disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

Development of Machine Learning Models for Full Field Reservoir Characterization

Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178

Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – Accelerating Cross-Disciplinary AI/ML for Applied Geoscience, Energy, and Environmental Challenges

Shih, C., Thornton, J., Rose, K., Syamlal, M., Bromhal, G., Guenther, C., Pfautz, J., Van Essendelft, D., and Bauer, J., 2021, Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – accelerating cross-disciplinary AI/ML for applied geoscience, energy, and environmental challenges. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: IN12A – Growing Opportunities for Multiparty Collaborations in Artificial Intelligence and Machine Learning for Science Research. https://ui.adsabs.harvard.edu/abs/2021AGUFMIN12A..05S/abstract

Improving Prediction of Subsurface Properties Using a Geoscience Informed, Multi-Technique, Artificial Intelligence Approach

Rose, K., Mark-Moser, M., Suhag, A., and Bauer, J. 2021. Improving prediction of subsurface properties using a geoscience informed, multi-technique, artificial intelligence approach (Invited). AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H33C – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://ui.adsabs.harvard.edu/abs/2021AGUFM.H33C..01R/abstract

Leveraging Data Ecosystems to Support Earth Science Research for Decarbonization

Morkner, P., Mark-Moser, M., Justman, D., Rowan, C., Bauer, J., and Rose, K., 2021. Leveraging Data Ecosystems to Support Earth Science Research For Decarbonization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session U21A-07 – How Earth Science Research Can Help Accelerate the Transition to a Decarbonized Economy. https://ui.adsabs.harvard.edu/abs/2021AGUFM.U21A..07M/abstract

Exploring Subsurface Data Availability on the Energy Data eXchange (EDX)

Morkner, P., Bean, A., Bauer, J., Barkhurst, A., and Rose, K.. 2021. Exploring subsurface data availability on the Energy Data eXchange. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: SY039 – Subsurface Storage of Natural Gas, CO2, and Hydrogen: Key Learnings and Future Opportunities. https://www.osti.gov/servlets/purl/1846774

AI/ML Integration for Accelerated Analysis and Forecast of Offshore Hazards

Mark-Moser, M., Wingo, P., Duran, R., Dyer, A., Zaengle, D., Suhag, A., Hoover, B., Pantaleone, S., Shay, J., Bauer, J., and Rose, K. 2021. AI/ML integration for accelerated analysis and forecast of offshore hazards. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: EP027 – Proven AI/ML applications in the Earth Sciences. https://www.osti.gov/servlets/purl/1846789

On the Predictability of Loop Current Eddy Shedding Events and Unexpected Links to the Brazil and Guiana Currents

Duran, R., Liang, X.S., Allende-Arandia, M.E., Appendini, C.M., Mark-Moser, M., Rose, K., Bauer, J. 2021. On the predictability of Loop Current Eddy Shedding events and unexpected links to the Brazil and Guiana Currents. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: OS45D – Ocean Dynamics of the Gulf of Mexico III Poster. https://www.osti.gov/servlets/purl/1846777

Evaluating the Effects of a Low-Carbon Energy Transition on Existing U.S. Fossil Energy Communities

Bauer, J., Rose, K., Romeo, L., Justman, D., Hoover, B., and B. White. 2021. Evaluating the effects of a low-carbon energy transition on existing U.S. fossil energy communities. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session GC25G: Environmental Justice/Equity and Global Change: Methodologies, Frameworks, and Results II Poster. https://ui.adsabs.harvard.edu/abs/2021AGUFMGC25G0722B/abstract

Impact of time-dependent deformation on geomechanical risk for geologic carbon storage

Bao T.; Burghardt, J. A.; Gupta, V.; White, M. D. Impact of time-dependent deformation on geomechanical risk for geologic carbon storage. International Journal of Rock Mechanics and Mining Sciences 2021, 148, 104940. PNNL-SA-161528. https://doi.org/10.1016/j.ijrmms.2021.104940.

NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model

Baek S.; Bacon, D. H.; Huerta, N.J. NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model. PNNL-32364, 2021. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1840652.

Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage

Templeton, D., Schoenball, M., Layland-Bachmann, C., Foxall, W., Kroll, K., Burghardt, J., Dilmore, R., White, J.. Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage (Draft Report) 2021. NRAP Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV. https://www.osti.gov/biblio/1834402/

Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration

Guglielmi, Y.; Nussbaum, C.; Cappa, F.; de Barros, L.; Rutqvist, J., Birkholzer, J. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control 2021, 111, Article 103471. https://doi.org/10.1016/j.ijggc.2021.103471

Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock

Bao, T.; Burghardt, J. A.; Gupta, V.; Edelman, E.; McPherson, B. J.; White, M. D. Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock. International Journal of Rock Mechanics and Mining Sciences, 2021. 146, Article 104796. PNNL-SA-153774. doi:10.1016/j.ijrmms.2021.104796. https://www.sciencedirect.com/science/article/abs/pii/S1365160921001817?via%3Dihub

Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity

Min, Y.; Montross, S.; Spaulding, R.; Brandi, M.; Huerta, N.; Thomas, R.; Kutchko, B. Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity. Environmental Science & Technology 2021, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699.

NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management

Vasykivska, V.; Dilmore, R.; Lackey, G.; Zhang, Y.; King, S.; Bacon, D.; Chen, B.; Mansoor, K.;Harp, D. NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management. Environmental Modeling & Software 2021, 143, Article 105114. https://www.sciencedirect.com/science/article/abs/pii/S1364815221001572?via%3Dihub

Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis

Chen, B.; Zhou, Q. Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis. Theoretical and Applied Fracture Mechanics 2021, 114, Article 102969. https://doi.org/10.1016/j.tafmec.2021.102969.

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-31781.pdf

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.osti.gov/servlets/purl/1825928

Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface

Rhino, K.; Iyer, J.; Walsh, S. D. C.; Carroll, S. A.; Smith, M. M. Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface. International Journal of Greenhouse Gas Control 2021,109, Article 103340. https://www.sciencedirect.com/science/article/pii/S175058362100092X?via%3Dihub

Adaptive, Risk-Based Monitoring of Geologic Carbon Storage

Gasperikova, E. Vasylkivska, V. Yang, X. Huang, L. Hanna, A. Chen, B. Creasy, N. Li, D. Blatter, D. Kumar, A. Dilmore, R. Harbert, B. Morgan, D. Iyer, J.K. Smith, M. Kirol, A. Appriou, D. (2023, August 31). Adaptive, Risk-Based Monitoring of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Gasperikova.pdf

NRAP Phase III Overview: Objectives and Progress

Dilmore, R. (2023, August 31). NRAP Phase III Overview: Objectives and Progress [Conference presentation]. FECM/NETL Carbon Management Meeting 2023.  https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Dilmore.pdf

Anonymizing Sensitive Carbon Storage Data Tool

Morkner, P. Bauer, J. Wingo, P. Gao, M. Sharma, M. Hoover, B. Neumann, C. Johnson, C. Schuetter, J. Rose, K. (2023, August 29). Anonymizing Sensitive Carbon Storage Data Tool [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Morkner.pdf 

A Comprehensive Dashboard for CS Planning

Justman D. Pantaleone, S. Sharma, M. Romeo, L. Morkner, P. Bauer, J. (2023, August 29). A Comprehensive Dashboard for CS Planning [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Justman.pdf

EDX Cloud Optimization for Carbon Management

Rose, K. Baker, V. (2023, August 28). EDX Cloud Optimization for Carbon Management [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Rose.pdf

Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver

Zaengle, D. Sinclair, J. Wingo, P. Rowan, C. Rose, K. (2023, August 28). Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Zaengle.pdf

EDX++: Migrating EDX to the Cloud, Unlocking Next-Generation Data Infrastructure

Baker, V. Rose, K. Obradovich, J. McFarland, D. Jones, TJ. Mondello, J. Dean, E. Sarle, J. (2023, August 28). EDX++: Migrating EDX to the Cloud, Unlocking Next-Generation Data Infrastructure [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Baker.pdf

Developing a National Structural Complexity Database for U.S. Saline Basins

Amrine, D. Justman, D. Creason, C. Pantaleone, S. Gordon, A. Rose, K. (2023, August 28). Developing a National Structural Complexity Database for U.S. Saline Basins [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Amrine.pdf

Managing Carbon Storage Data With a Living Database

Sabbatino, M. Morkner, P. Choisser, A. Leveckis, S. Bauer, J. Rose, K. (2023, August 28). Managing Carbon Storage Data With a Living Database [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Sabbatino.pdf

Machine Learning Based Fracture Network Quantification at the IBDP CO2 Sequestration Site

Kumar, A. Harbert, W. Liu, G. Myshakin, E.(2023, August 28). Machine Learning Based Fracture Network Quantification at the IBDP CO2 Sequestration Site [Poster presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTSp_Kumar.pdf 

Scroll to Top