disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

NETL RIC’s Carbon Storage Research Supporting Field Efforts (FWP-1022403)

Crandall, D.  (2021, August 5). NETL RIC’s Carbon Storage Research Supporting Field Efforts (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Crandall5.pdf

Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403)

Hammack, R. (2021, August 5). Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Hammack5.pdf

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.osti.gov/servlets/purl/1825928

Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube

Morkner, P., Bauer, J., Rose, K., Rowan, C., Barkhurst, A. (2021, July 27). Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube. [Conference presentation]. Invited talk at the CCUS Database Virtual Symposium. https://www.osti.gov/servlets/purl/1844394

Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface

Rhino, K.; Iyer, J.; Walsh, S. D. C.; Carroll, S. A.; Smith, M. M. Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface. International Journal of Greenhouse Gas Control 2021,109, Article 103340. https://www.sciencedirect.com/science/article/pii/S175058362100092X?via%3Dihub

NRAP-Open-IAM: Open Wellbore Component v2.0

Bacon D. H.; Pan, L.; Oldenburg, C. M. NRAP-Open-IAM: Open Wellbore Component v2.0, 2021. PNNL-31543. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1825929

Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes

Kroll, K. A.; Cochran, E. S. Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters 2021, 48(11), e2020GL092148. https://doi.org/10.1029/2020GL092148

AI/ML Forecasting of Offshore Platform Integrity to Improve Safety and Reliability

Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. 2021. Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://www.osti.gov/servlets/purl/1845120

Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk

Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. (2021, April 9). Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk [Conference presentation]. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://edx.netl.doe.gov/sites/offshore/forecasting-offshore-platform-integrity-applying-machine-learning-algorithms-to-quantify-lifespan-and-mitigate-risk/

Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines

Rod, K.A.; Cantrell, K.J.; Varga, T.; Battu, A.; Brown, C.F. Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines. Greenhouse Gases: Science and Technology 2021. 11(3), 483-492. PNNL-SA-160332, https://doi.org/10.1002/ghg.2061

NRAP-Open-IAM: Open Wellbore Component v2.0

Bacon D. H.; Pan, L.; Oldenburg, C. M. NRAP-Open-IAM: Open Wellbore Component v2.0, 2021. PNNL-31543. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1825929

Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes

Kroll, K. A.; Cochran, E. S. Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters 2021, 48(11), e2020GL092148. https://doi.org/10.1029/2020GL092148

Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines

Rod, K.A.; Cantrell, K.J.; Varga, T.; Battu, A.; Brown, C.F. Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines. Greenhouse Gases: Science and Technology 2021. 11(3), 483-492. PNNL-SA-160332, https://doi.org/10.1002/ghg.2061

Public Data from Three US States Provide New Insights into Well Integrity

Lackey, G., Rajaram, H., Bolander, J., Sherwood, O.A., Ryan, J.N., Shih, C.Y., Bromhal, G.S., and Dilmore, R.M., “Public Data from Three US States Provide New Insights into Well Integrity,” Proceedings of the National Academy of Sciences of the United States of America, 118 (14) e2013894118. https://doi.org/10.1073/pnas.2013894118

Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel

Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel

Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments

Duboeuf, L.; De Barros, L.; Kakurina, M.; Guglielmi, Y.; Cappa, F.; Valley, B. Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments. Geophysical Journal International 2021, 224(2), 1464-1475. doi: 10.1093/gji/ggaa515. https://academic.oup.com/gji/article-abstract/224/2/1464/5974524?redirectedFrom=fulltext 

A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity

Justman, D., Creason, C.G., Rose, K., & Bauer, J., 2020. A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity. Journal of Structural Geology, 104153. https://doi.org/10.1016/j.jsg.2020.104153

Exploring Beneath the Basemap

Bauer, J., Justman, D., Mark-Moser, M., Romeo, L., Creason, C.G., and Rose, K., “Exploring Beneath the Basemap,” GIS for Science: Applying Mapping and Spatial Analytics, Vol. 2 (2020), pp. 51–67.

A systematic, science-driven approach for predicting subsurface properties

Rose, K., Bauer, J.R., and Mark-Moser, M., 2020, A systematic, science-driven approach for predicting subsurface properties. Interpretation, 8:1, 167-181 https://doi.org/10.1190/INT-2019-0019.1

Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool

Romeo, L., Nelson, J., Wingo, P., Bauer, J., Justman, D., Rose, K. 2019. Cumulative spatial impact layers: A novel multivariate spatio‐temporal analytical summarization tool. Transactions in GIS.00:1–29. https://doi.org/10.1111/tgis.12558 

Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills

Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016

Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System

Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical

Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data

Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129

Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP

Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761

Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics

Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract

Subsurface Trend Analysis

Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138 

Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models

Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210

Scroll to Top