Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.
disCO2ver
Unlocking data-driven capabilities for the entire CCS community
Home » Bibliographies
Bibliographies
Automatic Waveform Quality Control for Surface Waves Using Machine Learning
NRAP-Open-IAM: Generic Aquifer Component Development and Testing
Bacon, D. H. NRAP-Open-IAM: Generic Aquifer Component Development and Testing. PNNL-32590, 2022, Pacific Northwest National Laboratory, Richland, WA. https://doi.org/10.2172/1845855.
Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales
Chai, C., Maceira, M., and EGS Collab Team, “Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales,” in Proceedings, 47th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 47, 635–645, (2022) https://www.osti.gov/biblio/1845768.
Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes
Gasperikova, E.; Appriou, D.; Bonneville, A.; Feng, Z.; Huang, L.; Gao, K.; Yang, X.; Daley, T. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control 2022, 114, Article 103585. https://doi.org/10.1016/j.ijggc.2022.103585.
Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction
Chen, B.; Zhou, Q. Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction. Journal of Geophysical Research – Solid Earth 2022, Research Article. https://doi.org/10.1029/2021JB022964.
Distilling Data to Drive Carbon Storage Insights
Morkner, P.; Bauer, J.; Creason, C.; Sabbatino, M.; Wingo, P.; Greenburg, R.; Walker, S.; Yeates, D.; Rose, K. Distilling Data to Drive Carbon Storage Insights. Computers & Geosciences 2022, 158, Article 104945. https://doi.org/10.1016/j.cageo.2021.104945.
Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers
Yang, X.; Chen, X.; Smith, M.M. Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers. Journal of Applied Geophysics 2022, 196(104507). https://doi.org/10.1016/j.jappgeo.2021.104507.
A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites
Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533
A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites
Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533
Development of Machine Learning Models for Full Field Reservoir Characterization
Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178
NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure
Lackey, G.; Dilmore, R. NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure; DOE/NETL-2021/2660; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2021; p 100. DOI: 10.2172/1828877 https://www.osti.gov/biblio/1828877
NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model
Baek S.; Bacon, D. H.; Huerta, N.J. NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model. PNNL-32364, 2021. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1840652.
Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage
Templeton, D., Schoenball, M., Layland-Bachmann, C., Foxall, W., Kroll, K., Burghardt, J., Dilmore, R., White, J.. Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage (Draft Report) 2021. NRAP Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV. https://www.osti.gov/biblio/1834402/
Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration
Guglielmi, Y.; Nussbaum, C.; Cappa, F.; de Barros, L.; Rutqvist, J., Birkholzer, J. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control 2021, 111, Article 103471. https://doi.org/10.1016/j.ijggc.2021.103471
Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock
Bao, T.; Burghardt, J. A.; Gupta, V.; Edelman, E.; McPherson, B. J.; White, M. D. Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock. International Journal of Rock Mechanics and Mining Sciences, 2021. 146, Article 104796. PNNL-SA-153774. doi:10.1016/j.ijrmms.2021.104796. https://www.sciencedirect.com/science/article/abs/pii/S1365160921001817?via%3Dihub
Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity
Min, Y.; Montross, S.; Spaulding, R.; Brandi, M.; Huerta, N.; Thomas, R.; Kutchko, B. Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity. Environmental Science & Technology 2021, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699.
NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management
Vasykivska, V.; Dilmore, R.; Lackey, G.; Zhang, Y.; King, S.; Bacon, D.; Chen, B.; Mansoor, K.;Harp, D. NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management. Environmental Modeling & Software 2021, 143, Article 105114. https://www.sciencedirect.com/science/article/abs/pii/S1364815221001572?via%3Dihub
Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis
Chen, B.; Zhou, Q. Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis. Theoretical and Applied Fracture Mechanics 2021, 114, Article 102969. https://doi.org/10.1016/j.tafmec.2021.102969.
NRAP-Open-IAM: FutureGen2 Component Models
Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-31781.pdf
NRAP-Open-IAM: FutureGen2 Component Models
Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.osti.gov/servlets/purl/1825928.
Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin
Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Myshakin, E., Crandall, D., Cunha, L., (2024, June 23). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation], ARMA 24–1183, 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colorado. https://www.osti.gov/biblio/2228745
Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations
Mark-Moser, M. K., Romeo, L., Duran, R., Bauer, J., Rose, K., (2024, May 6). Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations. [Conference presentation] Offshore Technology Conference 2024. Houston, TX. https://www.osti.gov/biblio/2352616
Developing a National Structural Complexity Database for U.S. Saline Basins
Justman, D., Creason, C. G., Pantaleone, S., Amrine, D., Rose, K. (2023, October 15-18). Developing a National Structural Complexity Database for U.S. Saline Basins [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/391762
Carbon Storage Open Data Geospatial Curation and Accessibility
Choisser, A., Morkner, P., Sabbatino, M., Bauer, J., Rose, K. (2023, October 16-18). Carbon Storage Open Data Geospatial Curation and Accessibility [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://community.geosociety.org/gsa2023/home
RokBase: Digital Rock Visualization and Exploration Web Application
Sharma, M. Paronish, T. Crandall, D. Naberhaus, T. Nakacwa, S. (2023, October 16). RokBase: Digital Rock Visualization and Exploration Web Application [Conference presentation]. GSA Connects Conference 2023. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/394714
CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment
Sharma, M. Romeo, L. Bauer, J. Amrine, D. Pfander, I. Sabbatino, M. Rose, K. (2023, October 15) CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment [Conference presentation]. GSA Connects Conference 2023. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/395013
Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs
Rowan, C. Sinclair, J. (2023, August 31). Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Rowan.pdf
DOE’s Carbon Matchmaker
Sharma, M. Dooley, K. (2023, August 31). DOE’s Carbon Matchmaker [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Sharma.pdf
Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements
Wanosky, G. Sinclair, J. (2023, August 31). Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Wanosky.pdf
SMART Site-Specific Visualization and Decision Support
Bacon, D. Morgan, D. Mudunuru, M. (2023, August 31). SMART Site-Specific Visualization and Decision Support [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Bacon2.pdf