Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761
disCO2ver
Unlocking data-driven capabilities for the entire CCS community
Home » Bibliographies
Bibliographies
Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP
Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics
Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract
Subsurface Trend Analysis
Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138
Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool
Romeo, L., Nelson, J., Wingo, P., Bauer, J., Justman, D., Rose, K. 2019. Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool. Transactions in GIS.00:1–29. https://doi.org/10.1111/tgis.12558
Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models
Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210
Estimating Carbon Storage Resources in Offshore Geologic Environments
Cameron, E.; Thomas, R.; Bauer, J.; Bean, A.; DiGiulio, J.; Disenhof, C.; Galer, S.; Jones, K.; Mark-Moser, M.; Miller, R.; Romeo, L.; Rose, K. Estimating Carbon Storage Resources in Offshore Geologic Environments; NETL-TRS-14-2018; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2018; p 32. DOI: 10.18141/1464460 https://edx.netl.doe.gov/dataset/estimating-carbon-storage-resources-in-offshore-geologic-environments
Variable Grid Method: An Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty
Bauer, J. R., and Rose, K., 2015, Variable Grid Method: an Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty, Transactions in GIS. 19(3), p. 377-397. https://doi.org/10.1111/tgis.12158
Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface
Rhino, K.; Iyer, J.; Walsh, S. D. C.; Carroll, S. A.; Smith, M. M. Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface. International Journal of Greenhouse Gas Control 2021,109, Article 103340. https://www.sciencedirect.com/science/article/pii/S175058362100092X?via%3Dihub
NRAP-Open-IAM: Open Wellbore Component v2.0
Bacon D. H.; Pan, L.; Oldenburg, C. M. NRAP-Open-IAM: Open Wellbore Component v2.0, 2021. PNNL-31543. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1825929.
Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes
Kroll, K. A.; Cochran, E. S. Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters 2021, 48(11), e2020GL092148. https://doi.org/10.1029/2020GL092148.
Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines
Rod, K.A.; Cantrell, K.J.; Varga, T.; Battu, A.; Brown, C.F. Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines. Greenhouse Gases: Science and Technology 2021. 11(3), 483-492. PNNL-SA-160332, https://doi.org/10.1002/ghg.2061.
Public Data from Three US States Provide New Insights into Well Integrity
Lackey, G., Rajaram, H., Bolander, J., Sherwood, O.A., Ryan, J.N., Shih, C.Y., Bromhal, G.S., and Dilmore, R.M., “Public Data from Three US States Provide New Insights into Well Integrity,” Proceedings of the National Academy of Sciences of the United States of America, 118 (14) e2013894118. https://doi.org/10.1073/pnas.2013894118.
Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel
Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel
Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments
Duboeuf, L.; De Barros, L.; Kakurina, M.; Guglielmi, Y.; Cappa, F.; Valley, B. Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments. Geophysical Journal International 2021, 224(2), 1464-1475. doi: 10.1093/gji/ggaa515. https://academic.oup.com/gji/article-abstract/224/2/1464/5974524?redirectedFrom=fulltext
A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity
Justman, D., Creason, C.G., Rose, K., & Bauer, J., 2020. A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity. Journal of Structural Geology, 104153. https://doi.org/10.1016/j.jsg.2020.104153
A systematic, science-driven approach for predicting subsurface properties
Rose, K., Bauer, J.R., and Mark-Moser, M., 2020, A systematic, science-driven approach for predicting subsurface properties. Interpretation, 8:1, 167-181 https://doi.org/10.1190/INT-2019-0019.1
Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool
Romeo, L., Nelson, J., Wingo, P., Bauer, J., Justman, D., Rose, K. 2019. Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool. Transactions in GIS.00:1–29. https://doi.org/10.1111/tgis.12558
Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry
Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617
A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico
Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract
Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method
Mark-Moser, M., Suhag, A., Rose, K., Wingo, P. (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/
Advanced Geospatial Analytics and Machine Learning for Offshore and Onshore Oil & Natural Gas Infrastructure
Justman D., Romeo, L., Barkhurst, A., Bauer, J., Duran, R., Dyer, A., Nelson, J., Sabbatino, M., Wingo, P., Wenzlick, M., Zaengle, D., Rose, K. (2020, October 6-7). Advanced geospatial analytics and machine learning for offshore and onshore oil & natural gas infrastructure. [Virtual conference presentation]. GIS Week 2020. https://www.osti.gov/servlets/purl/1767074
Enhancing Knowledge Discovery of Unstructured Data to Support Context in Subsurface-Modeling Predictions
Hoover, B., Mark-Moser, M., Wingo, P., Suhag, A., Rose, K. 2021. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. ACE/SEG21, Denver, Colorado, Sept. 26th-Oct. 1st. https://www.osti.gov/servlets/purl/1843422
Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX
Morkner, P., Rowan, C., Rose, K., Bauer, J., Sabbatino, M., Barhurst, A. Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX. NETL Carbon Storage Review Meeting. September 10, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Morkner.pdf
Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator
Romeo, L., Rose, K., Thomas, R., Mark-Moser, M., Barkhurst, A., Wingo, P., Bean, A. 2020. Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator. Carbon Storage Review Meeting. September 11, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Romeo_11.pdf
Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas
Dyer, A., Romeo, L., Wenzlick, M., Bauer, J., Nelson, J., Duran, R., Zaengle, D., Wingo, P., and Sabbatino, M. 2020. Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas. Esri User Conference, San Diego, CA, July 13-15, 2020. https://www.osti.gov/servlets/purl/1604638
Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar
Rose, K., Barkhurst, A., Mark-Moser, M., Romeo, L., and Wingo, P., 2020, Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar 6/25/2020, https://www.youtube.com/watch?v=G5oUWSb-kHc&feature=youtu.be
Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills
Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016