Bauer, J., Justman, D., and Rose. K. Invited presentation. Machine Learning Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities. Department of Homeland Security Science & Technology Directorate 2021 Big Data Series Workshop, March 24, 2021. https://www.osti.gov/biblio/1814179
disCO2ver
Unlocking data-driven capabilities for the entire CTS community
Home » Bibliographies
Bibliographies
ML Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities
Public Data from Three US States Provide New Insights into Well Integrity
Lackey, G., Rajaram, H., Bolander, J., Sherwood, O.A., Ryan, J.N., Shih, C.Y., Bromhal, G.S., and Dilmore, R.M., “Public Data from Three US States Provide New Insights into Well Integrity,” Proceedings of the National Academy of Sciences of the United States of America, 118 (14) e2013894118. https://doi.org/10.1073/pnas.2013894118.
Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel
Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel
Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments
Duboeuf, L.; De Barros, L.; Kakurina, M.; Guglielmi, Y.; Cappa, F.; Valley, B. Aseismic deformations perturb the stress state and trigger induced seismicity during injection experiments. Geophysical Journal International 2021, 224(2), 1464-1475. doi: 10.1093/gji/ggaa515. https://academic.oup.com/gji/article-abstract/224/2/1464/5974524?redirectedFrom=fulltext
Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights
Mark-Moser, M., Rose, K., Baker, V. D. (2020, December 17). Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights. [Conference presentation]. Session: IN042 – Utilizing unstructured data in Earth Science Poster Session. https://ui.adsabs.harvard.edu/abs/2020AGUFMIN0140002M/abstract
NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk
Vasylkivska, V., Bacon D., Chen, Bailian, Dilmore R., Harp D., King S., Lackey G., Lindner E., Liu Guoxiang, Mansoor K., Zhang Yingqi. NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk. AGU Annual Fall Meeting (Virtual), 2020 Session: GC110. Advances in Computational Methods for Geologic CO2 Sequestration I eLightning. https://ui.adsabs.harvard.edu/abs/2020AGUFMGC110..10V/abstract
Developing a structured seafloor sediment database from disparate datasets using SmartSearch
Mark-Moser, M., Rose, K., Baker, V. D. 2020. Developing a structured seafloor sediment database from disparate datasets using SmartSearch. AGU Annual Fall Meeting (Virtual), 2020. Session: IN042 – Utilizing unstructured data in earth science https://www.osti.gov/servlets/purl/1776797
Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment
Ghanem, R., Zhang, R., Rose, K., invited talk, Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment, AGU Annual Meeting 2020, Session: H027 – Artificial Intelligence and Machine Learning for Multiscale Model-Experimental Integration https://agu.confex.com/agu/fm20/prelim.cgi/Session/103051
Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry
Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617
A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity
Justman, D., Creason, C.G., Rose, K., & Bauer, J., 2020. A knowledge-data framework and geospatial fuzzy logic-based approach to model and predict structural complexity. Journal of Structural Geology, 104153. https://doi.org/10.1016/j.jsg.2020.104153
Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model
Kadeethum, T., O’Malley, D., Ballarin, F., Ang, I., Fuhg, J.N., Bouklas, N., Silva, V.L.S., Salinas, P., Heaney, C.E., Pain, C.C., Lee, S., Viswanathan, H.S., and Yoon, H., “Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model,” Scientific Reports, 12, Article 20229. (2022) https://doi.org/10.1038/s41598-022-22407-6.
A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site
Lackey, G.; Mitchell, N.; Schwartz, B.; Liu, G.; Vasylkivska, V. S.; Strazisar, B.; Dilmore, R. M. A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4271578
Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties
Kadeethum, T., O’Malley, D., Choi, Y., Viswanathan, H.S., Bouklas, N., and Yoon, H., “Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties,” Computers & Geosciences, Vol. 167, 105212, (2022), https://doi.org/10.1016/j.cageo.2022.105212.
TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics
Rinaldi, A. P.; Rutqvist, J.; Luu, K.; Blanco-Martin, L.; Hu, M. et al. TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics. Computational Geosciences 2022, 26, 1563–1580. https://doi.org/10.1007/s10596-022-10176-0.
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project
Panetta, B., Carr, T., and Fathi, E., “3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project,” AAPG and SEG Second International Meeting for Applied Geoscience & Energy, August 14-15, 2022, Houston, TX, expanded abstract, https://doi.org/10.1190/image2022-3746025.1
Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage
Um, E.S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., Lin, Y., and Samarasinghe, S., “Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage;” Geophysical Prospecting, (2022) https://doi.org/10.1111/1365-2478.13257.
Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring
Liu, G., Kumar, A., Zhao, S., Shih, C., Vasylkivska, V., Holcomb, P., Hammack, R., Ilconich, J., and Bromhal, G., “Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring,” presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, (June 2022) https://doi.org/10.15530/urtec-2022-3723466.
Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization
Cappa, F.; Guglielmi, Y.; De Barros, L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization. Nature Communications, 2022, 13, 3039 (2022). https://doi.org/10.1038/s41467-022-30798-3.
National Risk Assessment Partnership: Tools and Recommended Practices for Induced Seismicity Risk Management
White, J. (2022). NRAP: Tools and Recommended Practices for Induced Seismicity and Risk Management. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_White.pdf
National Risk Assessment Partnership: Phase II Key Accomplishments and Phase III Introduction
Dilmore, R. (2022). National Risk Assessment Partnership: Phase II Accomplishments and Phase III Introduction. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Dillmore.pdf
An Updated Carbon Storage Open Database – Geospatial Data Aggregation to Support Scaling up CCS
Morkner, P. (2022). An Updated Carbon Storage Open Database – Geospatial Data Aggregation to Support Scaling up CCS. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Morkner.pdf
Advanced Data Extraction to Support a Living Database
Sabbatino, M. (2022). Advanced Data Extraction to Support a Living Database. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Sabbatino.pdf
Geo-Data Science Driven Insights Into CCS EJ/SJ Opportunities in Support of Energy Community Transitions
Bauer, J. (2022). Geo-Data Science Driven Insights into CCS EJ/SJ Opportunities in Support of Energy Community Transitions. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Bauer.pdf
The DisCO2ver Platform, Building a Virtual Carbon Storage Data Laboratory and Infrastructure for the Future
Rose, K. Morkner, P. Bauer, J. (2022). The disCO2ver Platform, Building a Virtual Carbon Storage Data Laboratory and Infrastructure for the Future. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Rose.pdf
DOE Offshore Carbon Storage Saline Calculator Methodology and Tool
Romeo, L. Rose, K. Bauer, J. Mark-Moser, M. Bean, A. Thomas, B. (2022). Offshore CO2 Saline Storage Methodology and Calculator. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Romeo.pdf
Site Selection and Cost Estimation of Pilot-Scale CO2 Saline Storage Study in the Gulf of Mexico
Wijaya, N. Vakara, D. Bello, K. Vactor, T. Grant, T. Morgan, D. (2022). Site Selection and Cost Estimation for Pilot-Scale CO2 Saline Storage Study in the Gulf of Mexico. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Wijaya_2.pdf
Updating NATCARB and Carbon Storage Geospatial Resources via EDX Cloud
Morkner, P., Bauer, J., Pantaleone, S., Shay, J., Rowan, C., Baker, V., Obradovich, J., and Rose, K. Updating NATCARB and Carbon Storage Geospatial Resources via EDX Cloud. U.S Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting, August 16th, 2022. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS16_Morkner.pdf
AIIM: Advanced Infrastructure Integrity Modeling
Bean, A., Romeo, L., Bauer, J. AIIM: Advanced Infrastructure Integrity Modeling. TechConnect. June 13-15, 2022. National Harbor, D.C. https://www.osti.gov/biblio/1890422