disCO2ver

Unlocking data-driven capabilities for the entire CTS community

Bibliographies

Filter by Categories

Variable Grid Method: An Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty

Bauer, J. R., and Rose, K., 2015, Variable Grid Method: an Intuitive Approach for Simultaneously Quantifying and Visualizing Spatial Data and Uncertainty, Transactions in GIS. 19(3), p. 377-397. https://doi.org/10.1111/tgis.12158

Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting

Lackey, G.; Strazisar, B. R.; Kobelski, B.; McEvoy, M.; Bacon, D. H.; Cihan, A.; Iyer, J.; Livers-Douglas, A.; Pawar, R.; Sminchak, J.; Wernette, B.; Dilmore, R. M. Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting; NRAP-TRS-I-001-2022; DOE.NETL-2022.3731; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 120. DOI: https://doi.org/10.2172/1870412

Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks

Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wenzlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo, L. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks, Marine Structures, Volume 83, 103152. https://doi.org/10.1016/j.marstruc.2021.103152.

Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering

Bao, T.; Burghardt, J. A. Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering. Rock Mechanics and Rock Engineering 2022, 55, 4531–4548. https://doi.org/10.1007/s00603-022-02857-0.

Thermal and solubility effects on fault leakage during geologic carbon storage

Meguerdijian, S.; Pawar, R. J.; Harp, D. R.; Jha, B. Thermal and solubility effects on fault leakage during geologic carbon storage. International Journal of Greenhouse Gas Control 2022, 116, Article 103633. https://doi.org/10.1016/j.ijggc.2022.103633.

Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells

Cihan, A.; Oldenburg, C. M.; Birkholzer, J. T. Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells. Water Resources Research 2022, 58 (5), e2022WR032343. https://doi.org/10.1029/2022WR032343.

Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin

Luu, K.; Schoenball, M.; Oldenburg, C. M.; Rutqvist, J. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth 2022, 127(5), e2021JB023496. https://doi.org/10.1029/2021JB023496.

Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography

Yang, X.; Carrigan, C. Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography, Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 255-271. https://doi.org/10.1002/9781119156871.ch16.

Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage

Appriou, D.; Bonneville, A. (2022). Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 211-232. https://doi.org/10.1002/9781119156871.ch14.

Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring

Gasperikova, E.; Morrison, H. F. Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 233-253. https://doi.org/10.1002/9781119156871.ch15.

Automatic Waveform Quality Control for Surface Waves Using Machine Learning

Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.

Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin

Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Myshakin, E., Crandall, D., Cunha, L., (2024, June 23). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation], ARMA 24–1183, 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colorado. https://www.osti.gov/biblio/2228745

Supporting Safe CO2 Transport-Route Planning: A Multifaceted Geospatial Database Enhancing Carbon Models

 Schooley, C., Houghton, B., Romeo, L., Gao, M., Leveckis, S., Justman, D., Chong, L.,Sharma, M., Bauer, J., and Rose, K., “Supporting Safe CO2 Transport-Route Planning: A Multifaceted Geospatial Database Enhancing Carbon Models,” SAMI Technical Talk, San Diego, CA, June 20, 2024.

Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations

Mark-Moser, M. K., Romeo, L., Duran, R., Bauer, J., Rose, K., (2024, May 6). Advanced Offshore Hazard Forecasting to Enable Resilient Offshore Operations. [Conference presentation] Offshore Technology Conference 2024. Houston, TX.  https://www.osti.gov/biblio/2352616

EDX disCO2ver, Fostering Public-Private Partnerships for Accelerated Advancements in AI for Energy

Rose, K., 2024, “EDX disCO2ver, Fostering Public-Private Partnerships for Accelerated Advancements in AI for Energy”, AI in Oil & Gas Conference, April 9-10, 2024. Invited.

Web-Based GIS Data: Observation of Differences in Performance and Management

Pramuk, J., McFarland, D., Chittum, J., Bauer, J., and Rose, K., “Web-Based GIS Data: Observation of Differences in Performance and Management,” Esri Developer Summit, Palm Springs, CA, March 12–15, 2024.

Carbon Storage Technical Viability Approach and National Data Assessment

Mark-Moser, M., Creason, C.G., Mulhern, J., Shay, J., Lara, A., and Rose, K., “Carbon Storage Technical Viability Approach and National Data Assessment,” presented at the CCUS 2024 SPE AAPG SEG, Houston, TX, March 11–13, 2024.

Developing a National Oil & Gas Wellbore Database and Visualization Tool to Support Locating and Characterizing Undocumented Wells

Bauer, J., Romeo, L., Sharma, M., Amrine, D., Pfander, I., Sabbatino, M., and Rose, K., “Developing a National Oil & Gas Wellbore Database and Visualization Tool to Support Locating and Characterizing Undocumented Wells,” American Geophysical Union (AGU) Fall Meeting 2023, San Francisco, CA, December 11–15, 2023.

Multi-Factor Assessment for Decarbonization via Technically Viable Carbon Storage

Mark-Moser, M., Creason, C.G., Mulhern, J.S., Shay, J., and Rose, K., “Multi-Factor Assessment for Decarbonization via Technically Viable Carbon Storage,” American Geophysical Union (AGU) Fall Meeting 2023, San Francisco, CA, December 11–15, 2023.

The DisCO2ver Platform: Curating Data and Tools for Geologic Carbon Sequestration and Deep Subsurface Systems Research

Morkner, P., Rose, K., Rowan, C., Jones, TJ., McFarland, D., Maurice, A., Baker, V., and Bauer, J., “The DisCO2ver Platform: Curating Data and Tools for Geologic Carbon Sequestration and Deep Subsurface Systems Research,” American Geophysical Union (AGU) Fall Meeting 2023, San Francisco, CA, December 11–15, 2023.

An Accessible and Interoperable CO2 Transport Routing Geodatabase for Scalable Computing & Decision Support

Schooley, C., Romeo, L., Pfander, I., Justman, D., Sharma, M., Bauer, J., and Rose, K., “An Accessible and Interoperable CO2 Transport Routing Geodatabase for Scalable Computing & Decision Support,” American Geophysical Union (AGU) Fall Meeting 2023, San Francisco, CA, December 11–15, 2023.

Scroll to Top