disCO2ver

Unlocking data-driven capabilities for the entire CCS community

Bibliographies

Filter by Categories

Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP

Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761

Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics

Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract

Subsurface Trend Analysis

Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138 

Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool

Romeo, L., Nelson, J., Wingo, P., Bauer, J., Justman, D., Rose, K. 2019. Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool. Transactions in GIS.00:1–29. https://doi.org/10.1111/tgis.12558 

Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models

Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210

Estimating Carbon Storage Resources in Offshore Geologic Environments

Cameron, E.; Thomas, R.; Bauer, J.; Bean, A.; DiGiulio, J.; Disenhof, C.; Galer, S.; Jones, K.; Mark-Moser, M.; Miller, R.; Romeo, L.; Rose, K. Estimating Carbon Storage Resources in Offshore Geologic Environments; NETL-TRS-14-2018; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2018; p 32. DOI: 10.18141/1464460 https://edx.netl.doe.gov/dataset/estimating-carbon-storage-resources-in-offshore-geologic-environments  

Variable Grid Method: An Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty

Bauer, J. R., and Rose, K., 2015, Variable Grid Method: an Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty, Transactions in GIS. 19(3), p. 377-397. https://doi.org/10.1111/tgis.12158

Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface

Rhino, K.; Iyer, J.; Walsh, S. D. C.; Carroll, S. A.; Smith, M. M. Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface. International Journal of Greenhouse Gas Control 2021,109, Article 103340. https://www.sciencedirect.com/science/article/pii/S175058362100092X?via%3Dihub

NRAP-Open-IAM: Open Wellbore Component v2.0

Bacon D. H.; Pan, L.; Oldenburg, C. M. NRAP-Open-IAM: Open Wellbore Component v2.0, 2021. PNNL-31543. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1825929

Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes

Kroll, K. A.; Cochran, E. S. Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters 2021, 48(11), e2020GL092148. https://doi.org/10.1029/2020GL092148

Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines

Rod, K.A.; Cantrell, K.J.; Varga, T.; Battu, A.; Brown, C.F. Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines. Greenhouse Gases: Science and Technology 2021. 11(3), 483-492. PNNL-SA-160332, https://doi.org/10.1002/ghg.2061

Public Data from Three US States Provide New Insights into Well Integrity

Lackey, G., Rajaram, H., Bolander, J., Sherwood, O.A., Ryan, J.N., Shih, C.Y., Bromhal, G.S., and Dilmore, R.M., “Public Data from Three US States Provide New Insights into Well Integrity,” Proceedings of the National Academy of Sciences of the United States of America, 118 (14) e2013894118. https://doi.org/10.1073/pnas.2013894118

Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel

Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel

Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments

Duboeuf, L.; De Barros, L.; Kakurina, M.; Guglielmi, Y.; Cappa, F.; Valley, B. Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments. Geophysical Journal International 2021, 224(2), 1464-1475. doi: 10.1093/gji/ggaa515. https://academic.oup.com/gji/article-abstract/224/2/1464/5974524?redirectedFrom=fulltext 

A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity

Justman, D., Creason, C.G., Rose, K., & Bauer, J., 2020. A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity. Journal of Structural Geology, 104153. https://doi.org/10.1016/j.jsg.2020.104153

A systematic, science-driven approach for predicting subsurface properties

Rose, K., Bauer, J.R., and Mark-Moser, M., 2020, A systematic, science-driven approach for predicting subsurface properties. Interpretation, 8:1, 167-181 https://doi.org/10.1190/INT-2019-0019.1

Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool

Romeo, L., Nelson, J., Wingo, P., Bauer, J., Justman, D., Rose, K. 2019. Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool. Transactions in GIS.00:1–29. https://doi.org/10.1111/tgis.12558 

Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry

Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617

A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico

Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract

Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method

Mark-Moser, M., Suhag, A., Rose, K., Wingo, P.  (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/

Advanced Geospatial Analytics and Machine Learning for Offshore and Onshore Oil & Natural Gas Infrastructure

Justman D., Romeo, L., Barkhurst, A., Bauer, J., Duran, R., Dyer, A., Nelson, J., Sabbatino, M., Wingo, P., Wenzlick, M., Zaengle, D., Rose, K. (2020, October 6-7).  Advanced geospatial analytics and machine learning for offshore and onshore oil & natural gas infrastructure. [Virtual conference presentation]. GIS Week 2020. https://www.osti.gov/servlets/purl/1767074

Enhancing Knowledge Discovery of Unstructured Data to Support Context in Subsurface-Modeling Predictions

Hoover, B., Mark-Moser, M., Wingo, P., Suhag, A., Rose, K. 2021. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. ACE/SEG21, Denver, Colorado, Sept. 26th-Oct. 1st. https://www.osti.gov/servlets/purl/1843422

Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX

Morkner, P., Rowan, C., Rose, K., Bauer, J., Sabbatino, M., Barhurst, A. Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX. NETL Carbon Storage Review Meeting. September 10, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Morkner.pdf

Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator

Romeo, L., Rose, K., Thomas, R., Mark-Moser, M., Barkhurst, A., Wingo, P., Bean, A. 2020. Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator. Carbon Storage Review Meeting. September 11, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Romeo_11.pdf

Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas

Dyer, A., Romeo, L., Wenzlick, M., Bauer, J., Nelson, J., Duran, R., Zaengle, D., Wingo, P., and Sabbatino, M. 2020. Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas. Esri User Conference, San Diego, CA, July 13-15, 2020. https://www.osti.gov/servlets/purl/1604638

Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar

Rose, K., Barkhurst, A., Mark-Moser, M., Romeo, L., and Wingo, P., 2020, Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar 6/25/2020, https://www.youtube.com/watch?v=G5oUWSb-kHc&feature=youtu.be

Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills

Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016

Scroll to Top