disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico

Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract

Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method

Mark-Moser, M., Suhag, A., Rose, K., Wingo, P.  (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/

Advanced Geospatial Analytics and Machine Learning for Offshore and Onshore Oil & Natural Gas Infrastructure

Justman D., Romeo, L., Barkhurst, A., Bauer, J., Duran, R., Dyer, A., Nelson, J., Sabbatino, M., Wingo, P., Wenzlick, M., Zaengle, D., Rose, K. (2020, October 6-7).  Advanced geospatial analytics and machine learning for offshore and onshore oil & natural gas infrastructure. [Virtual conference presentation]. GIS Week 2020. https://www.osti.gov/servlets/purl/1767074

Enhancing Knowledge Discovery of Unstructured Data to Support Context in Subsurface-Modeling Predictions

Hoover, B., Mark-Moser, M., Wingo, P., Suhag, A., Rose, K. 2021. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. ACE/SEG21, Denver, Colorado, Sept. 26th-Oct. 1st. https://www.osti.gov/servlets/purl/1843422

Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX

Morkner, P., Rowan, C., Rose, K., Bauer, J., Sabbatino, M., Barhurst, A. Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX. NETL Carbon Storage Review Meeting. September 10, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Morkner.pdf

Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator

Romeo, L., Rose, K., Thomas, R., Mark-Moser, M., Barkhurst, A., Wingo, P., Bean, A. 2020. Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator. Carbon Storage Review Meeting. September 11, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Romeo_11.pdf

Exploring Beneath the Basemap

Bauer, J., Justman, D., Mark-Moser, M., Romeo, L., Creason, C.G., and Rose, K., “Exploring Beneath the Basemap,” GIS for Science: Applying Mapping and Spatial Analytics, Vol. 2 (2020), pp. 51–67.

Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas

Dyer, A., Romeo, L., Wenzlick, M., Bauer, J., Nelson, J., Duran, R., Zaengle, D., Wingo, P., and Sabbatino, M. 2020. Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas. Esri User Conference, San Diego, CA, July 13-15, 2020. https://www.osti.gov/servlets/purl/1604638

Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar

Rose, K., Barkhurst, A., Mark-Moser, M., Romeo, L., and Wingo, P., 2020, Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar 6/25/2020, https://www.youtube.com/watch?v=G5oUWSb-kHc&feature=youtu.be

Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills

Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016

NRAP-Open-IAM: Generic Aquifer Component Development and Testing

Bacon, D. H. NRAP-Open-IAM: Generic Aquifer Component Development and Testing. PNNL-32590, 2022, Pacific Northwest National Laboratory, Richland, WA. https://doi.org/10.2172/1845855.

Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales

Chai, C., Maceira, M., and EGS Collab Team, “Machine Learning Enhanced Seismic Monitoring at 100 km and 10 m Scales,” in Proceedings, 47th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 47, 635–645, (2022) https://www.osti.gov/biblio/1845768.

Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes

Gasperikova, E.; Appriou, D.; Bonneville, A.; Feng, Z.; Huang, L.; Gao, K.; Yang, X.; Daley, T. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes. International Journal of Greenhouse Gas Control 2022, 114, Article 103585. https://doi.org/10.1016/j.ijggc.2022.103585.

Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction

Chen, B.; Zhou, Q. Scaling Behavior of Thermally Driven Fractures in Deep Low-Permeability Formations: A Plane Strain Model with 1-D Heat Conduction. Journal of Geophysical Research – Solid Earth 2022, Research Article. https://doi.org/10.1029/2021JB022964.

Distilling Data to Drive Carbon Storage Insights

Morkner, P.; Bauer, J.; Creason, C.; Sabbatino, M.; Wingo, P.; Greenburg, R.; Walker, S.; Yeates, D.; Rose, K. Distilling Data to Drive Carbon Storage Insights. Computers & Geosciences 2022, 158, Article 104945. https://doi.org/10.1016/j.cageo.2021.104945.

Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers

Yang, X.; Chen, X.; Smith, M.M. Deep Learning Inversion of Gravity Data for Detection of CO2 Plumes in Overlying Aquifers. Journal of Applied Geophysics 2022, 196(104507). https://doi.org/10.1016/j.jappgeo.2021.104507.

