Bacon, D. Camargo, J. Kirol, A. Haagenson, R. Creason, C. Lackey, G. Morkner, P. Zhou, Q. Cihan, A. Eier, J. Schmidt, B. (2023, August 31). Assessing Risks of Rapid Commercial-Scale Deployment of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Bacon1.pdf
disCO2ver
Unlocking data-driven capabilities for the entire CCS community
Home » Bibliographies
Bibliographies
Assessing Risks of Rapid Commercial-Scale Deployment of Geologic Carbon Storage
Developing a Tool to Quantify Liability of Geologic Carbon Storage
Morgan, D. Bello, K. Burghardt, J. Creason, C. Dilmore, R. Gasperikova, E. Grant, T. Huerta, N. Liu, G. Kroll, K. Mark-Moser, M. Oldenburg, C. Rasouli, P. Smith, M. Strazisar, B. Vasylkivska, V. Vikara, D. Warner, T. Wilson, K. (2023, August 31). Developing a Tool to Quantify Liability of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Morgan.pdf
Adaptive, Risk-Based Monitoring of Geologic Carbon Storage
Gasperikova, E. Vasylkivska, V. Yang, X. Huang, L. Hanna, A. Chen, B. Creasy, N. Li, D. Blatter, D. Kumar, A. Dilmore, R. Harbert, B. Morgan, D. Iyer, J.K. Smith, M. Kirol, A. Appriou, D. (2023, August 31). Adaptive, Risk-Based Monitoring of Geologic Carbon Storage [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Gasperikova.pdf
NRAP Phase III Overview: Objectives and Progress
Dilmore, R. (2023, August 31). NRAP Phase III Overview: Objectives and Progress [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Dilmore.pdf
A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites
Dennise C. Templeton, Martin Schoenball, Corinne E. Layland‐Bachmann, William Foxall, Yves Guglielmi, Kayla A. Kroll, Jeffrey A. Burghardt, Robert Dilmore, Joshua A. White; A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites. Seismological Research Letters 2022;; 94 (1): 113–122. https://doi.org/10.1785/0220210284
Anonymizing Sensitive Carbon Storage Data Tool
Morkner, P. Bauer, J. Wingo, P. Gao, M. Sharma, M. Hoover, B. Neumann, C. Johnson, C. Schuetter, J. Rose, K. (2023, August 29). Anonymizing Sensitive Carbon Storage Data Tool [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Morkner.pdf
A Comprehensive Dashboard for CS Planning
Justman D. Pantaleone, S. Sharma, M. Romeo, L. Morkner, P. Bauer, J. (2023, August 29). A Comprehensive Dashboard for CS Planning [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS29_Justman.pdf
EDX Cloud Optimization for Carbon Management
Rose, K. Baker, V. (2023, August 28). EDX Cloud Optimization for Carbon Management [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Rose.pdf
Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver
Zaengle, D. Sinclair, J. Wingo, P. Rowan, C. Rose, K. (2023, August 28). Licensing and Virtualizing Carbon Storage Models and Tools via EDX disCO2ver [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Zaengle.pdf
EDX++: Migrating EDX to the Cloud, Unlocking Next-Generation Data Infrastructure
Baker, V. Rose, K. Obradovich, J. McFarland, D. Jones, TJ. Mondello, J. Dean, E. Sarle, J. (2023, August 28). EDX++: Migrating EDX to the Cloud, Unlocking Next-Generation Data Infrastructure [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Baker.pdf
Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization
Cappa, F.; Guglielmi, Y.; De Barros, L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization. Nature Communications, 2022, 13, 3039 (2022). https://doi.org/10.1038/s41467-022-30798-3.
Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting
Lackey, G.; Strazisar, B. R.; Kobelski, B.; McEvoy, M.; Bacon, D. H.; Cihan, A.; Iyer, J.; Livers-Douglas, A.; Pawar, R.; Sminchak, J.; Wernette, B.; Dilmore, R. M. Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting; NRAP-TRS-I-001-2022; DOE.NETL-2022.3731; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 120. DOI: https://doi.org/10.2172/1870412
Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks
Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wenzlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo, L. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks, Marine Structures, Volume 83, 103152. https://doi.org/10.1016/j.marstruc.2021.103152.
Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering
Bao, T.; Burghardt, J. A. Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering. Rock Mechanics and Rock Engineering 2022, 55, 4531–4548. https://doi.org/10.1007/s00603-022-02857-0.
Thermal and solubility effects on fault leakage during geologic carbon storage
Meguerdijian, S.; Pawar, R. J.; Harp, D. R.; Jha, B. Thermal and solubility effects on fault leakage during geologic carbon storage. International Journal of Greenhouse Gas Control 2022, 116, Article 103633. https://doi.org/10.1016/j.ijggc.2022.103633.
Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells
Cihan, A.; Oldenburg, C. M.; Birkholzer, J. T. Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells. Water Resources Research 2022, 58 (5), e2022WR032343. https://doi.org/10.1029/2022WR032343.
Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin
Luu, K.; Schoenball, M.; Oldenburg, C. M.; Rutqvist, J. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth 2022, 127(5), e2021JB023496. https://doi.org/10.1029/2021JB023496.
Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography
Yang, X.; Carrigan, C. Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography, Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 255-271. https://doi.org/10.1002/9781119156871.ch16.
Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage
Appriou, D.; Bonneville, A. (2022). Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 211-232. https://doi.org/10.1002/9781119156871.ch14.
Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring
Gasperikova, E.; Morrison, H. F. Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 233-253. https://doi.org/10.1002/9781119156871.ch15.
Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System
Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical
Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data
Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129
Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP
Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761
Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics
Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract
Subsurface Trend Analysis
Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138
Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models
Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210