disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

Development of Machine Learning Models for Full Field Reservoir Characterization

Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178

Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – Accelerating Cross-Disciplinary AI/ML for Applied Geoscience, Energy, and Environmental Challenges

Shih, C., Thornton, J., Rose, K., Syamlal, M., Bromhal, G., Guenther, C., Pfautz, J., Van Essendelft, D., and Bauer, J., 2021, Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – accelerating cross-disciplinary AI/ML for applied geoscience, energy, and environmental challenges. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: IN12A – Growing Opportunities for Multiparty Collaborations in Artificial Intelligence and Machine Learning for Science Research. https://ui.adsabs.harvard.edu/abs/2021AGUFMIN12A..05S/abstract

Improving Prediction of Subsurface Properties Using a Geoscience Informed, Multi-Technique, Artificial Intelligence Approach

Rose, K., Mark-Moser, M., Suhag, A., and Bauer, J. 2021. Improving prediction of subsurface properties using a geoscience informed, multi-technique, artificial intelligence approach (Invited). AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H33C – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://ui.adsabs.harvard.edu/abs/2021AGUFM.H33C..01R/abstract

Leveraging Data Ecosystems to Support Earth Science Research for Decarbonization

Morkner, P., Mark-Moser, M., Justman, D., Rowan, C., Bauer, J., and Rose, K., 2021. Leveraging Data Ecosystems to Support Earth Science Research For Decarbonization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session U21A-07 – How Earth Science Research Can Help Accelerate the Transition to a Decarbonized Economy. https://ui.adsabs.harvard.edu/abs/2021AGUFM.U21A..07M/abstract

Exploring Subsurface Data Availability on the Energy Data eXchange (EDX)

Morkner, P., Bean, A., Bauer, J., Barkhurst, A., and Rose, K.. 2021. Exploring subsurface data availability on the Energy Data eXchange. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: SY039 – Subsurface Storage of Natural Gas, CO2, and Hydrogen: Key Learnings and Future Opportunities. https://www.osti.gov/servlets/purl/1846774

AI/ML Integration for Accelerated Analysis and Forecast of Offshore Hazards

Mark-Moser, M., Wingo, P., Duran, R., Dyer, A., Zaengle, D., Suhag, A., Hoover, B., Pantaleone, S., Shay, J., Bauer, J., and Rose, K. 2021. AI/ML integration for accelerated analysis and forecast of offshore hazards. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: EP027 – Proven AI/ML applications in the Earth Sciences. https://www.osti.gov/servlets/purl/1846789

On the Predictability of Loop Current Eddy Shedding Events and Unexpected Links to the Brazil and Guiana Currents

Duran, R., Liang, X.S., Allende-Arandia, M.E., Appendini, C.M., Mark-Moser, M., Rose, K., Bauer, J. 2021. On the predictability of Loop Current Eddy Shedding events and unexpected links to the Brazil and Guiana Currents. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: OS45D – Ocean Dynamics of the Gulf of Mexico III Poster. https://www.osti.gov/servlets/purl/1846777

Evaluating the Effects of a Low-Carbon Energy Transition on Existing U.S. Fossil Energy Communities

Bauer, J., Rose, K., Romeo, L., Justman, D., Hoover, B., and B. White. 2021. Evaluating the effects of a low-carbon energy transition on existing U.S. fossil energy communities. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session GC25G: Environmental Justice/Equity and Global Change: Methodologies, Frameworks, and Results II Poster. https://ui.adsabs.harvard.edu/abs/2021AGUFMGC25G0722B/abstract

Impact of time-dependent deformation on geomechanical risk for geologic carbon storage

Bao T.; Burghardt, J. A.; Gupta, V.; White, M. D. Impact of time-dependent deformation on geomechanical risk for geologic carbon storage. International Journal of Rock Mechanics and Mining Sciences 2021, 148, 104940. PNNL-SA-161528. https://doi.org/10.1016/j.ijrmms.2021.104940.

Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model

Kadeethum, T., O’Malley, D., Ballarin, F., Ang, I., Fuhg, J.N., Bouklas, N., Silva, V.L.S., Salinas, P., Heaney, C.E., Pain, C.C., Lee, S., Viswanathan, H.S., and Yoon, H., “Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model,” Scientific Reports, 12, Article 20229. (2022) https://doi.org/10.1038/s41598-022-22407-6.

A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site

Lackey, G.; Mitchell, N.; Schwartz, B.; Liu, G.; Vasylkivska, V. S.; Strazisar, B.; Dilmore, R. M. A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4271578

Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties

Kadeethum, T., O’Malley, D., Choi, Y., Viswanathan, H.S., Bouklas, N., and Yoon, H., “Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties,” Computers & Geosciences, Vol. 167, 105212, (2022), https://doi.org/10.1016/j.cageo.2022.105212.

TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics

Rinaldi, A. P.; Rutqvist, J.; Luu, K.; Blanco-Martin, L.; Hu, M. et al. TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics. Computational Geosciences 2022, 26, 1563–1580. https://doi.org/10.1007/s10596-022-10176-0.

