disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity

Liu, Y., Feng, S., Tsvankin, I., Alumbaugh, D., and Lin, Y., “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” Geophysics, (2022) doi.org/10.1190/geo2022-0050.1.

NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification

Thomas, R. B.; Schwartz, B.; Oldenburg, C.; Bacon, D. H.; Gasperikova, E.; Lackey. G.; Appriou, D.; Harp, D.; Chen, B.; Doughty, C.; Burghardt, J.; Pawar, R. J.; Brown, C. F.; Smith, M. M.; Van Voorhees, R.; Strazisar, B. R.; Dilmore, R. M. NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification; NRAP-TRS-I-002-2022; DOE.NETL-2022.3344; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 76. DOI: 10.2172/1906399 https://www.osti.gov/biblio/1906399/

Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership

Dilmore, R. M.; Appriou, D.; Bacon, D.; Brown, C.; Cihan, A.; Gasperikova, E.; Kroll, K.; Oldenburg, C. M.; Pawar, R. J.; Smith, M. M.; Strazisar, B. R.; Templeton, D.; Thomas, R. B.; Vasylkivska, V. S.; White, J. A. Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4298480

Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility

Brown, C. F.; Lackey, G.; Schwartz, B.; Deane, M.; Dilmore, R.; Blanke, H.; O’Brien, S.; Rowe, C. O’Brien, S.; Rowe, C. Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4297575

High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study

Fathi, E., Carr, T.R., Adenan, M.F., Panetta, B., Kumar, A., and Carney, B.J., ”High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study,” Machine Learning with Applications, Vol. 10 (2022), https://doi.org/10.1016/j.mlwa.2022.100421.

Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning

Kadeethum, T., Ballarin, F., O’Malley, D., Choi, Y., Bouklas, N., and Yoon, H., “Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning,” Scientific Reports, 12, Article 20654 (2022), https://doi.org/10.1038/s41598-022-24545-3.

Regulatory Considerations for Geologic Storage of Carbonated Brine Streams. 16th International Conference on Greenhouse Gas Control Technologies

Van Voorhees, R.; Thomas, R. B.; Schwartz, B.; Dilmore, R.; Hamling, J.; Klapperich, R.; Taunton, M. Regulatory Considerations for Geologic Storage of Carbonated Brine Streams. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4285028

Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model

Kadeethum, T., O’Malley, D., Ballarin, F., Ang, I., Fuhg, J.N., Bouklas, N., Silva, V.L.S., Salinas, P., Heaney, C.E., Pain, C.C., Lee, S., Viswanathan, H.S., and Yoon, H., “Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model,” Scientific Reports, 12, Article 20229. (2022) https://doi.org/10.1038/s41598-022-22407-6.

A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site

Lackey, G.; Mitchell, N.; Schwartz, B.; Liu, G.; Vasylkivska, V. S.; Strazisar, B.; Dilmore, R. M. A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4271578

Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties

Kadeethum, T., O’Malley, D., Choi, Y., Viswanathan, H.S., Bouklas, N., and Yoon, H., “Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties,” Computers & Geosciences, Vol. 167, 105212, (2022), https://doi.org/10.1016/j.cageo.2022.105212.

Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting

Lackey, G.; Strazisar, B. R.; Kobelski, B.; McEvoy, M.; Bacon, D. H.; Cihan, A.; Iyer, J.; Livers-Douglas, A.; Pawar, R.; Sminchak, J.; Wernette, B.; Dilmore, R. M. Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting; NRAP-TRS-I-001-2022; DOE.NETL-2022.3731; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 120. DOI: https://doi.org/10.2172/1870412

Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks

Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wenzlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo, L. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks, Marine Structures, Volume 83, 103152. https://doi.org/10.1016/j.marstruc.2021.103152.

Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering

Bao, T.; Burghardt, J. A. Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering. Rock Mechanics and Rock Engineering 2022, 55, 4531–4548. https://doi.org/10.1007/s00603-022-02857-0.

Thermal and solubility effects on fault leakage during geologic carbon storage

Meguerdijian, S.; Pawar, R. J.; Harp, D. R.; Jha, B. Thermal and solubility effects on fault leakage during geologic carbon storage. International Journal of Greenhouse Gas Control 2022, 116, Article 103633. https://doi.org/10.1016/j.ijggc.2022.103633.

Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells

Cihan, A.; Oldenburg, C. M.; Birkholzer, J. T. Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells. Water Resources Research 2022, 58 (5), e2022WR032343. https://doi.org/10.1029/2022WR032343.

Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin

Luu, K.; Schoenball, M.; Oldenburg, C. M.; Rutqvist, J. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth 2022, 127(5), e2021JB023496. https://doi.org/10.1029/2021JB023496.

Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography

Yang, X.; Carrigan, C. Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography, Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 255-271. https://doi.org/10.1002/9781119156871.ch16.

Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage

Appriou, D.; Bonneville, A. (2022). Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 211-232. https://doi.org/10.1002/9781119156871.ch14.

Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring

Gasperikova, E.; Morrison, H. F. Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 233-253. https://doi.org/10.1002/9781119156871.ch15.

Automatic Waveform Quality Control for Surface Waves Using Machine Learning

Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.

Extending Compliance Inspection Data with Predictive Modeling for Marginal Conventional Wells with Emissions in New York State

Dyer, A., Schooley, C., White, C., Wise, J., and Lackey, G., “Extending Compliance Inspection Data with Predictive Modeling for Marginal Conventional Wells with Emissions in New York State,” conference abstract from AGU Annual Meeting 2024, Washington, DC, December 9–13, 2024.

CO2-Locate: A Dynamic Database and Tool for Accessing National Oil and Gas Well Data to Inform Carbon Storage Projects

Dyer, A., Pfander, I., Tetteh, D., Cleaveland, C., Sabbatino, M., Romeo, L., Bauer, J., and Rose, K., “CO2-Locate: A Dynamic Database and Tool for Accessing National Oil and Gas Well Data to Inform Carbon Storage Projects,” conference abstract from AGU Annual Meeting 2024, Washington, DC, December 9–13, 2024.

The Carbon Storage Planning Inquiry Tool (CS PlanIT)

Morkner, P., Pantaleone, S., Rich, M., Justman, D., and Rose, K. “The Carbon Storage Planning Inquiry Tool (CS PlanIT)”. US Energy Administration Seminar. November, 2024. Online.

Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping and Data Availability Assessments

Mulhern, J.S., Mark-Moser, M., Creason, C.G., Maymi, N., Shay, J., Lara, A., and Rose, K., “Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping and Data Availability Assessments,” AAPG Rocky Mountain Elevating Energy Section Meeting, Park City, UT, October 6–8, 2024.

Where are the Data? Automating a Workflow for Carbon Storage Data Gap Analysis

Creason, C.G., Mulhern, J.S., Cordero Rodriguez, N., Mark-Moser, M., Lara, A., Shay, J., and Rose, K. Where are the Data? Automating a Workflow for Carbon Storage Data Gap Analysis, Geological Society of America Connects Annual Meeting. Anaheim, CA. September 22-25, 2024.

Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping

Mulhern, J.S., Mark-Moser, M., Creason, C.G., Maymi, N., Shay, J., Lara, A., and Rose, K., “Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping,” Geological Society of America CONNECTS Annual Meeting, Anaheim, CA, September 22–25, 2024.

Offshore Carbon Storage Data Collection and International Offshore Carbon Storage Project Inventory

Mulhern, J.S., Mark-Moser, M., and Rose, K., “Offshore Carbon Storage Data Collection and International Offshore Carbon Storage Project Inventory,” Geological Society of America CONNECTS Annual Meeting, Anaheim, CA, September 22–25, 2024.

International Offshore Geologic Carbon Storage Project Inventory and Data Collection

Mulhern, J.S., Mark-Moser, M., and Rose, K. “International Offshore Geologic Carbon Storage Project Inventory and Data Collection”. Seventh International Offshore Geologic CO2 Storage Workshop. Port Arthur, Texas. September 17-19, 2024. Invited.

Curating Carbon Storage Data for Reuse: Enabling Research and Modeling from Earth’s Surface to Subsurface

Morkner, P., Martin, A., Bauer, J., Sabbatino, M., and Rose, K., “Curating Carbon Storage Data for Reuse: Enabling Research and Modeling from Earth’s Surface to Subsurface”. Brookhaven National Laboratory’s New York Scientific Data Summit 2024. Sept. 16, 2024. New York, NY.

The Carbon Storage Site Mapping Inquiry Tool (MapIT)

Morkner, P., Schooley, C., Pantaleone, S., Shay, J., Strazisar, B., and Rose, K. “The Carbon Storage Site Mapping Inquiry Tool (MapIT)”. Geological Society of America Conference Connects, September 2024. Anaheim, CA.

Scroll to Top