disCO2ver

Unlocking data-driven capabilities for the entire CCS community

Bibliographies

Filter by Categories

Geo-Data Science Driven Insights Into CCS EJ/SJ Opportunities in Support of Energy Community Transitions

Bauer, J. (2022). Geo-Data Science Driven Insights into CCS EJ/SJ Opportunities in Support of Energy Community Transitions. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Bauer.pdf

The DisCO2ver Platform, Building a Virtual Carbon Storage Data Laboratory and Infrastructure for the Future

Rose, K. Morkner, P. Bauer, J. (2022). The disCO2ver Platform, Building a Virtual Carbon Storage Data Laboratory and Infrastructure for the Future. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Rose.pdf

DOE Offshore Carbon Storage Saline Calculator Methodology and Tool

Romeo, L. Rose, K. Bauer, J. Mark-Moser, M. Bean, A. Thomas, B. (2022). Offshore CO2 Saline Storage Methodology and Calculator. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Romeo.pdf

Site Selection and Cost Estimation of Pilot-Scale CO2 Saline Storage Study in the Gulf of Mexico

Wijaya, N. Vakara, D. Bello, K. Vactor, T. Grant, T. Morgan, D. (2022). Site Selection and Cost Estimation for Pilot-Scale CO2 Saline Storage Study in the Gulf of Mexico. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Wijaya_2.pdf

Updating NATCARB and Carbon Storage Geospatial Resources via EDX Cloud

Morkner, P., Bauer, J., Pantaleone, S., Shay, J., Rowan, C., Baker, V., Obradovich, J., and Rose, K. Updating NATCARB and Carbon Storage Geospatial Resources via EDX Cloud. U.S Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting, August 16th, 2022. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS16_Morkner.pdf

3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project

Panetta, B., Carr, T., and Fathi, E., “3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project,” AAPG and SEG Second International Meeting for Applied Geoscience & Energy, August 14-15, 2022, Houston, TX, expanded abstract, https://doi.org/10.1190/image2022-3746025.1

Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage

Um, E.S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., Lin, Y., and Samarasinghe, S., “Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage;” Geophysical Prospecting, (2022) https://doi.org/10.1111/1365-2478.13257.

AIIM: Advanced Infrastructure Integrity Modeling

Bean, A., Romeo, L., Bauer, J. AIIM: Advanced Infrastructure Integrity Modeling. TechConnect. June 13-15, 2022. National Harbor, D.C. https://www.osti.gov/biblio/1890422

Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring

Liu, G., Kumar, A., Zhao, S., Shih, C., Vasylkivska, V., Holcomb, P., Hammack, R., Ilconich, J., and Bromhal, G., “Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring,” presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, (June 2022) https://doi.org/10.15530/urtec-2022-3723466.

Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization

Cappa, F.; Guglielmi, Y.; De Barros, L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization. Nature Communications, 2022, 13, 3039 (2022). https://doi.org/10.1038/s41467-022-30798-3.

Extensive Pipeline Location Data Resource: Integrating Reported Incidents, Past Environmental Loadings, and Potential Geohazards for Integrity Evaluations in the U.S. Gulf of Mexico

Isabelle Pfander, Lucy Romeo, Rodrigo Duran, Alec Dyer, Catherine Schooley, Madison Wenzlick, Patrick Wingo, Dakota Zaengle, Jennifer Bauer. Extensive pipeline location data resource: Integrating reported incidents, past environmental loadings, and potential geohazards for integrity evaluations in the U.S. Gulf of Mexico, Data in Brief, Volume 55, 2024, 110728, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2024.110728.

High-Resolution CT Scan Dataset of Lower Mount Simon Sandstone Samples from the Illinois Basin

Magdalena Gill, Mathias Pohl, Sarah Brown, Karl Jarvis, Dustin Crandall, High-resolution computed tomography scan dataset of lower Mount Simon Sandstone samples from the Illinois Basin, Data in Brief, Volume 55, 2024, 110643, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2024.110643.