Data-driven offshore CO2 saline storage assessment methodology

Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542

Data-driven offshore CO2 saline storage assessment methodology

Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542

3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project

Panetta, B., Carr, T., and Fathi, E., “3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project,” AAPG and SEG Second International Meeting for Applied Geoscience & Energy, August 14-15, 2022, Houston, TX, expanded abstract, https://doi.org/10.1190/image2022-3746025.1

Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage

Um, E.S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., Lin, Y., and Samarasinghe, S., “Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage;” Geophysical Prospecting, (2022) https://doi.org/10.1111/1365-2478.13257.

Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring

Liu, G., Kumar, A., Zhao, S., Shih, C., Vasylkivska, V., Holcomb, P., Hammack, R., Ilconich, J., and Bromhal, G., “Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring,” presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, (June 2022) https://doi.org/10.15530/urtec-2022-3723466.

Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization

Cappa, F.; Guglielmi, Y.; De Barros, L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization. Nature Communications, 2022, 13, 3039 (2022). https://doi.org/10.1038/s41467-022-30798-3.

Extending Compliance Inspection Data with Predictive Modeling for Marginal Conventional Wells with Emissions in New York State

Dyer, A., Schooley, C., White, C., Wise, J., and Lackey, G., “Extending Compliance Inspection Data with Predictive Modeling for Marginal Conventional Wells with Emissions in New York State,” conference abstract from AGU Annual Meeting 2024, Washington, DC, December 9–13, 2024.

CO2-Locate: A Dynamic Database and Tool for Accessing National Oil and Gas Well Data to Inform Carbon Storage Projects

Dyer, A., Pfander, I., Tetteh, D., Cleaveland, C., Sabbatino, M., Romeo, L., Bauer, J., and Rose, K., “CO2-Locate: A Dynamic Database and Tool for Accessing National Oil and Gas Well Data to Inform Carbon Storage Projects,” conference abstract from AGU Annual Meeting 2024, Washington, DC, December 9–13, 2024.

The Carbon Storage Planning Inquiry Tool (CS PlanIT)

Morkner, P., Pantaleone, S., Rich, M., Justman, D., and Rose, K. “The Carbon Storage Planning Inquiry Tool (CS PlanIT)”. US Energy Administration Seminar. November, 2024. Online.

Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping and Data Availability Assessments

Mulhern, J.S., Mark-Moser, M., Creason, C.G., Maymi, N., Shay, J., Lara, A., and Rose, K., “Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping and Data Availability Assessments,” AAPG Rocky Mountain Elevating Energy Section Meeting, Park City, UT, October 6–8, 2024.

Where are the Data? Automating a Workflow for Carbon Storage Data Gap Analysis

Creason, C.G., Mulhern, J.S., Cordero Rodriguez, N., Mark-Moser, M., Lara, A., Shay, J., and Rose, K. Where are the Data? Automating a Workflow for Carbon Storage Data Gap Analysis, Geological Society of America Connects Annual Meeting. Anaheim, CA. September 22-25, 2024.

Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping

Mulhern, J.S., Mark-Moser, M., Creason, C.G., Maymi, N., Shay, J., Lara, A., and Rose, K., “Carbon Storage Technical Viability Approach (CS TVA) Matrix: Integrating Multiple Components for Comprehensive Scoping,” Geological Society of America CONNECTS Annual Meeting, Anaheim, CA, September 22–25, 2024.

Offshore Carbon Storage Data Collection and International Offshore Carbon Storage Project Inventory

Mulhern, J.S., Mark-Moser, M., and Rose, K., “Offshore Carbon Storage Data Collection and International Offshore Carbon Storage Project Inventory,” Geological Society of America CONNECTS Annual Meeting, Anaheim, CA, September 22–25, 2024.

International Offshore Geologic Carbon Storage Project Inventory and Data Collection

Mulhern, J.S., Mark-Moser, M., and Rose, K. “International Offshore Geologic Carbon Storage Project Inventory and Data Collection”. Seventh International Offshore Geologic CO2 Storage Workshop. Port Arthur, Texas. September 17-19, 2024. Invited.

Curating Carbon Storage Data for Reuse: Enabling Research and Modeling from Earth’s Surface to Subsurface

Morkner, P., Martin, A., Bauer, J., Sabbatino, M., and Rose, K., “Curating Carbon Storage Data for Reuse: Enabling Research and Modeling from Earth’s Surface to Subsurface”. Brookhaven National Laboratory’s New York Scientific Data Summit 2024. Sept. 16, 2024. New York, NY.

The Carbon Storage Site Mapping Inquiry Tool (MapIT)

Morkner, P., Schooley, C., Pantaleone, S., Shay, J., Strazisar, B., and Rose, K. “The Carbon Storage Site Mapping Inquiry Tool (MapIT)”. Geological Society of America Conference Connects, September 2024. Anaheim, CA.

Scroll to Top