Paronish, T., Mitchell, N., Brown, S., Pohl, M., Crandall, D., Blakley, C., Korose, C., and Okwen, R., “Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin,” DOE/NETL-2023/4323; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p. 68, DOI: https://doi.org/10.2172/1962306.
Discover
Unlocking data-driven capabilities for the entire transport and storage community
Home » Bibliographies
Bibliographies
Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin
Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core
Crandall, D., Gill, M., Paronish, T., Brown, S., Mitchell, N., Jarvis, K., Moore, J., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core,” DOE.NETL-2023.3847; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p 60. https://doi.org/10.2172/1963265.
A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage
Bhuvankar, P.; Cihan, A.; Birkholzer, J. A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage. International Journal of Greenhouse Gas Control, 2023, 127, Article 103921, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.103921.
Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells
Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.
Data Anonymization Tool Integration into DisCO2ver
Morkner, P., Bauer, J., Hoover, B., Wingo, P., Gao, M., Sharma, M., Neumann, C., Johnson, C., and Schuetter, J., “Data Anonymization Tool Integration into DisCO2ver,” presented at the Carbon Storage BIL Workshop on May 2, 2023.
Class VI Data Support Tool
Morkner, P., Strazisar, B., Pantaleone, S., Schooley, S., Shay, J., Pfander, I., and Rose, K., “Class VI Data Support Tool,” presented at the Carbon Storage BIL Workshop on May 2, 2023.
A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site
Mitchell, N.; Lackey, G.; Schwartz, B.; Strazisar, B.; Dilmore, R. A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site. Greenhouse Gases: Science and Technology 2023, 13(3), 320-339. https://doi.org/10.1002/ghg.2219.
Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network
Wang, Z.; Dilmore, R. M.; Bacon, D. H.; Harbert, W. Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network, Greenhouse Gases: Science and Technology, 2021, 11(2), 360-376. https://doi.org/10.1002/ghg.2056.
Developing a Nationally Integrated and Publicly Available Oil and Gas Well Database to Inform Safe Carbon Storage & Infrastructure Reuse Opportunities
Romeo, L., Pfander, I., Amrine, D., Sabbatino, M., Sharma, M., Tetteh, D., Rose, K., and Bauer, J., “Developing a Nationally Integrated and Publicly Available Oil and Gas Well Database to Inform Safe Carbon Storage & Infrastructure Reuse Opportunities,” CCUS 2024 SPE AAPG SEG, Houston, TX, March 11–13, 2024.
Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage
Chang, K.W., and Yoon, H., “Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage,” Seismological Research Letters, 49(3), 1447–1454, (2023) https://doi.org/10.1785/0220220365.
Enhancing Knowledge Discovery from Unstructured Data Using a Deep Learning Approach to Support Subsurface Modeling Predictions
Hoover B, Zaengle D, Mark-Moser M, Wingo P, Suhag A and Rose K. (2023) Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions. Front. Big Data 6:1227189. doi: https://doi.org/10.3389/fdata.2023.1227189
Dynamic risk assessment for geologic CO2 sequestration
Chen, B.; Harp, D. R.; Zhang, Y.; Oldenburg, C. M.; Pawar, R. J. (in Press, Corrected Proof). Dynamic risk assessment for geologic CO2 sequestration. Gondwana Research 2022. https://doi.org/10.1016/j.gr.2022.08.002.
Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility
Brown, C. F., G. Lackey, N. Mitchell, S. Baek, B. Schwartz, M. Dean, R. Dilmore, H. Blanke, S. O’Brien, and C. Rowe. 2023. “Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility.” International Journal of Greenhouse Gas Control 129: 103972. https://doi.org/10.1016/j.ijggc.2023.103972.
A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites
Dennise C. Templeton, Martin Schoenball, Corinne E. Layland‐Bachmann, William Foxall, Yves Guglielmi, Kayla A. Kroll, Jeffrey A. Burghardt, Robert Dilmore, Joshua A. White; A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites. Seismological Research Letters 2022;; 94 (1): 113–122. https://doi.org/10.1785/0220210284
Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA
Sharma, M., Paronish, T., Mitchell, N., Crandall, D., Zerbe, S., Pyle, S.J., Howard, C.M., Haldeman, A., and Neubaum, J., “Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA,” NETL-PUB-3889, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 36, https://edx.netl.doe.gov/dataset/ct-scanning-and-gm-of-appalachian-basin-core-from-the-jonesand-laughlin-1-well-beaver-county-pa, DOI: 10.2172/1995971.
Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core
Crandall, D., Paronish, T., Mitchell, N., Jarvis, K., Brown, S., Moore, J., Gill, M., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core,” NETL-PUB-3877, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 60, https://edx.netl.doe.gov/dataset/computed-tomography-scanning-and-petrophysicalmeasurements-of-the-lively-grove-1-well-core, DOI: 10.2172/1989188.
Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin
Paronish, T., Mitchell, N., Brown, S., Pohl, M., Crandall, D., Blakley, C., Korose, C., and Okwen, R., “Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin,” DOE/NETL-2023/4323; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p. 68, DOI: https://doi.org/10.2172/1962306.
Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core
Crandall, D., Gill, M., Paronish, T., Brown, S., Mitchell, N., Jarvis, K., Moore, J., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core,” DOE.NETL-2023.3847; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p 60. https://doi.org/10.2172/1963265.
A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage
Bhuvankar, P.; Cihan, A.; Birkholzer, J. A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage. International Journal of Greenhouse Gas Control, 2023, 127, Article 103921, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.103921.
Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells
Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.
Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills
Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016
Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System
Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical
Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data
Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129
Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP
Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761
Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics
Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract
Subsurface Trend Analysis
Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138
Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models
Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210