disCO2ver

Unlocking data-driven capabilities for the entire CCS community

Bibliographies

Filter by Categories

Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel

Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel

Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments

Duboeuf, L.; De Barros, L.; Kakurina, M.; Guglielmi, Y.; Cappa, F.; Valley, B. Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments. Geophysical Journal International 2021, 224(2), 1464-1475. doi: 10.1093/gji/ggaa515. https://academic.oup.com/gji/article-abstract/224/2/1464/5974524?redirectedFrom=fulltext 

Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights

Mark-Moser, M., Rose, K., Baker, V. D. (2020, December 17). Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights. [Conference presentation]. Session: IN042 – Utilizing unstructured data in Earth Science Poster Session. https://ui.adsabs.harvard.edu/abs/2020AGUFMIN0140002M/abstract

NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk

Vasylkivska, V., Bacon D., Chen, Bailian, Dilmore R., Harp D., King S., Lackey G., Lindner E., Liu Guoxiang, Mansoor K., Zhang Yingqi. NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk. AGU Annual Fall Meeting (Virtual), 2020 Session: GC110. Advances in Computational Methods for Geologic CO2 Sequestration I eLightning.  https://ui.adsabs.harvard.edu/abs/2020AGUFMGC110..10V/abstract

Developing a structured seafloor sediment database from disparate datasets using SmartSearch

Mark-Moser, M., Rose, K., Baker, V. D. 2020. Developing a structured seafloor sediment database from disparate datasets using SmartSearch. AGU Annual Fall Meeting (Virtual), 2020. Session: IN042 – Utilizing unstructured data in earth science https://www.osti.gov/servlets/purl/1776797

Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment

Ghanem, R., Zhang, R., Rose, K., invited talk, Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment, AGU Annual Meeting 2020, Session: H027 – Artificial Intelligence and Machine Learning for Multiscale Model-Experimental Integration https://agu.confex.com/agu/fm20/prelim.cgi/Session/103051

Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry

Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617

A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity

Justman, D., Creason, C.G., Rose, K., & Bauer, J., 2020. A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity. Journal of Structural Geology, 104153. https://doi.org/10.1016/j.jsg.2020.104153

A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico

Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract

Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method

Mark-Moser, M., Suhag, A., Rose, K., Wingo, P.  (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/

Automatic Waveform Quality Control for Surface Waves Using Machine Learning

Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.

NRAP-Open-IAM: Generic Aquifer Component Development and Testing

Bacon, D. H. NRAP-Open-IAM: Generic Aquifer Component Development and Testing. PNNL-32590, 2022, Pacific Northwest National Laboratory, Richland, WA. https://doi.org/10.2172/1845855.

Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales

Chai, C., Maceira, M., and EGS Collab Team, “Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales,” in Proceedings, 47th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 47, 635–645, (2022) https://www.osti.gov/biblio/1845768.

Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes

Gasperikova, E.; Appriou, D.; Bonneville, A.; Feng, Z.; Huang, L.; Gao, K.; Yang, X.; Daley, T. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control 2022, 114, Article 103585. https://doi.org/10.1016/j.ijggc.2022.103585.

Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction

Chen, B.; Zhou, Q. Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction. Journal of Geophysical Research – Solid Earth 2022, Research Article. https://doi.org/10.1029/2021JB022964.

Distilling Data to Drive Carbon Storage Insights

Morkner, P.; Bauer, J.; Creason, C.; Sabbatino, M.; Wingo, P.; Greenburg, R.; Walker, S.; Yeates, D.; Rose, K. Distilling Data to Drive Carbon Storage Insights. Computers & Geosciences 2022, 158, Article 104945. https://doi.org/10.1016/j.cageo.2021.104945.

Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers

Yang, X.; Chen, X.; Smith, M.M. Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers. Journal of Applied Geophysics 2022, 196(104507). https://doi.org/10.1016/j.jappgeo.2021.104507.

