disCO2ver

Unlocking data-driven capabilities for the entire CCS community

Bibliographies

Filter by Categories

Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel

Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel

Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments

Duboeuf, L.; De Barros, L.; Kakurina, M.; Guglielmi, Y.; Cappa, F.; Valley, B. Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments. Geophysical Journal International 2021, 224(2), 1464-1475. doi: 10.1093/gji/ggaa515. https://academic.oup.com/gji/article-abstract/224/2/1464/5974524?redirectedFrom=fulltext 

Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights

Mark-Moser, M., Rose, K., Baker, V. D. (2020, December 17). Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights. [Conference presentation]. Session: IN042 – Utilizing unstructured data in Earth Science Poster Session. https://ui.adsabs.harvard.edu/abs/2020AGUFMIN0140002M/abstract

NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk

Vasylkivska, V., Bacon D., Chen, Bailian, Dilmore R., Harp D., King S., Lackey G., Lindner E., Liu Guoxiang, Mansoor K., Zhang Yingqi. NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk. AGU Annual Fall Meeting (Virtual), 2020 Session: GC110. Advances in Computational Methods for Geologic CO2 Sequestration I eLightning.  https://ui.adsabs.harvard.edu/abs/2020AGUFMGC110..10V/abstract

Developing a structured seafloor sediment database from disparate datasets using SmartSearch

Mark-Moser, M., Rose, K., Baker, V. D. 2020. Developing a structured seafloor sediment database from disparate datasets using SmartSearch. AGU Annual Fall Meeting (Virtual), 2020. Session: IN042 – Utilizing unstructured data in earth science https://www.osti.gov/servlets/purl/1776797

Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment

Ghanem, R., Zhang, R., Rose, K., invited talk, Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment, AGU Annual Meeting 2020, Session: H027 – Artificial Intelligence and Machine Learning for Multiscale Model-Experimental Integration https://agu.confex.com/agu/fm20/prelim.cgi/Session/103051

Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry

Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617

A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity

Justman, D., Creason, C.G., Rose, K., & Bauer, J., 2020. A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity. Journal of Structural Geology, 104153. https://doi.org/10.1016/j.jsg.2020.104153

A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico

Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract

Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method

Mark-Moser, M., Suhag, A., Rose, K., Wingo, P.  (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/

Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization

Cappa, F.; Guglielmi, Y.; De Barros, L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization. Nature Communications, 2022, 13, 3039 (2022). https://doi.org/10.1038/s41467-022-30798-3.

Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting

Lackey, G.; Strazisar, B. R.; Kobelski, B.; McEvoy, M.; Bacon, D. H.; Cihan, A.; Iyer, J.; Livers-Douglas, A.; Pawar, R.; Sminchak, J.; Wernette, B.; Dilmore, R. M. Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting; NRAP-TRS-I-001-2022; DOE.NETL-2022.3731; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 120. DOI: https://doi.org/10.2172/1870412

Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks

Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wenzlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo, L. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks, Marine Structures, Volume 83, 103152. https://doi.org/10.1016/j.marstruc.2021.103152.

Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering

Bao, T.; Burghardt, J. A. Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering. Rock Mechanics and Rock Engineering 2022, 55, 4531–4548. https://doi.org/10.1007/s00603-022-02857-0.

Thermal and solubility effects on fault leakage during geologic carbon storage

Meguerdijian, S.; Pawar, R. J.; Harp, D. R.; Jha, B. Thermal and solubility effects on fault leakage during geologic carbon storage. International Journal of Greenhouse Gas Control 2022, 116, Article 103633. https://doi.org/10.1016/j.ijggc.2022.103633.

Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells

Cihan, A.; Oldenburg, C. M.; Birkholzer, J. T. Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells. Water Resources Research 2022, 58 (5), e2022WR032343. https://doi.org/10.1029/2022WR032343.

Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin

Luu, K.; Schoenball, M.; Oldenburg, C. M.; Rutqvist, J. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth 2022, 127(5), e2021JB023496. https://doi.org/10.1029/2021JB023496.

Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography

Yang, X.; Carrigan, C. Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography, Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 255-271. https://doi.org/10.1002/9781119156871.ch16.

Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage

Appriou, D.; Bonneville, A. (2022). Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 211-232. https://doi.org/10.1002/9781119156871.ch14.

Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring

Gasperikova, E.; Morrison, H. F. Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 233-253. https://doi.org/10.1002/9781119156871.ch15.

Advanced Machine Learning and Computational Methods

Schuetter, J. Tartakovsky, A. Shih, C. (2023, August 31). Advanced Machine Learning and Computational Methods [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Schuetter.pdf 

Overview of SMART Initiative

Siriwardane H. Mishra, S. (2023, August 31). Overview of SMART Initiative [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Siriwardane.pdf 

Assessing Risks of Rapid Commercial-Scale Deployment of Geologic Carbon Storage

Bacon, D. Camargo, J. Kirol, A. Haagenson, R. Creason, C. Lackey, G. Morkner, P. Zhou, Q. Cihan, A. Eier, J. Schmidt, B. (2023, August 31). Assessing Risks of Rapid Commercial-Scale Deployment of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Bacon1.pdf

Developing a Tool to Quantify Liability of Geologic Carbon Storage

Morgan, D. Bello, K. Burghardt, J. Creason, C. Dilmore, R. Gasperikova, E. Grant, T. Huerta, N. Liu, G. Kroll, K. Mark-Moser, M. Oldenburg, C. Rasouli, P. Smith, M. Strazisar, B. Vasylkivska, V. Vikara, D. Warner, T. Wilson, K. (2023, August 31). Developing a Tool to Quantify Liability of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Morgan.pdf

Adaptive, Risk-Based Monitoring of Geologic Carbon Storage

Gasperikova, E. Vasylkivska, V. Yang, X. Huang, L. Hanna, A. Chen, B. Creasy, N. Li, D. Blatter, D. Kumar, A. Dilmore, R. Harbert, B. Morgan, D. Iyer, J.K. Smith, M. Kirol, A. Appriou, D. (2023, August 31). Adaptive, Risk-Based Monitoring of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Gasperikova.pdf

NRAP Phase III Overview: Objectives and Progress

Dilmore, R. (2023, August 31). NRAP Phase III Overview: Objectives and Progress [Conference presentation]. FECM/NETL Carbon Management Meeting 2023.  https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Dilmore.pdf

Anonymizing Sensitive Carbon Storage Data Tool

Morkner, P. Bauer, J. Wingo, P. Gao, M. Sharma, M. Hoover, B. Neumann, C. Johnson, C. Schuetter, J. Rose, K. (2023, August 29). Anonymizing Sensitive Carbon Storage Data Tool [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Morkner.pdf 

A Comprehensive Dashboard for CS Planning

Justman D. Pantaleone, S. Sharma, M. Romeo, L. Morkner, P. Bauer, J. (2023, August 29). A Comprehensive Dashboard for CS Planning [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Justman.pdf

EDX Cloud Optimization for Carbon Management

Rose, K. Baker, V. (2023, August 28). EDX Cloud Optimization for Carbon Management [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Rose.pdf

Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver

Zaengle, D. Sinclair, J. Wingo, P. Rowan, C. Rose, K. (2023, August 28). Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Zaengle.pdf

Scroll to Top