Discover

Unlocking data-driven capabilities for the entire transport and storage community

Bibliographies

Filter by Categories

Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin

Paronish, T., Mitchell, N., Brown, S., Pohl, M., Crandall, D., Blakley, C., Korose, C., and Okwen, R., “Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin,” DOE/NETL-2023/4323; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p. 68, DOI: https://doi.org/10.2172/1962306.

Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core

Crandall, D., Gill, M., Paronish, T., Brown, S., Mitchell, N., Jarvis, K., Moore, J., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core,” DOE.NETL-2023.3847; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p 60. https://doi.org/10.2172/1963265.

A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage

Bhuvankar, P.; Cihan, A.; Birkholzer, J. A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage. International Journal of Greenhouse Gas Control, 2023, 127, Article 103921, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.103921.

Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells

Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.

Data Anonymization Tool Integration into DisCO2ver

Morkner, P., Bauer, J., Hoover, B., Wingo, P., Gao, M., Sharma, M., Neumann, C., Johnson, C., and Schuetter, J., “Data Anonymization Tool Integration into DisCO2ver,” presented at the Carbon Storage BIL Workshop on May 2, 2023.

Class VI Data Support Tool

Morkner, P., Strazisar, B., Pantaleone, S., Schooley, S., Shay, J., Pfander, I., and Rose, K., “Class VI Data Support Tool,” presented at the Carbon Storage BIL Workshop on May 2, 2023.

A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site

Mitchell, N.; Lackey, G.; Schwartz, B.; Strazisar, B.; Dilmore, R. A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site. Greenhouse Gases: Science and Technology 2023, 13(3), 320-339. https://doi.org/10.1002/ghg.2219.

Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network

Wang, Z.; Dilmore, R. M.; Bacon, D. H.; Harbert, W. Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network, Greenhouse Gases: Science and Technology, 2021, 11(2), 360-376. https://doi.org/10.1002/ghg.2056.

Developing a Nationally Integrated and Publicly Available Oil and Gas Well Database to Inform Safe Carbon Storage & Infrastructure Reuse Opportunities

Romeo, L., Pfander, I., Amrine, D., Sabbatino, M., Sharma, M., Tetteh, D., Rose, K., and Bauer, J., “Developing a Nationally Integrated and Publicly Available Oil and Gas Well Database to Inform Safe Carbon Storage & Infrastructure Reuse Opportunities,” CCUS 2024 SPE AAPG SEG, Houston, TX, March 11–13, 2024.

Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage

Chang, K.W., and Yoon, H., “Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage,” Seismological Research Letters, 49(3), 1447–1454, (2023) https://doi.org/10.1785/0220220365.

Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting

Lackey, G.; Strazisar, B. R.; Kobelski, B.; McEvoy, M.; Bacon, D. H.; Cihan, A.; Iyer, J.; Livers-Douglas, A.; Pawar, R.; Sminchak, J.; Wernette, B.; Dilmore, R. M. Rules and Tools Crosswalk: A Compendium of Computational Tools to Support Geologic Carbon Storage Environmentally Protective UIC Class VI Permitting; NRAP-TRS-I-001-2022; DOE.NETL-2022.3731; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 120. DOI: https://doi.org/10.2172/1870412

Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks

Dyer, A.S., Zaengle, D., Nelson, J.R., Duran, R., Wenzlick, M., Wingo, P.C., Bauer, J.R., Rose, K., and Romeo, L. (2022). Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and neural networks, Marine Structures, Volume 83, 103152. https://doi.org/10.1016/j.marstruc.2021.103152.

Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering

Bao, T.; Burghardt, J. A. Bayesian Approach for In-Situ Stress Prediction and Uncertainty Quantification for Subsurface Engineering. Rock Mechanics and Rock Engineering 2022, 55, 4531–4548. https://doi.org/10.1007/s00603-022-02857-0.

Thermal and solubility effects on fault leakage during geologic carbon storage

Meguerdijian, S.; Pawar, R. J.; Harp, D. R.; Jha, B. Thermal and solubility effects on fault leakage during geologic carbon storage. International Journal of Greenhouse Gas Control 2022, 116, Article 103633. https://doi.org/10.1016/j.ijggc.2022.103633.

Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells

Cihan, A.; Oldenburg, C. M.; Birkholzer, J. T. Leakage from Coexisting Geologic Forcing and Injection-Induced Pressurization: A Semi-Analytical Solution for Multilayered Aquifers with Multiple Wells. Water Resources Research 2022, 58 (5), e2022WR032343. https://doi.org/10.1029/2022WR032343.

Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin

Luu, K.; Schoenball, M.; Oldenburg, C. M.; Rutqvist, J. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth 2022, 127(5), e2021JB023496. https://doi.org/10.1029/2021JB023496.

Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography

Yang, X.; Carrigan, C. Monitoring Geologic Carbon Sequestration Using Electrical Resistivity Tomography, Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 255-271. https://doi.org/10.1002/9781119156871.ch16.

Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage

Appriou, D.; Bonneville, A. (2022). Monitoring Carbon Storage Sites With Time-Lapse Gravity Surveys. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 211-232. https://doi.org/10.1002/9781119156871.ch14.

Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring

Gasperikova, E.; Morrison, H. F. Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring. Geophysical Monitoring for Geologic Carbon Storage, Huang, L. (Ed.), 2022, 233-253. https://doi.org/10.1002/9781119156871.ch15.

Automatic Waveform Quality Control for Surface Waves Using Machine Learning

Chai, C., Kintner, J.A., Cleveland, K.M., Luo, J., Maceira, M., and Charles J. Ammon, C.J., “Automatic Waveform Quality Control for Surface Waves Using Machine Learning,” Seismological Research Letters, 93(3), 1683-1694, (2022) https://doi.org/10.1785/0220210302.

Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills

Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016

Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System

Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical

Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data

Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129

Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP

Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761

Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics

Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract

Subsurface Trend Analysis

Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138 

Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models

Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210

Scroll to Top