disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

EJ/SJ Dynamic Datasets for CCS Systems and the Energy Transition Web Atlas Tool

Sharma, M. White, C. Cleaveland, C. Romeo, L. Bauer, J. Rose, K. (2023, August 28). EJ/SJ Dynamic Datasets for CCS Systems and the Energy Transition Web Atlas Tool [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Sharma.pdf

Developing a National Structural Complexity Database for U.S. Saline Basins

Justman, D. Creason, C. Pantaleone, S. Gordon, A. Amrine, D. Rose, K. (2023, August 28). Developing a National Structural Complexity Database for U.S. Saline Basins [Conference presentation]. FECM/NETL Carbon Management Meeting 2023.  https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Justman.pdf

Carbon Storage Technical Viability Approach

Mark-Moser, M. Creason, C. Mulhern, J. Shay, J. Lara, A. Rose, K. (2023, August 28). Carbon Storage Technical Viability Approach [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Mark-Moser.pdf

EDX Utilization of Cloud Open Data Programs to Enhance Reuse of Large CS Datasets

Rowan, C. Rose, K. (2023, August 28). EDX Utilization of Cloud Open Data Programs to Enhance Reuse of Large CS Datasets. FECM/NETL Carbon Management Meeting 2023 [Conference presentation].  https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Rowan.pdf

CS BIL Communications and Stakeholder Outreach

Wanosky, G., and Sinclair, J., “CS BIL Communications and Stakeholder Outreach,” 2023 Carbon Management Research Project Review Meeting, Pittsburg, PA, August 28–September 1, 2023.

Deploying a National Well Database to Support CS Reuse and Risk

 Romeo, L., Bauer, J., Amrine, D., Pfander, I., Mulhern, J., Sabbatino, M., and Rose, K., “Deploying a National Well Database to Support CS Reuse and Risk”. 2023 Carbon Management Research Project Review Meeting, Pittsburg, PA, August 28–September 1, 2023.

Novel Geomechanical Signal Methodologies (FWP-1022403)

Hakala, A. (2021, August 6). Novel Geomechanical Signal Methodologies. [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Hakala6.pdf

SMART: Real Time Forecasting for Carbon Storage

McGuire, T. Yonkofski, C. (2021). SMART: Real Time Forecasting of Carbon Storage. 2021 Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_McGuire6.pdf

Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA

Sharma, M., Paronish, T., Mitchell, N., Crandall, D., Zerbe, S., Pyle, S.J., Howard, C.M., Haldeman, A., and Neubaum, J., “Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA,” NETL-PUB-3889, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 36, https://edx.netl.doe.gov/dataset/ct-scanning-and-gm-of-appalachian-basin-core-from-the-jonesand-laughlin-1-well-beaver-county-pa, DOI: 10.2172/1995971.

Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core

Crandall, D., Paronish, T., Mitchell, N., Jarvis, K., Brown, S., Moore, J., Gill, M., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core,” NETL-PUB-3877, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 60, https://edx.netl.doe.gov/dataset/computed-tomography-scanning-and-petrophysicalmeasurements-of-the-lively-grove-1-well-core, DOI: 10.2172/1989188.

NRAP-Open-IAM: Generic Aquifer Component Development and Testing

Bacon, D. H. NRAP-Open-IAM: Generic Aquifer Component Development and Testing. PNNL-32590, 2022, Pacific Northwest National Laboratory, Richland, WA. https://doi.org/10.2172/1845855.

Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales

Chai, C., Maceira, M., and EGS Collab Team, “Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales,” in Proceedings, 47th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 47, 635–645, (2022) https://www.osti.gov/biblio/1845768.

Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes

Gasperikova, E.; Appriou, D.; Bonneville, A.; Feng, Z.; Huang, L.; Gao, K.; Yang, X.; Daley, T. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control 2022, 114, Article 103585. https://doi.org/10.1016/j.ijggc.2022.103585.

Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction

Chen, B.; Zhou, Q. Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction. Journal of Geophysical Research – Solid Earth 2022, Research Article. https://doi.org/10.1029/2021JB022964.

Distilling Data to Drive Carbon Storage Insights

Morkner, P.; Bauer, J.; Creason, C.; Sabbatino, M.; Wingo, P.; Greenburg, R.; Walker, S.; Yeates, D.; Rose, K. Distilling Data to Drive Carbon Storage Insights. Computers & Geosciences 2022, 158, Article 104945. https://doi.org/10.1016/j.cageo.2021.104945.

Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers

Yang, X.; Chen, X.; Smith, M.M. Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers. Journal of Applied Geophysics 2022, 196(104507). https://doi.org/10.1016/j.jappgeo.2021.104507.