Scoping Review of Global Offshore Geologic Carbon Storage Activities

Choisser, A., Mark-Moser, M., Mulhern, J., Rose, K. (2023) Scoping Review of Global Offshore Geologic Carbon Storage Activities. National Energy Technology Laboratory Technical Report Series, DOE/NETL-2024/4798 https://edx.netl.doe.gov/dataset/scoping-review-of-global-offshore-geologic-carbon-storage-activities

Computed Tomography Scanning and Petrophysical Measurements of Illinois Basin Coal Wells

Paronish, T.; Crandall, D.; Jarvis, K.; Workman, S.; Drosche, J.; Pohl, M.; Mckisic, T.; McLaughlin P.; Friedberg, J.; Delpomdor F. Computed Tomography Scanning and Petrophysical Measurements of Illinois Basin Coal Wells; DOE/NETL-2024/4799; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2024; p 56. http://edx.netl.doe.gov/dataset/computed-tomography-scanning-and-petrophysical-measurements-of-illinois-basin-coal-wells. DOI: 10.2172/2282147.

A Curated Data Resource to Support Safe Carbon Dioxide Transport-Route Planning

Catherine Schooley, Lucy Romeo, Isabelle Pfander, Maneesh Sharma, Devin Justman, Jennifer Bauer, Kelly Rose. A curated data resource to support safe carbon dioxide transport-route planning. Data in Brief, Volume 52, 2024, 109984, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.109984.

Enhancing Knowledge Discovery from Unstructured Data Using a Deep Learning Approach to Support Subsurface Modeling Predictions

Hoover B, Zaengle D, Mark-Moser M, Wingo P, Suhag A and Rose K. (2023) Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions. Front. Big Data 6:1227189. doi: https://doi.org/10.3389/fdata.2023.1227189

Dynamic risk assessment for geologic CO2 sequestration

Chen, B.; Harp, D. R.; Zhang, Y.; Oldenburg, C. M.; Pawar, R. J. (in Press, Corrected Proof). Dynamic risk assessment for geologic CO2 sequestration. Gondwana Research 2022. https://doi.org/10.1016/j.gr.2022.08.002.

Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility

Brown, C. F., G. Lackey, N. Mitchell, S. Baek, B. Schwartz, M. Dean, R. Dilmore, H. Blanke, S. O’Brien, and C. Rowe. 2023. “Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility.” International Journal of Greenhouse Gas Control 129: 103972. https://doi.org/10.1016/j.ijggc.2023.103972.

A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites

Dennise C. Templeton, Martin Schoenball, Corinne E. Layland‐Bachmann, William Foxall, Yves Guglielmi, Kayla A. Kroll, Jeffrey A. Burghardt, Robert Dilmore, Joshua A. White; A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites. Seismological Research Letters 2022;; 94 (1): 113–122. https://doi.org/10.1785/0220210284

A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage

Bhuvankar, P.; Cihan, A.; Birkholzer, J. A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage. International Journal of Greenhouse Gas Control, 2023, 127, Article 103921, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.103921.

Development of Machine Learning Models for Full Field Reservoir Characterization

Wu, X., Shih, C., Mark-Moser, M., and Wingo, P., 2021. Development of machine learning models for full field Reservoir Characterization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H34D – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://www.osti.gov/servlets/purl/1846178

Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – Accelerating Cross-Disciplinary AI/ML for Applied Geoscience, Energy, and Environmental Challenges

Shih, C., Thornton, J., Rose, K., Syamlal, M., Bromhal, G., Guenther, C., Pfautz, J., Van Essendelft, D., and Bauer, J., 2021, Science-based Artificial Intelligence and Machine Learning (AI/ML) Institute (SAMI) – accelerating cross-disciplinary AI/ML for applied geoscience, energy, and environmental challenges. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: IN12A – Growing Opportunities for Multiparty Collaborations in Artificial Intelligence and Machine Learning for Science Research. https://ui.adsabs.harvard.edu/abs/2021AGUFMIN12A..05S/abstract

