disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics

Rinaldi, A. P.; Rutqvist, J.; Luu, K.; Blanco-Martin, L.; Hu, M. et al. TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics. Computational Geosciences 2022, 26, 1563–1580. https://doi.org/10.1007/s10596-022-10176-0.

Data-driven offshore CO2 saline storage assessment methodology

Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542

Data-driven offshore CO2 saline storage assessment methodology

Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542

SMART Task 3: Pressure and Stress

White, J. Williams-Stroud, M. (2022). SMART Phase III: Pressure and Stress. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_White_2.pdf

Real Time Visualization of Rock and Fluid Properties

Alumbaugh, D. (2022). Real Time Visualization of Rock and Fluid Properties. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Alumbaugh.pdf

SMART: Overview of SMART Initiative – Phase I Accomplishments and Phase II Plans

Bromhal, G. Mishra, S. (2022). SMART: Overview of SMART Initiative – Phase I Accomplishments and Phase II Introduction. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Bromhal.pdf

NETL RIC CarbonSAFE Assistance (FWP-1022403)

Crandall, D. (2022). NETL RIC CarbonSAFE Assistance. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Crandall.pdf

National Risk Assessment Partnership: Maturing Tools and Recommended Practices for Site and Basin-Scale Risk Management

Bacon, D. (2022). NRAP: Tools and Recommended Practices for Site and Basin Scale Risk Management. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Bacon.pdf

National Risk Assessment Partnership: Tools and Recommended Practices for Induced Seismicity Risk Management

White, J. (2022). NRAP: Tools and Recommended Practices for Induced Seismicity and Risk Management. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_White.pdf

National Risk Assessment Partnership: Phase II Key Accomplishments and Phase III Introduction

Dilmore, R. (2022). National Risk Assessment Partnership: Phase II Accomplishments and Phase III Introduction. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Dillmore.pdf

Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting

Lackey, G.; Strazisar, B. R.; Kobelski, B.; McEvoy, M.; Bacon, D. H.; Cihan, A.; Iyer, J.; Livers-Douglas, A.; Pawar, R.; Sminchak, J.; Wernette, B.; Dilmore, R. M. Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting; NRAP-TRS-I-001-2022; DOE.NETL-2022.3731; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 120. DOI: https://doi.org/10.2172/1870412

Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks

Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wenzlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo, L. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks, Marine Structures, Volume 83, 103152. https://doi.org/10.1016/j.marstruc.2021.103152.

Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering

Bao, T.; Burghardt, J. A. Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering. Rock Mechanics and Rock Engineering 2022, 55, 4531–4548. https://doi.org/10.1007/s00603-022-02857-0.

Thermal and solubility effects on fault leakage during geologic carbon storage

Meguerdijian, S.; Pawar, R. J.; Harp, D. R.; Jha, B. Thermal and solubility effects on fault leakage during geologic carbon storage. International Journal of Greenhouse Gas Control 2022, 116, Article 103633. https://doi.org/10.1016/j.ijggc.2022.103633.

Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells

Cihan, A.; Oldenburg, C. M.; Birkholzer, J. T. Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells. Water Resources Research 2022, 58 (5), e2022WR032343. https://doi.org/10.1029/2022WR032343.

Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin

Luu, K.; Schoenball, M.; Oldenburg, C. M.; Rutqvist, J. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth 2022, 127(5), e2021JB023496. https://doi.org/10.1029/2021JB023496.

Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography

Yang, X.; Carrigan, C. Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography, Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 255-271. https://doi.org/10.1002/9781119156871.ch16.

Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage

Appriou, D.; Bonneville, A. (2022). Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 211-232. https://doi.org/10.1002/9781119156871.ch14.

Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring

Gasperikova, E.; Morrison, H. F. Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 233-253. https://doi.org/10.1002/9781119156871.ch15.

Automatic Waveform Quality Control for Surface Waves Using Machine Learning

Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.

Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment

Ghanem, R., Zhang, R., Rose, K., invited talk, Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment, AGU Annual Meeting 2020, Session: H027 – Artificial Intelligence and Machine Learning for Multiscale Model-Experimental Integration https://agu.confex.com/agu/fm20/prelim.cgi/Session/103051

Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry

Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617

A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico

Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract

Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method

Mark-Moser, M., Suhag, A., Rose, K., Wingo, P.  (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/

Advanced Geospatial Analytics and Machine Learning for Offshore and Onshore Oil & Natural Gas Infrastructure

Justman D., Romeo, L., Barkhurst, A., Bauer, J., Duran, R., Dyer, A., Nelson, J., Sabbatino, M., Wingo, P., Wenzlick, M., Zaengle, D., Rose, K. (2020, October 6-7).  Advanced geospatial analytics and machine learning for offshore and onshore oil & natural gas infrastructure. [Virtual conference presentation]. GIS Week 2020. https://www.osti.gov/servlets/purl/1767074

Enhancing Knowledge Discovery of Unstructured Data to Support Context in Subsurface-Modeling Predictions

Hoover, B., Mark-Moser, M., Wingo, P., Suhag, A., Rose, K. 2021. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. ACE/SEG21, Denver, Colorado, Sept. 26th-Oct. 1st. https://www.osti.gov/servlets/purl/1843422

Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX

Morkner, P., Rowan, C., Rose, K., Bauer, J., Sabbatino, M., Barhurst, A. Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX. NETL Carbon Storage Review Meeting. September 10, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Morkner.pdf

Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator

Romeo, L., Rose, K., Thomas, R., Mark-Moser, M., Barkhurst, A., Wingo, P., Bean, A. 2020. Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator. Carbon Storage Review Meeting. September 11, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Romeo_11.pdf

Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas

Dyer, A., Romeo, L., Wenzlick, M., Bauer, J., Nelson, J., Duran, R., Zaengle, D., Wingo, P., and Sabbatino, M. 2020. Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas. Esri User Conference, San Diego, CA, July 13-15, 2020. https://www.osti.gov/servlets/purl/1604638

Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar

Rose, K., Barkhurst, A., Mark-Moser, M., Romeo, L., and Wingo, P., 2020, Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar 6/25/2020, https://www.youtube.com/watch?v=G5oUWSb-kHc&feature=youtu.be

Scroll to Top