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites

Iyer, J.; Lackey, G.; Edvardsen, L.; Bean, A.; Carroll, S.A.; Huerta, N.; Smith, M.M.; Torsaeter, M.; Dilmore, R.M.; Cerasi, P. A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control 2022, 113(103533). https://doi.org/10.1016/j.ijggc.2021.103533

Impact of time-dependent deformation on geomechanical risk for geologic carbon storage

Bao T.; Burghardt, J. A.; Gupta, V.; White, M. D. Impact of time-dependent deformation on geomechanical risk for geologic carbon storage. International Journal of Rock Mechanics and Mining Sciences 2021, 148, 104940. PNNL-SA-161528. https://doi.org/10.1016/j.ijrmms.2021.104940.

NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure

Lackey, G.; Dilmore, R. NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure; DOE/NETL-2021/2660; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2021; p 100. DOI: 10.2172/1828877 https://www.osti.gov/biblio/1828877

NETL RIC’s Carbon Storage Research Supporting Field Efforts (FWP-1022403)

Crandall, D.  (2021, August 5). NETL RIC’s Carbon Storage Research Supporting Field Efforts (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Crandall5.pdf

Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403)

Hammack, R. (2021, August 5). Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Hammack5.pdf

Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube

Morkner, P., Bauer, J., Rose, K., Rowan, C., Barkhurst, A. (2021, July 27). Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube. [Conference presentation]. Invited talk at the CCUS Database Virtual Symposium. https://www.osti.gov/servlets/purl/1844394

AI/ML Forecasting of Offshore Platform Integrity to Improve Safety and Reliability

Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. 2021. Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://www.osti.gov/servlets/purl/1845120

Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk

Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. (2021, April 9). Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk [Conference presentation]. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://edx.netl.doe.gov/sites/offshore/forecasting-offshore-platform-integrity-applying-machine-learning-algorithms-to-quantify-lifespan-and-mitigate-risk/

ML Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities

Bauer, J., Justman, D., and Rose. K. Invited presentation. Machine Learning Clustering to Identify Natural Gas Pipeline Infrastructure Vulnerabilities. Department of Homeland Security Science & Technology Directorate 2021 Big Data Series Workshop, March 24, 2021. https://www.osti.gov/biblio/1814179

Incorporating Historical Data and Past Analyses for Improved Tensile Property Prediction of 9% Cr Steel

Wenzlick, M., Devanathan, R., Mamun, O., Rose, K., Hawk, J., 2021. Incorporating historical data & past analyses for improved tensile property prediction of 9Cr steel. 2021 TMS Annual Meeting & Exhibition, AI/Data informatics: Design of Structural Materials, Orlando, FL, March 2021. https://www.researchgate.net/publication/349544140_Incorporating_Historical_Data_and_Past_Analyses_for_Improved_Tensile_Property_Prediction_of_9_Cr_Steel

Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights

Mark-Moser, M., Rose, K., Baker, V. D. (2020, December 17). Tools for Data Collection, Curation, and Discovery to Support Carbon Storage Insights. [Conference presentation]. Session: IN042 – Utilizing unstructured data in Earth Science Poster Session. https://ui.adsabs.harvard.edu/abs/2020AGUFMIN0140002M/abstract

NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk

Vasylkivska, V., Bacon D., Chen, Bailian, Dilmore R., Harp D., King S., Lackey G., Lindner E., Liu Guoxiang, Mansoor K., Zhang Yingqi. NRAP-Open-IAM: A New, Open-Source Code for Integrated Assessment of Geologic Carbon Storage Containment Effectiveness and Leakage Risk. AGU Annual Fall Meeting (Virtual), 2020 Session: GC110. Advances in Computational Methods for Geologic CO2 Sequestration I eLightning.  https://ui.adsabs.harvard.edu/abs/2020AGUFMGC110..10V/abstract

Developing a structured seafloor sediment database from disparate datasets using SmartSearch

Mark-Moser, M., Rose, K., Baker, V. D. 2020. Developing a structured seafloor sediment database from disparate datasets using SmartSearch. AGU Annual Fall Meeting (Virtual), 2020. Session: IN042 – Utilizing unstructured data in earth science https://www.osti.gov/servlets/purl/1776797

Scroll to Top