disCO2ver

Unlocking data-driven capabilities for the entire CCS community

Bibliographies

Filter by Categories

EDX Utilization of Cloud Open Data Programs to Enhance Reuse of Large CS Datasets

Rowan, C. Rose, K. (2023, August 28). EDX Utilization of Cloud Open Data Programs to Enhance Reuse of Large CS Datasets. FECM/NETL Carbon Management Meeting 2023 [Conference presentation].  https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS28_Rowan.pdf

Novel Geomechanical Signal Methodologies (FWP-1022403)

Hakala, A. (2021, August 6). Novel Geomechanical Signal Methodologies. [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Hakala6.pdf

SMART: Real Time Forecasting for Carbon Storage

McGuire, T. Yonkofski, C. (2021). SMART: Real Time Forecasting of Carbon Storage. 2021 Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_McGuire6.pdf

A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage

Bhuvankar, P.; Cihan, A.; Birkholzer, J. A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage. International Journal of Greenhouse Gas Control, 2023, 127, Article 103921, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.103921.

Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells

Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.

A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site

Mitchell, N.; Lackey, G.; Schwartz, B.; Strazisar, B.; Dilmore, R. A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site. Greenhouse Gases: Science and Technology 2023, 13(3), 320-339. https://doi.org/10.1002/ghg.2219.

Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network

Wang, Z.; Dilmore, R. M.; Bacon, D. H.; Harbert, W. Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network, Greenhouse Gases: Science and Technology, 2021, 11(2), 360-376. https://doi.org/10.1002/ghg.2056.

Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage

Chang, K.W., and Yoon, H., “Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage,” Seismological Research Letters, 49(3), 1447–1454, (2023) https://doi.org/10.1785/0220220365.

Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity

Liu, Y., Feng, S., Tsvankin, I., Alumbaugh, D., and Lin, Y., “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” Geophysics, (2022) doi.org/10.1190/geo2022-0050.1.

NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification

Thomas, R. B.; Schwartz, B.; Oldenburg, C.; Bacon, D. H.; Gasperikova, E.; Lackey. G.; Appriou, D.; Harp, D.; Chen, B.; Doughty, C.; Burghardt, J.; Pawar, R. J.; Brown, C. F.; Smith, M. M.; Van Voorhees, R.; Strazisar, B. R.; Dilmore, R. M. NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification; NRAP-TRS-I-002-2022; DOE.NETL-2022.3344; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 76. DOI: 10.2172/1906399 https://www.osti.gov/biblio/1906399/

NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure

Lackey, G.; Dilmore, R. NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure; DOE/NETL-2021/2660; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2021; p 100. DOI: 10.2172/1828877 https://www.osti.gov/biblio/1828877

NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model

Baek S.; Bacon, D. H.; Huerta, N.J. NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model. PNNL-32364, 2021. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1840652.

Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage

Templeton, D., Schoenball, M., Layland-Bachmann, C., Foxall, W., Kroll, K., Burghardt, J., Dilmore, R., White, J.. Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage (Draft Report) 2021. NRAP Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV. https://www.osti.gov/biblio/1834402/

Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration

Guglielmi, Y.; Nussbaum, C.; Cappa, F.; de Barros, L.; Rutqvist, J., Birkholzer, J. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control 2021, 111, Article 103471. https://doi.org/10.1016/j.ijggc.2021.103471

Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock

Bao, T.; Burghardt, J. A.; Gupta, V.; Edelman, E.; McPherson, B. J.; White, M. D. Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock. International Journal of Rock Mechanics and Mining Sciences, 2021. 146, Article 104796. PNNL-SA-153774. doi:10.1016/j.ijrmms.2021.104796. https://www.sciencedirect.com/science/article/abs/pii/S1365160921001817?via%3Dihub

Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity

Min, Y.; Montross, S.; Spaulding, R.; Brandi, M.; Huerta, N.; Thomas, R.; Kutchko, B. Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity. Environmental Science & Technology 2021, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699.

NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management

Vasykivska, V.; Dilmore, R.; Lackey, G.; Zhang, Y.; King, S.; Bacon, D.; Chen, B.; Mansoor, K.;Harp, D. NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management. Environmental Modeling & Software 2021, 143, Article 105114. https://www.sciencedirect.com/science/article/abs/pii/S1364815221001572?via%3Dihub

Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis

Chen, B.; Zhou, Q. Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis. Theoretical and Applied Fracture Mechanics 2021, 114, Article 102969. https://doi.org/10.1016/j.tafmec.2021.102969.

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-31781.pdf

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.osti.gov/servlets/purl/1825928

Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry

Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617

A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico

Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract

Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method

Mark-Moser, M., Suhag, A., Rose, K., Wingo, P.  (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/

Advanced Geospatial Analytics and Machine Learning for Offshore and Onshore Oil & Natural Gas Infrastructure

Justman D., Romeo, L., Barkhurst, A., Bauer, J., Duran, R., Dyer, A., Nelson, J., Sabbatino, M., Wingo, P., Wenzlick, M., Zaengle, D., Rose, K. (2020, October 6-7).  Advanced geospatial analytics and machine learning for offshore and onshore oil & natural gas infrastructure. [Virtual conference presentation]. GIS Week 2020. https://www.osti.gov/servlets/purl/1767074

Enhancing Knowledge Discovery of Unstructured Data to Support Context in Subsurface-Modeling Predictions

Hoover, B., Mark-Moser, M., Wingo, P., Suhag, A., Rose, K. 2021. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. ACE/SEG21, Denver, Colorado, Sept. 26th-Oct. 1st. https://www.osti.gov/servlets/purl/1843422

Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX

Morkner, P., Rowan, C., Rose, K., Bauer, J., Sabbatino, M., Barhurst, A. Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX. NETL Carbon Storage Review Meeting. September 10, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Morkner.pdf

Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator

Romeo, L., Rose, K., Thomas, R., Mark-Moser, M., Barkhurst, A., Wingo, P., Bean, A. 2020. Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator. Carbon Storage Review Meeting. September 11, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Romeo_11.pdf

Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas

Dyer, A., Romeo, L., Wenzlick, M., Bauer, J., Nelson, J., Duran, R., Zaengle, D., Wingo, P., and Sabbatino, M. 2020. Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas. Esri User Conference, San Diego, CA, July 13-15, 2020. https://www.osti.gov/servlets/purl/1604638

Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar

Rose, K., Barkhurst, A., Mark-Moser, M., Romeo, L., and Wingo, P., 2020, Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar 6/25/2020, https://www.youtube.com/watch?v=G5oUWSb-kHc&feature=youtu.be

Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills

Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016

Scroll to Top