Surface Waves Using Machine Learning

Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.

NRAP-Open-IAM: Generic Aquifer Component Development and Testing

Bacon, D. H. NRAP-Open-IAM: Generic Aquifer Component Development and Testing. PNNL-32590, 2022, Pacific Northwest National Laboratory, Richland, WA. https://doi.org/10.2172/1845855.

Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales

Chai, C., Maceira, M., and EGS Collab Team, “Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales,” in Proceedings, 47th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 47, 635–645, (2022) https://www.osti.gov/biblio/1845768.

Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes

Gasperikova, E.; Appriou, D.; Bonneville, A.; Feng, Z.; Huang, L.; Gao, K.; Yang, X.; Daley, T. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control 2022, 114, Article 103585. https://doi.org/10.1016/j.ijggc.2022.103585.

Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction

Chen, B.; Zhou, Q. Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction. Journal of Geophysical Research – Solid Earth 2022, Research Article. https://doi.org/10.1029/2021JB022964.

Distilling Data to Drive Carbon Storage Insights

Morkner, P.; Bauer, J.; Creason, C.; Sabbatino, M.; Wingo, P.; Greenburg, R.; Walker, S.; Yeates, D.; Rose, K. Distilling Data to Drive Carbon Storage Insights. Computers & Geosciences 2022, 158, Article 104945. https://doi.org/10.1016/j.cageo.2021.104945.

Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers

Yang, X.; Chen, X.; Smith, M.M. Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers. Journal of Applied Geophysics 2022, 196(104507). https://doi.org/10.1016/j.jappgeo.2021.104507.

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

Development of Machine Learning Models for Full Field Reservoir Characterization

Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178

NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure

Lackey, G.; Dilmore, R. NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure; DOE/NETL-2021/2660; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2021; p 100. DOI: 10.2172/1828877 https://www.osti.gov/biblio/1828877

NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model

Baek S.; Bacon, D. H.; Huerta, N.J. NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model. PNNL-32364, 2021. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1840652.

Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage

Templeton, D., Schoenball, M., Layland-Bachmann, C., Foxall, W., Kroll, K., Burghardt, J., Dilmore, R., White, J.. Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage (Draft Report) 2021. NRAP Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV. https://www.osti.gov/biblio/1834402/

Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration

Guglielmi, Y.; Nussbaum, C.; Cappa, F.; de Barros, L.; Rutqvist, J., Birkholzer, J. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control 2021, 111, Article 103471. https://doi.org/10.1016/j.ijggc.2021.103471

Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock

Bao, T.; Burghardt, J. A.; Gupta, V.; Edelman, E.; McPherson, B. J.; White, M. D. Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock. International Journal of Rock Mechanics and Mining Sciences, 2021. 146, Article 104796. PNNL-SA-153774. doi:10.1016/j.ijrmms.2021.104796. https://www.sciencedirect.com/science/article/abs/pii/S1365160921001817?via%3Dihub

Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity

Min, Y.; Montross, S.; Spaulding, R.; Brandi, M.; Huerta, N.; Thomas, R.; Kutchko, B. Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity. Environmental Science & Technology 2021, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699.

NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management

Vasykivska, V.; Dilmore, R.; Lackey, G.; Zhang, Y.; King, S.; Bacon, D.; Chen, B.; Mansoor, K.;Harp, D. NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management. Environmental Modeling & Software 2021, 143, Article 105114. https://www.sciencedirect.com/science/article/abs/pii/S1364815221001572?via%3Dihub

Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis

Chen, B.; Zhou, Q. Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis. Theoretical and Applied Fracture Mechanics 2021, 114, Article 102969. https://doi.org/10.1016/j.tafmec.2021.102969.

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-31781.pdf

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.osti.gov/servlets/purl/1825928

Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin

Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Myshakin, E., Crandall, D., Cunha, L., (2024, June 23). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation], ARMA 24–1183, 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colorado. https://www.osti.gov/biblio/2228745

Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations

Mark-Moser, M. K., Romeo, L., Duran, R., Bauer, J., Rose, K., (2024, May 6). Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations. [Conference presentation] Offshore Technology Conference 2024. Houston, TX.  https://www.osti.gov/biblio/2352616

Developing a National Structural Complexity Database for U.S. Saline Basins

Justman, D., Creason, C. G., Pantaleone, S., Amrine, D., Rose, K. (2023, October 15-18). Developing a National Structural Complexity Database for U.S. Saline Basins [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/391762

Carbon Storage Open Data Geospatial Curation and Accessibility

Choisser, A., Morkner, P., Sabbatino, M., Bauer, J., Rose, K. (2023, October 16-18). Carbon Storage Open Data Geospatial Curation and Accessibility [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://community.geosociety.org/gsa2023/home

RokBase: Digital Rock Visualization and Exploration Web Application

Sharma, M. Paronish, T. Crandall, D. Naberhaus, T. Nakacwa, S. (2023, October 16). RokBase: Digital Rock Visualization and Exploration Web Application [Conference presentation]. GSA Connects Conference 2023. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/394714

CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment

Sharma, M. Romeo, L. Bauer, J. Amrine, D. Pfander, I. Sabbatino, M. Rose, K. (2023, October 15) CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment [Conference presentation]. GSA Connects Conference 2023.  https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/395013

Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs

Rowan, C. Sinclair, J. (2023, August 31). Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Rowan.pdf

DOE’s Carbon Matchmaker

Sharma, M. Dooley, K. (2023, August 31). DOE’s Carbon Matchmaker [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Sharma.pdf

Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements

Wanosky, G. Sinclair, J. (2023, August 31). Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Wanosky.pdf

SMART Site-Specific Visualization and Decision Support

Bacon, D. Morgan, D. Mudunuru, M. (2023, August 31). SMART Site-Specific Visualization and Decision Support [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Bacon2.pdf

Scroll to Top