Justman D., Romeo, L., Barkhurst, A., Bauer, J., Duran, R., Dyer, A., Nelson, J., Sabbatino, M., Wingo, P., Wenzlick, M., Zaengle, D., Rose, K. (2020, October 6-7). Advanced geospatial analytics and machine learning for offshore and onshore oil & natural gas infrastructure. [Virtual conference presentation]. GIS Week 2020. https://www.osti.gov/servlets/purl/1767074
disCO2ver
Unlocking data-driven capabilities for the entire CCS community
Home » Bibliographies
Bibliographies
Advanced Geospatial Analytics and Machine Learning for Offshore and Onshore Oil & Natural Gas Infrastructure
Enhancing Knowledge Discovery of Unstructured Data to Support Context in Subsurface-Modeling Predictions
Hoover, B., Mark-Moser, M., Wingo, P., Suhag, A., Rose, K. 2021. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. ACE/SEG21, Denver, Colorado, Sept. 26th-Oct. 1st. https://www.osti.gov/servlets/purl/1843422
Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX
Morkner, P., Rowan, C., Rose, K., Bauer, J., Sabbatino, M., Barhurst, A. Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX. NETL Carbon Storage Review Meeting. September 10, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Morkner.pdf
Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator
Romeo, L., Rose, K., Thomas, R., Mark-Moser, M., Barkhurst, A., Wingo, P., Bean, A. 2020. Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator. Carbon Storage Review Meeting. September 11, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Romeo_11.pdf
Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas
Dyer, A., Romeo, L., Wenzlick, M., Bauer, J., Nelson, J., Duran, R., Zaengle, D., Wingo, P., and Sabbatino, M. 2020. Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas. Esri User Conference, San Diego, CA, July 13-15, 2020. https://www.osti.gov/servlets/purl/1604638
Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar
Rose, K., Barkhurst, A., Mark-Moser, M., Romeo, L., and Wingo, P., 2020, Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar 6/25/2020, https://www.youtube.com/watch?v=G5oUWSb-kHc&feature=youtu.be
Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills
Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016
A systematic, science-driven approach for predicting subsurface properties
Rose, K., Bauer, J.R., and Mark-Moser, M., 2020, A systematic, science-driven approach for predicting subsurface properties. Interpretation, 8:1, 167-181 https://doi.org/10.1190/INT-2019-0019.1
Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System
Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical
Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data
Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129
Regulatory Considerations for Geologic Storage of Carbonated Brine Streams. 16th International Conference on Greenhouse Gas Control Technologies
Van Voorhees, R.; Thomas, R. B.; Schwartz, B.; Dilmore, R.; Hamling, J.; Klapperich, R.; Taunton, M. Regulatory Considerations for Geologic Storage of Carbonated Brine Streams. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4285028
Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model
Kadeethum, T., O’Malley, D., Ballarin, F., Ang, I., Fuhg, J.N., Bouklas, N., Silva, V.L.S., Salinas, P., Heaney, C.E., Pain, C.C., Lee, S., Viswanathan, H.S., and Yoon, H., “Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model,” Scientific Reports, 12, Article 20229. (2022) https://doi.org/10.1038/s41598-022-22407-6.
A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site
Lackey, G.; Mitchell, N.; Schwartz, B.; Liu, G.; Vasylkivska, V. S.; Strazisar, B.; Dilmore, R. M. A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4271578
Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties
Kadeethum, T., O’Malley, D., Choi, Y., Viswanathan, H.S., Bouklas, N., and Yoon, H., “Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties,” Computers & Geosciences, Vol. 167, 105212, (2022), https://doi.org/10.1016/j.cageo.2022.105212.
TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics
Rinaldi, A. P.; Rutqvist, J.; Luu, K.; Blanco-Martin, L.; Hu, M. et al. TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics. Computational Geosciences 2022, 26, 1563–1580. https://doi.org/10.1007/s10596-022-10176-0.
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project
Panetta, B., Carr, T., and Fathi, E., “3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project,” AAPG and SEG Second International Meeting for Applied Geoscience & Energy, August 14-15, 2022, Houston, TX, expanded abstract, https://doi.org/10.1190/image2022-3746025.1
Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage
Um, E.S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., Lin, Y., and Samarasinghe, S., “Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage;” Geophysical Prospecting, (2022) https://doi.org/10.1111/1365-2478.13257.
Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring
Liu, G., Kumar, A., Zhao, S., Shih, C., Vasylkivska, V., Holcomb, P., Hammack, R., Ilconich, J., and Bromhal, G., “Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring,” presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, (June 2022) https://doi.org/10.15530/urtec-2022-3723466.
Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403)
Hammack, R. (2021, August 5). Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Hammack5.pdf
Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube
Morkner, P., Bauer, J., Rose, K., Rowan, C., Barkhurst, A. (2021, July 27). Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube. [Conference presentation]. Invited talk at the CCUS Database Virtual Symposium. https://www.osti.gov/servlets/purl/1844394
AI/ML Forecasting of Offshore Platform Integrity to Improve Safety and Reliability
Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. 2021. Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://www.osti.gov/servlets/purl/1845120
Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk
Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. (2021, April 9). Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk [Conference presentation]. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://edx.netl.doe.gov/sites/offshore/forecasting-offshore-platform-integrity-applying-machine-learning-algorithms-to-quantify-lifespan-and-mitigate-risk/
ML Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities
Bauer, J., Justman, D., and Rose. K. Invited presentation. Machine Learning Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities. Department of Homeland Security Science & Technology Directorate 2021 Big Data Series Workshop, March 24, 2021. https://www.osti.gov/biblio/1814179
Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel
Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel
Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights
Mark-Moser, M., Rose, K., Baker, V. D. (2020, December 17). Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights. [Conference presentation]. Session: IN042 – Utilizing unstructured data in Earth Science Poster Session. https://ui.adsabs.harvard.edu/abs/2020AGUFMIN0140002M/abstract
NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk
Vasylkivska, V., Bacon D., Chen, Bailian, Dilmore R., Harp D., King S., Lackey G., Lindner E., Liu Guoxiang, Mansoor K., Zhang Yingqi. NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk. AGU Annual Fall Meeting (Virtual), 2020 Session: GC110. Advances in Computational Methods for Geologic CO2 Sequestration I eLightning. https://ui.adsabs.harvard.edu/abs/2020AGUFMGC110..10V/abstract
Developing a structured seafloor sediment database from disparate datasets using SmartSearch
Mark-Moser, M., Rose, K., Baker, V. D. 2020. Developing a structured seafloor sediment database from disparate datasets using SmartSearch. AGU Annual Fall Meeting (Virtual), 2020. Session: IN042 – Utilizing unstructured data in earth science https://www.osti.gov/servlets/purl/1776797
Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment
Ghanem, R., Zhang, R., Rose, K., invited talk, Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment, AGU Annual Meeting 2020, Session: H027 – Artificial Intelligence and Machine Learning for Multiscale Model-Experimental Integration https://agu.confex.com/agu/fm20/prelim.cgi/Session/103051