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

Impact of time-dependent deformation on geomechanical risk for geologic carbon storage

Bao T.; Burghardt, J. A.; Gupta, V.; White, M. D. Impact of time-dependent deformation on geomechanical risk for geologic carbon storage. International Journal of Rock Mechanics and Mining Sciences 2021, 148, 104940. PNNL-SA-161528. https://doi.org/10.1016/j.ijrmms.2021.104940.

NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure

Lackey, G.; Dilmore, R. NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure; DOE/NETL-2021/2660; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2021; p 100. DOI: 10.2172/1828877 https://www.osti.gov/biblio/1828877

Data Curation for Basin-Scale Modeling in NRAP Phase III

Morkner, P., and Zhou, Q. Data Curation for Basin-Scale Modeling in NRAP Phase III. National Risk Assessment Partnership Annual Technical Meeting, May 2022. Oral Presentation. https://www.osti.gov/servlets/purl/1891859

Development of Machine Learning Models for Full Field Reservoir Characterization

Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178

Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – Accelerating Cross-Disciplinary AI/ML for Applied Geoscience, Energy, and Environmental Challenges

Shih, C., Thornton, J., Rose, K., Syamlal, M., Bromhal, G., Guenther, C., Pfautz, J., Van Essendelft, D., and Bauer, J., 2021, Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – accelerating cross-disciplinary AI/ML for applied geoscience, energy, and environmental challenges. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: IN12A – Growing Opportunities for Multiparty Collaborations in Artificial Intelligence and Machine Learning for Science Research. https://ui.adsabs.harvard.edu/abs/2021AGUFMIN12A..05S/abstract

Improving Prediction of Subsurface Properties Using a Geoscience Informed, Multi-Technique, Artificial Intelligence Approach

Rose, K., Mark-Moser, M., Suhag, A., and Bauer, J. 2021. Improving prediction of subsurface properties using a geoscience informed, multi-technique, artificial intelligence approach (Invited). AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H33C – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://ui.adsabs.harvard.edu/abs/2021AGUFM.H33C..01R/abstract

Leveraging Data Ecosystems to Support Earth Science Research for Decarbonization

Morkner, P., Mark-Moser, M., Justman, D., Rowan, C., Bauer, J., and Rose, K., 2021. Leveraging Data Ecosystems to Support Earth Science Research For Decarbonization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session U21A-07 – How Earth Science Research Can Help Accelerate the Transition to a Decarbonized Economy. https://ui.adsabs.harvard.edu/abs/2021AGUFM.U21A..07M/abstract

Exploring Subsurface Data Availability on the Energy Data eXchange (EDX)

Morkner, P., Bean, A., Bauer, J., Barkhurst, A., and Rose, K.. 2021. Exploring subsurface data availability on the Energy Data eXchange. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: SY039 – Subsurface Storage of Natural Gas, CO2, and Hydrogen: Key Learnings and Future Opportunities. https://www.osti.gov/servlets/purl/1846774

AI/ML Integration for Accelerated Analysis and Forecast of Offshore Hazards

Mark-Moser, M., Wingo, P., Duran, R., Dyer, A., Zaengle, D., Suhag, A., Hoover, B., Pantaleone, S., Shay, J., Bauer, J., and Rose, K. 2021. AI/ML integration for accelerated analysis and forecast of offshore hazards. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: EP027 – Proven AI/ML applications in the Earth Sciences. https://www.osti.gov/servlets/purl/1846789

On the Predictability of Loop Current Eddy Shedding Events and Unexpected Links to the Brazil and Guiana Currents

Duran, R., Liang, X.S., Allende-Arandia, M.E., Appendini, C.M., Mark-Moser, M., Rose, K., Bauer, J. 2021. On the predictability of Loop Current Eddy Shedding events and unexpected links to the Brazil and Guiana Currents. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: OS45D – Ocean Dynamics of the Gulf of Mexico III Poster. https://www.osti.gov/servlets/purl/1846777

Evaluating the Effects of a Low-Carbon Energy Transition on Existing U.S. Fossil Energy Communities

Bauer, J., Rose, K., Romeo, L., Justman, D., Hoover, B., and B. White. 2021. Evaluating the effects of a low-carbon energy transition on existing U.S. fossil energy communities. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session GC25G: Environmental Justice/Equity and Global Change: Methodologies, Frameworks, and Results II Poster. https://ui.adsabs.harvard.edu/abs/2021AGUFMGC25G0722B/abstract

Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico

Pantaleone, S., Mark Moser, M., Bean, A., Walker, S., Rose, K., 2021, “Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico”. AAPG/SEG IMAGE conference, Denver, Colorado, September 26, 2021 October 1, 2021. https://edx.netl.doe.gov/sites/offshore/forecasting-3d-structural-complexity-with-ai-ml-method-mississippi-canyon-gulf-of-mexico/

Scroll to Top