Improving Prediction of Subsurface Properties Using a Geoscience Informed, Multi-Technique, Artificial Intelligence Approach

Rose, K., Mark-Moser, M., Suhag, A., and Bauer, J. 2021. Improving prediction of subsurface properties using a geoscience informed, multi-technique, artificial intelligence approach (Invited). AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session H33C – Application of Multimodal Physics-Informed Machine Learning/Deep Learning in Subsurface Flow and Transport Modeling. https://ui.adsabs.harvard.edu/abs/2021AGUFM.H33C..01R/abstract

Leveraging Data Ecosystems to Support Earth Science Research for Decarbonization

Morkner, P., Mark-Moser, M., Justman, D., Rowan, C., Bauer, J., and Rose, K., 2021. Leveraging Data Ecosystems to Support Earth Science Research For Decarbonization. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session U21A-07 – How Earth Science Research Can Help Accelerate the Transition to a Decarbonized Economy. https://ui.adsabs.harvard.edu/abs/2021AGUFM.U21A..07M/abstract

Exploring Subsurface Data Availability on the Energy Data eXchange (EDX)

Morkner, P., Bean, A., Bauer, J., Barkhurst, A., and Rose, K.. 2021. Exploring subsurface data availability on the Energy Data eXchange. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: SY039 – Subsurface Storage of Natural Gas, CO2, and Hydrogen: Key Learnings and Future Opportunities. https://www.osti.gov/servlets/purl/1846774

AI/ML Integration for Accelerated Analysis and Forecast of Offshore Hazards

Mark-Moser, M., Wingo, P., Duran, R., Dyer, A., Zaengle, D., Suhag, A., Hoover, B., Pantaleone, S., Shay, J., Bauer, J., and Rose, K. 2021. AI/ML integration for accelerated analysis and forecast of offshore hazards. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: EP027 – Proven AI/ML applications in the Earth Sciences. https://www.osti.gov/servlets/purl/1846789

On the Predictability of Loop Current Eddy Shedding Events and Unexpected Links to the Brazil and Guiana Currents

Duran, R., Liang, X.S., Allende-Arandia, M.E., Appendini, C.M., Mark-Moser, M., Rose, K., Bauer, J. 2021. On the predictability of Loop Current Eddy Shedding events and unexpected links to the Brazil and Guiana Currents. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session: OS45D – Ocean Dynamics of the Gulf of Mexico III Poster. https://www.osti.gov/servlets/purl/1846777

Evaluating the Effects of a Low-Carbon Energy Transition on Existing U.S. Fossil Energy Communities

Bauer, J., Rose, K., Romeo, L., Justman, D., Hoover, B., and B. White. 2021. Evaluating the effects of a low-carbon energy transition on existing U.S. fossil energy communities. AGU Fall Meeting 2021, Dec. 13-17, New Orleans, LA/Virtual. Session GC25G: Environmental Justice/Equity and Global Change: Methodologies, Frameworks, and Results II Poster. https://ui.adsabs.harvard.edu/abs/2021AGUFMGC25G0722B/abstract

Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico

Pantaleone, S., Mark Moser, M., Bean, A., Walker, S., Rose, K., 2021, “Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico”. AAPG/SEG IMAGE conference, Denver, Colorado, September 26, 2021 October 1, 2021. https://edx.netl.doe.gov/sites/offshore/forecasting-3d-structural-complexity-with-ai-ml-method-mississippi-canyon-gulf-of-mexico/

Assessing Current & Future Infrastructure Hazards: Forecasting Integrity using Machine Learning & Advanced Analytics

Romeo, L. (2021, August 9). Assessing Current & Future Infrastructure Hazards: Forecasting Integrity using Machine Learning & Advanced Analytics [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/20VPRONG_26_Romeo.pdf

Scroll to Top