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

Impact of time-dependent deformation on geomechanical risk for geologic carbon storage

Bao T.; Burghardt, J. A.; Gupta, V.; White, M. D. Impact of time-dependent deformation on geomechanical risk for geologic carbon storage. International Journal of Rock Mechanics and Mining Sciences 2021, 148, 104940. PNNL-SA-161528. https://doi.org/10.1016/j.ijrmms.2021.104940.

EDX++: Migrating EDX to the Cloud, Unlocking Next-Generation Data Infrastructure

Baker, V. Rose, K. Obradovich, J. McFarland, D. Jones, TJ. Mondello, J. Dean, E. Sarle, J. (2023, August 28). EDX++: Migrating EDX to the Cloud, Unlocking Next-Generation Data Infrastructure [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Baker.pdf

Developing a National Structural Complexity Database for U.S. Saline Basins

Amrine, D. Justman, D. Creason, C. Pantaleone, S. Gordon, A. Rose, K. (2023, August 28). Developing a National Structural Complexity Database for U.S. Saline Basins [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Amrine.pdf

Managing Carbon Storage Data With a Living Database

Sabbatino, M. Morkner, P. Choisser, A. Leveckis, S. Bauer, J. Rose, K. (2023, August 28). Managing Carbon Storage Data With a Living Database [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Sabbatino.pdf

Machine Learning Based Fracture Network Quantification at the IBDP CO2 Sequestration Site

Kumar, A. Harbert, W. Liu, G. Myshakin, E.(2023, August 28). Machine Learning Based Fracture Network Quantification at the IBDP CO2 Sequestration Site [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Kumar.pdf 

Class II to Class IV Operations – Insights from Simulation-Based Investigation of a CO2-EOR to Dedicated Storage Scenario

Liu, G. Dilmore, R. Strazisar, B. Lackey, G. (2023, August 28). Class II to Class IV Operations – Insights from Simulation-Based Investigation of a CO2-EOR to Dedicated Storage Scenario [Poster presentation]. FECM/NETL Carbon Management Meeting 2023.  https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Liu.pdf

Application of NRAP Risk Assessment Tools in the Context of Bowtie Risk Management Framework

Brown, C. Lackey, G. Mitchell, N. Baek, S. Schwartz, B. Dean, M. Dilmore, R. Blanke, H. Rowe, C. (2023, August 28). Application of NRAP Risk Assessment Tools in the Context of Bowtie Risk Management Framework [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Brown.pdf

Conceptualizing Data Availability and Technical Viability Methods within the Carbon Storage Technical Viability (CS TVA) Approach

Mulhern, J. Mark-Moser, M. Creason, C. Shay, J. Rose, K. (2023, August 28). Conceptualizing Data Availability and Technical Viability Methods within the Carbon Storage Technical Viability (CS TVA) Approach [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Mulhern.pdf

Carbon Storage Program Data Curation, Transformation and Reuse

Morkner, P. Bauer, J. Choisser, A. Sabbatino, M. Leveckis, S. Rose, K. (2023, August 28) Carbon Storage Program Data Curation, Transformation and Reuse [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Morkner.pdf

EJ/SJ Dynamic Datasets for CCS Systems and the Energy Transition Web Atlas Tool

Sharma, M. White, C. Cleaveland, C. Romeo, L. Bauer, J. Rose, K. (2023, August 28). EJ/SJ Dynamic Datasets for CCS Systems and the Energy Transition Web Atlas Tool [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Sharma.pdf

Developing a National Structural Complexity Database for U.S. Saline Basins

Justman, D. Creason, C. Pantaleone, S. Gordon, A. Amrine, D. Rose, K. (2023, August 28). Developing a National Structural Complexity Database for U.S. Saline Basins [Conference presentation]. FECM/NETL Carbon Management Meeting 2023.  https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Justman.pdf

Scroll to Top