disCO2ver

Unlocking data-driven capabilities for the entire CCS community

Bibliographies

Filter by Categories

Developing a National Structural Complexity Database for U.S. Saline Basins

Justman, D., Creason, C. G., Pantaleone, S., Amrine, D., Rose, K. (2023, October 15-18). Developing a National Structural Complexity Database for U.S. Saline Basins [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/391762

Carbon Storage Open Data Geospatial Curation and Accessibility

Choisser, A., Morkner, P., Sabbatino, M., Bauer, J., Rose, K. (2023, October 16-18). Carbon Storage Open Data Geospatial Curation and Accessibility [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://community.geosociety.org/gsa2023/home

RokBase: Digital Rock Visualization and Exploration Web Application

Sharma, M. Paronish, T. Crandall, D. Naberhaus, T. Nakacwa, S. (2023, October 16). RokBase: Digital Rock Visualization and Exploration Web Application [Conference presentation]. GSA Connects Conference 2023. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/394714

CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment

Sharma, M. Romeo, L. Bauer, J. Amrine, D. Pfander, I. Sabbatino, M. Rose, K. (2023, October 15) CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment [Conference presentation]. GSA Connects Conference 2023.  https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/395013

Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs

Rowan, C. Sinclair, J. (2023, August 31). Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Rowan.pdf

DOE’s Carbon Matchmaker

Sharma, M. Dooley, K. (2023, August 31). DOE’s Carbon Matchmaker [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Sharma.pdf

Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements

Wanosky, G. Sinclair, J. (2023, August 31). Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Wanosky.pdf

SMART Site-Specific Visualization and Decision Support

Bacon, D. Morgan, D. Mudunuru, M. (2023, August 31). SMART Site-Specific Visualization and Decision Support [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Bacon2.pdf

Advanced Machine Learning and Computational Methods

Schuetter, J. Tartakovsky, A. Shih, C. (2023, August 31). Advanced Machine Learning and Computational Methods [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Schuetter.pdf 

Overview of SMART Initiative

Siriwardane H. Mishra, S. (2023, August 31). Overview of SMART Initiative [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Siriwardane.pdf 

Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells

Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.

A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site

Mitchell, N.; Lackey, G.; Schwartz, B.; Strazisar, B.; Dilmore, R. A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site. Greenhouse Gases: Science and Technology 2023, 13(3), 320-339. https://doi.org/10.1002/ghg.2219.

Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network

Wang, Z.; Dilmore, R. M.; Bacon, D. H.; Harbert, W. Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network, Greenhouse Gases: Science and Technology, 2021, 11(2), 360-376. https://doi.org/10.1002/ghg.2056.

Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage

Chang, K.W., and Yoon, H., “Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage,” Seismological Research Letters, 49(3), 1447–1454, (2023) https://doi.org/10.1785/0220220365.

Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity

Liu, Y., Feng, S., Tsvankin, I., Alumbaugh, D., and Lin, Y., “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” Geophysics, (2022) doi.org/10.1190/geo2022-0050.1.

NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification

Thomas, R. B.; Schwartz, B.; Oldenburg, C.; Bacon, D. H.; Gasperikova, E.; Lackey. G.; Appriou, D.; Harp, D.; Chen, B.; Doughty, C.; Burghardt, J.; Pawar, R. J.; Brown, C. F.; Smith, M. M.; Van Voorhees, R.; Strazisar, B. R.; Dilmore, R. M. NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification; NRAP-TRS-I-002-2022; DOE.NETL-2022.3344; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 76. DOI: 10.2172/1906399 https://www.osti.gov/biblio/1906399/

Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership

Dilmore, R. M.; Appriou, D.; Bacon, D.; Brown, C.; Cihan, A.; Gasperikova, E.; Kroll, K.; Oldenburg, C. M.; Pawar, R. J.; Smith, M. M.; Strazisar, B. R.; Templeton, D.; Thomas, R. B.; Vasylkivska, V. S.; White, J. A. Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4298480

Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility

Brown, C. F.; Lackey, G.; Schwartz, B.; Deane, M.; Dilmore, R.; Blanke, H.; O’Brien, S.; Rowe, C. O’Brien, S.; Rowe, C. Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4297575

High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study

Fathi, E., Carr, T.R., Adenan, M.F., Panetta, B., Kumar, A., and Carney, B.J., ”High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study,” Machine Learning with Applications, Vol. 10 (2022), https://doi.org/10.1016/j.mlwa.2022.100421.

Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning

Kadeethum, T., Ballarin, F., O’Malley, D., Choi, Y., Bouklas, N., and Yoon, H., “Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning,” Scientific Reports, 12, Article 20654 (2022), https://doi.org/10.1038/s41598-022-24545-3.

Development of Machine Learning Models for Full Field Reservoir Characterization

Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178

Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – Accelerating Cross-Disciplinary AI/ML for Applied Geoscience, Energy, and Environmental Challenges

Shih, C., Thornton, J., Rose, K., Syamlal, M., Bromhal, G., Guenther, C., Pfautz, J., Van Essendelft, D., and Bauer, J., 2021, Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – accelerating cross-disciplinary AI/ML for applied geoscience, energy, and environmental challenges. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: IN12A – Growing Opportunities for Multiparty Collaborations in Artificial Intelligence and Machine Learning for Science Research. https://ui.adsabs.harvard.edu/abs/2021AGUFMIN12A..05S/abstract

Improving Prediction of Subsurface Properties Using a Geoscience Informed, Multi-Technique, Artificial Intelligence Approach

Rose, K., Mark-Moser, M., Suhag, A., and Bauer, J. 2021. Improving prediction of subsurface properties using a geoscience informed, multi-technique, artificial intelligence approach (Invited). AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H33C – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://ui.adsabs.harvard.edu/abs/2021AGUFM.H33C..01R/abstract

Leveraging Data Ecosystems to Support Earth Science Research for Decarbonization

Morkner, P., Mark-Moser, M., Justman, D., Rowan, C., Bauer, J., and Rose, K., 2021. Leveraging Data Ecosystems to Support Earth Science Research For Decarbonization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session U21A-07 – How Earth Science Research Can Help Accelerate the Transition to a Decarbonized Economy. https://ui.adsabs.harvard.edu/abs/2021AGUFM.U21A..07M/abstract

Exploring Subsurface Data Availability on the Energy Data eXchange (EDX)

Morkner, P., Bean, A., Bauer, J., Barkhurst, A., and Rose, K.. 2021. Exploring subsurface data availability on the Energy Data eXchange. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: SY039 – Subsurface Storage of Natural Gas, CO2, and Hydrogen: Key Learnings and Future Opportunities. https://www.osti.gov/servlets/purl/1846774

AI/ML Integration for Accelerated Analysis and Forecast of Offshore Hazards

Mark-Moser, M., Wingo, P., Duran, R., Dyer, A., Zaengle, D., Suhag, A., Hoover, B., Pantaleone, S., Shay, J., Bauer, J., and Rose, K. 2021. AI/ML integration for accelerated analysis and forecast of offshore hazards. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: EP027 – Proven AI/ML applications in the Earth Sciences. https://www.osti.gov/servlets/purl/1846789

On the Predictability of Loop Current Eddy Shedding Events and Unexpected Links to the Brazil and Guiana Currents

Duran, R., Liang, X.S., Allende-Arandia, M.E., Appendini, C.M., Mark-Moser, M., Rose, K., Bauer, J. 2021. On the predictability of Loop Current Eddy Shedding events and unexpected links to the Brazil and Guiana Currents. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: OS45D – Ocean Dynamics of the Gulf of Mexico III Poster. https://www.osti.gov/servlets/purl/1846777

Evaluating the Effects of a Low-Carbon Energy Transition on Existing U.S. Fossil Energy Communities

Bauer, J., Rose, K., Romeo, L., Justman, D., Hoover, B., and B. White. 2021. Evaluating the effects of a low-carbon energy transition on existing U.S. fossil energy communities. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session GC25G: Environmental Justice/Equity and Global Change: Methodologies, Frameworks, and Results II Poster. https://ui.adsabs.harvard.edu/abs/2021AGUFMGC25G0722B/abstract

Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico

Pantaleone, S., Mark Moser, M., Bean, A., Walker, S., Rose, K., 2021, “Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico”. AAPG/SEG IMAGE conference, Denver, Colorado, September 26, 2021 October 1, 2021. https://edx.netl.doe.gov/sites/offshore/forecasting-3d-structural-complexity-with-ai-ml-method-mississippi-canyon-gulf-of-mexico/

Assessing Current & Future Infrastructure Hazards: Forecasting Integrity using Machine Learning & Advanced Analytics

Romeo, L. (2021, August 9). Assessing Current & Future Infrastructure Hazards: Forecasting Integrity using Machine Learning & Advanced Analytics [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/20VPRONG_26_Romeo.pdf

Scroll to Top